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Cancer expands clonally, capitalizing on the variations between growing cells.

Cancer cells specialize in one or more functions to gain an advantage. This

study examined the prediction that cells would be vulnerable to drugs that

perturb their specific tasks. We analyzed the correlation between gene

expression and the response to drug perturbations in different cancer cells.

Next, we assigned every cancer cell to an archetype based on gene expression.

Finally, we calculated the enrichment of the cancer hallmark gene sets in each

cell, archetypes, and response to drug treatment. We found that the extremes of

gene expression were susceptible to change in response to perturbations. This

correlation predicted the growth rate inhibition of breast cancer cells. Cancer

hallmarks were enriched differently in the archetypes, and this enrichment

predicted the cell’s response to perturbations. We present evidence that

specialized cancer cells are sensitive to compounds that perturb their tasks.
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1 Introduction

Tumor cells share a core functionality that separates them from normal cells

(Hanahan and Weinberg, 2011). Cancer expands clonally, benefiting from the

variations between the growing cells (Nowell, 1976; Greaves and Maley, 2012). Clones

consist of identical cells; these differ from the surrounding cells. These similarities and

differences exist at the level of genomic content and gene expression. Inevitably, the

variations drive differential allocation of resources toward some functions. A recent study

has shown that in their distinct life histories, cancer cells make trade-offs between cellular

tasks or functions (Hausser et al., 2019). As a result, cells specialize in one or more tasks to

their advantage. One prediction of this settlement is that cancer cells would be susceptible

to drugs that perturb these specialized tasks. The authors observed that the distance

between cancer cells and a typical gene expression profile characteristic of a given task

predicted their growth rate when treated with a drug that disrupts the same task.

Cancer cell lines represent variations of tumors derived from the same tissue (Gillet et al.,

2013). They arise in different cell types, give rise to various diseases, and exhibit diverse

behavior. Thus, the cell lines potentially have distinct life histories characterized by trade-offs

similar to their tumor of origin. However, it is an open question whether specializing and task
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switching events can be detected in the cell expression profiles. This

would unlock the possibility of observing the specialization and

trade-offs at a granular level. Consequently, functions can easily be

defined as a gene set or a collection of proteins performing a

particular task or forming a pathway.

Several large-scale datasets were generated to profile genomic

and transcriptomic responses to cancer drugs (Barretina et al., 2012;

Garnett et al., 2012; Seashore-Ludlow et al., 2015). Different

approaches were applied to predict and explain the efficacy of

these drugs in particular types of cancer. These approaches

ranged from identifying critical changes associated with drug

responses to using deep neural networks (Iorio et al., 2016;

Chang et al., 2018). A unifying theory of why particular cancers

are susceptible or sensitive to certain drugs is still lacking. In

addition, the increase in chemo-resistance is almost inevitable in

almost all types of cancer treatments (Easwaran et al., 2014).

Therefore, further research should be directed at not only

predicting effective drugs but also understanding the principles

behind cancer cell susceptibility.

Here, we investigate drug sensitivity to specialized disruption

using expression profiles of cancer cell lines. We analyzed the

correlation between gene expression and changes in response to

drug perturbations. We performed an archetype analysis of the

typical gene expression profiles of cancer cells to find the

extremal that represents pure expression patterns. We

assigned every cancer cell to an archetype based on the

shortest distance. Finally, we calculated the enrichment of the

genes involved in the cancer hallmarks in each archetype and cell

response to drugs.

2 Materials and methods

2.1 Gene expression data of drug
perturbations in cancer cell lines

The library of integrated network-based cellular signatures

(LINCS) is a collection of gene expression profiles of cancer cell

lines under different types of perturbations, including compounds,

gene overexpression, knockdown, or knockouts (Koleti et al., 2018).

Cancer cell lines (N = 46) were treated with drugs (N = 38; for which

drug sensitivity data are available) or DMSO (controls) and profiled

for gene expression using the L1000 technology, which onlymeasures

the expression of 1,000 genes and imputes the expression of the

remaining from these measurements. The data were obtained using

the slinky R package (Kort, 2021).

2.2 Growth inhibition of MCF7 with drug
perturbations

We obtained cell viability measurements under treatments

with different drugs (N = 39; for which gene expression data are

available) in breast cancer cell lines (Hafner et al., 2016). The data

are presented in the form of the maximum growth inhibition

GRmax values of each drug which takes into account the baseline

replication rate. These values were plotted against the

correlations between the average gene expression profile of the

cell lines and their characteristic direction (CD) of change in

response to treatments with the same drugs (details in

subsection 2.6).

2.3 Cancer hallmark gene sets

Lists of genes involved in the ten cancer hallmarks were

previously compiled (Zhang et al., 2020). The lists were manually

curated from 301 KEGGs pathways (Kanehisa et al., 2017). The

creators of the list related each of the pathways to one of the ten

cancer hallmarks using text mining. After manual confirmation,

the lists were filtered and tested against mutation, methylation,

and copy number variation data from cancer tissues. We used the

lists of hallmarks as gene sets and calculated the enrichment of

each in the archetypes and the cell line responses to drugs (details

in subsection 2.7).

2.4 Multidimensional scaling (MDS)

Control samples of the cell lines were used to determine their

typical gene expression profiles by averaging across replicates.

Multidimensional scaling (MDS) was applied to show the

similarity between the gene expression profiles of the cell lines

(Cox and Cox, 2000). The pairwise distances between the

averaged gene expression profiles of the cells were calculated

and projected on a two-dimensional space. Individual points

were labeled using different variables (tissue of origin or

archetypes) to decide which explained more variance among

the expression profiles.

2.5 Archetype analysis (AA)

Archetype analysis represents a set of observations as convex

combinations of pure patterns. Individual observation will either

belong to one of the pure archetypes or be a mixture of two or

more. A set of archetypes was learned from the typical expression

profiles so that the data are approximated by a convex

combination of the extremal points (Cutler and Breiman,

1994). The problem is defined and solved as context least

squares using linear equations. We recalculated the model for

a different number of archetypes and chose the one (k = 6) with a

small residual sum of squared errors. The nearest archetypes

were designated based on the sum of the square differences

between the model parameters (genes) and various archetypes.

The model parameters were entered into the enrichment analysis
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as ranking values of the features (genes) in the archetypes. This

analysis was applied using the archetypes R package (Eugster and

Leisch, 2011).

2.6 Differential expression analysis (DE)

The CD of change between treated and control (DMSO)

samples was compared to obtain the differential gene expression.

This analysis was applied using the diffexp function from the

slinky R package (Kort, 2021). This function uses the

characteristic direction (CD) method which gives less weight

to individual genes that exhibit a large change in the magnitude

between two conditions. Instead, the method gives more weight

to genes that move together in the same direction across repeats

(Clark et al., 2014). The sign of the CD represents the direction of

change and the magnitude of the importance of the

corresponding gene in the cell response to drug perturbations

(Duan et al., 2016).

2.7 Gene set enrichment analysis (GSEA)

The parameters of the six archetype models were used to

rank the genes. The lists of genes were also ranked by the

magnitude of CD in response to drug treatments in each cell.

Enrichment scores were calculated in each list with the over-

representation of the cancer hallmark gene sets at the top or

the bottom of the list. This approach allows the detection of

small changes in gene expression in multiple members of the

gene set. Enrichment scores were considered significant

when the false-discovery rate (FDR) was < 0.2. This

analysis was applied using the clusterProfiler R package

(Yu et al., 2012).

2.8 Correlation analysis

The variance explained by different variables in the gene

expression profiles was estimated as intra-class correlation (ICC)

using the variancePartition R package (Hoffman and Schadt,

2016). The correlation between the typical expression profiles

and the response to drug perturbation (CD) was calculated using

Spearman’s rank coefficients. The correlation (discretized) of

expression and responses in MCF7 were plotted against the

growth inhibition when applying the same treatment. The

correlation between the enrichment scores of the cancer

hallmark gene sets in the archetypes and the drug responses

was calculated using the Pearson correlation coefficient (PCC).

These correlations were plotted against the absolute enrichment

scores (discretized) of the archetypes. Figure 1 shows a diagram

of the workflow of the study.

2.9 Data, source code, and reproducibility

The data analyzed in this study were obtained from online

repositories: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE92742 and https://lincs.hms.harvard.edu/db/datasets/

20268. The software environment and code to reproduce this

analysis is available as a docker image (https://hub.docker.com/r/

bcmslab/task_perturbation) and an open-source compendium

(https://github.com/BCMSLab/task_perturbation). The analysis

FIGURE 1
Workflow of the study. Gene expression data of the cancer
cell lines were used to determine the typical expression profiles
and the response to treatments in the form of differential
expression (DE) characteristic direction (CD) of change.
Typical gene expression profiles of the cancer cell lines were
subjected to multidimensional scaling (MDS), archetype analysis
(AA), and correlation analysis with the CD of the drug treatments.
The correlations in MCF7 were plotted against growth inhibition
rates of the cell line treated with the same set of drugs. Gene set
enrichment analysis (GSEA) of the cancer hallmarks was
performed in the pure archetypes of the cell lines and their
responses to drugs was analyzed. The correlation between the
enrichment scores of the archetypes and the drug response was
analyzed.
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was conducted in R (4.0) using Bioconductor (3.11) (R Core

Team, 2021; Huber et al., 2015).

3 Results

3.1 Gene expression extremes are
susceptible to drug perturbations

We evaluated the relationship between the typical

expression profiles of the cancer cells and their response

to drug perturbations. We defined a “typical” expression

profile as the average gene expression in the control cells

(treated with DMSO) (N = 14) and the “response” as the

characteristic direction (CD) of change between cells treated

with each drug (N = 38) and the control. Each of the two

variables was represented as a vector with a length equal to

the number of genes and the association measured between

them. To calculate the per cell line or drug correlation, we

averaged the response of the cell line to all drugs or the

response to the drug across the cell lines.

The correlation (Spearman’s rank correlation coefficients)

between the typical expression profile and drug response in terms

of gene expression was moderately negative but significant (ρ < 0;

p < 0.05) for the majority of the data points (70%). A histogram of

the correlations shows a shift to the left, indicating that genes at

the extremes of the expression distributions tend to change in

response to drug treatments (Figure 2A). We compared the

distribution of the correlations to that of a normally

distributed random variable centered around zero using the

Kolmogorov–Smirnov (KS) test. The cumulative distribution

of the two curves was significantly apart (D− = 2.14, p <
0.0001), indicating that they were drawn from the distribution

of different shapes.

Next, we asked whether the negative correlation between the

typical gene expression and drug responses holds for every cell

line and drug. We separated the histogram of correlations by the

cell line or drug. In both cases, the correlation in question was

negative (ρ < 0; p < 0.05) in most cell lines (95%) and for most

drugs (90%) (Figure 2B). In both cases, the cumulative

distributions of the average correlations were significantly

different (D− = 1.4 & 1.8, p < 0.0001) than those from a

random variable in the KS test. This shows that the extremely

highly and lowly expressed genes in each cell changed the most in

response to drug treatment in terms of their expression. Next, we

clustered these expression profiles to look for patterns that could

explain their correlation with the drug perturbation response.

3.2 Archetypes explain the variance in
expression among cancer cells

We used archetype analysis to find the extremes of expression

profiles across non-treated cancer cell lines (N = 46). These

profiles were determined so that the average expression profiles

of the cell types are approximated by a convex combination of

extremal points (archetypes). The archetypes represent the pure

expression profiles to which individual cells belong (specialists)

or are a mixture of two or more (generalists). Clustering, by

contrast, identifies typical profiles (centroids) to which other

FIGURE 2
Correlation between the typical gene expression of cancer cells and the change in response to drug perturbations. Gene expression profiles of
cancer cell lines (N= 46) with andwithout drug perturbations (N= 38) were obtained from the library of integrated network-based cellular signatures
(LINCS). The typical expression profiles were determined as the average by the cell line in the control conditions (DMSO). The characteristic direction
(CD) of change between treated and control cells was determined. (A) Histogram of Spearman’s rank correlation between the average gene
expression and the CD. (B) Histogram of the correlations averaged for every drug (blue) or cell line (red).
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observations are assigned based on somemeasure of distance.We

selected six (K = 6) archetypes to minimize the residual sum of

squares (RSS = 3.5) and retained the possibility of interpretation

(Figure 3A). With the number of archetypes, many of the cancer

cells were on or nearby one archetype (Figure 3B). Most cells,

however, were on the line between two of these six archetypes.

This is to say, the cell does not belong strictly to either but

comprises features of each (Table 1). For example, HS578 T

belonged to the fifth archetype (A5), while MCF7 was a mixture

of archetypes (A1, 2, and 6). The archetypes A1 and A6 were

common to most cells.

We calculated the differences between the gene expression

values (feature) in each cell and the archetype model parameters.

The cells were assigned to one or more archetypes based on the

sum of squared differences (SSD < 120) (Table 1), which

represent the distance of the cell from the pure archetypes.

For the purpose of the following analyses, we assigned each

cell to the closest archetype (the lowest SSD). If these archetypes

reflected anything important about the different cells, it would

have been expressed as better clustering or explained a larger

amount of variance between the cells than that of other known

variables (such as tissue of origin).

We performed multidimensional scaling (MDS) on the

average expression profiles of every cell. We then assigned

each a tissue of origin (Figure 4A) and an archetype

(Figure 4B). Cells clustered better across the two dimensions

when labeled by the nearest archetypes. To quantify this

observation, we considered the so-called intra-class correlation

(ICC) as a measure of the fraction of variance explained by the

tissue of origin or archetype. Archetypes explained a higher

proportion (ICC = 0.28) of the variance between the gene

expression profiles of the cells than the tissue of origin (ICC =

0.06). Next, we explored whether the archetypes differ from each

other in terms of the enrichment of the cancer hallmark gene sets.

3.3 Cancer hallmark enrichment differs
between cell archetypes

The hallmark gene sets were previously compiled from

lists of genes involved in the relevant functions and

pathways. The aforementioned analysis assigns each

feature (gene) a value that indicates its contribution to

each archetype. We used the model parameters of the

features to rank genes and calculate the gene set

enrichment scores of the cancer hallmarks in each

archetype (Figure 5). We found evidence of significant

differences with a small false-discovery rate (FDR < 0.2)

for eight out of ten hallmarks. For example, the set of genes

involved in “Reprogramming Energy Metabolism” was

overrepresented in the list of highly expressed genes in all

cell archetypes. This was evident in a significant (FDR <
0.001) positively normalized enrichment score (NES =

1.4–1.7). In other words, the members of the gene set

were not randomly distributed in the ranked list.

The two gene sets: “Resisting Cell Death” and “Genome

Instability and Mutations” were only enriched (NES = 1.2 &

1.3; FDR < 0.08 & 0.6) in two or three archetypes. Other gene

sets were overrepresented lower in the ranked list of expressed

genes. These observations show the relative contributions of

genes to each archetype. The difference itself is relative

between the archetypes and the genes since genes not

expressed were removed in advance. The process of

clustering into archetypes was then used to find the

FIGURE 3
Archetypes of the typical gene expression profiles of cancer cell lines. Typical expression profiles were determined by averaging the control
condition of each cell line (N = 46) in the LINCS dataset. A set of archetypes was determined from the typical expression profiles so that the data are
approximated by a convex combination of the extremal points. The problem is defined and solved as context least squares using linear equations. (A)
Procedure was repeated with several archetype numbers, and the residual sums of square errors were calculated. (B) Archetypes (red) and cell
lines (black) in parallel coordinates of a model with six archetypes.
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differential response to drugs in the functions that are

important for each archetype.

3.4 Cancer cells are sensitive to drug
perturbations that disrupt their specialized
tasks

The previous analysis identified the cancer hallmarks (tasks)

that are important in each archetype (enrichment in archetypes).

Using CD to rank the genes, we calculated similar enrichment scores

for the gene sets as the different cells responded to perturbations

(enrichment in response to drugs). We then calculated the Pearson

correlation coefficients (PCCs) between the enrichment scores for

each cell in the hallmarks related to its nearest archetype. We found

that correlation is the strongest (r = −0.6, p < 0.01) when the

enrichment of the hallmark in the archetype is the highest (NES >
1.4) (Figure 6A). The more pronounced the enrichment of a

biological function in the cell is, the bigger the expression change

of the genes involved in it will be.

A similar observation could be derived for the susceptibility

of individual genes to change in response to perturbations. The

average gene expression in cancer cells and their response to drug

perturbations were associated with growth inhibition as a result

of treatment with the same drugs (Figure 6B). The most negative

correlations (ρ < − 0.1, p < 0.05) occurred in drug treatments that

produced higher growth inhibition (GRmax < 0). Treatment with

a given drug wasmore effective in inhibiting cell growth when the

extremes of gene expression were susceptible to the drug, that is,

the drugs that produce the largest effect on the highest and lowest

expressed gene inhibit cell growth the most.

4 Discussion

This article shows that cancer cells that are specialized for a

particular task are susceptible to drugs that interfere with that

task. First, the extremes of gene expression were more susceptible

to change by drug treatments. Dependent on these changes was

the growth rates of breast cancer cells under the same treatments.

Second, cancer cells are clustered in archetypes that represent

extreme gene expression profiles. Cancer hallmarks were

enriched discrepantly in these archetypes, and this enrichment

TABLE 1 Cancer cell line membership in different archetypes.

Cell line A1 A2 A3 A4 A5 A6

Breast BT20 X X

HS578 T X

MCFX0A X X X X

MCF7 X X X

MDAMB23X X X X

SKBR3 X X

Blood/lymphoid HL60 X

NOMOX X X X

PHH X

PL2X X X

SKMX X X

THPX X X

U937 X

WSUDLCL2 X X

Large intestine CL34 X X

HCTXX6 X X X

HTXX5 X

HT29 X X X

LOVO X X X

MDST8 X

NCIH508 X X

RKO X

SNUX040 X

SNUC4 X X X

SNUC5 X X

SW480 X X X

SW620 X X

SW948 X X

Lung A549 X X X X

CORL23 X X

DV90 X X X

HX299 X

HCCX5 X X X

HCC5X5 X X X

NCIHX694

NCIHX836 X

NCIH2073 X X

NCIH596 X X

SKLUX X

T3MX0 X X X

Ovary COV644 X

EFO27 X X

OV7 X X

(Continued in next column)

TABLE 1 (Continued) Cancer cell line membership in different
archetypes.

Cell line A1 A2 A3 A4 A5 A6

RMGI X X

RMUGS X X X

TYKNU X X X

Frontiers in Pharmacology frontiersin.org06

Ahmed and Kim 10.3389/fphar.2022.934843

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.934843


was negatively correlated with the enrichment in response to

drug perturbations. Figure 7 summarizes the findings and

conclusions of the study.

Cancer cells compete for resources among each other and

with normal cells in the body. Therefore, a limited supply of

resources and metabolic constraints suggest trade-offs that

might exert selective pressures. Experiments in breast cancer

cells have shown a reduction in proliferation rates when the

need to detoxify oxygen species arises (Jerby et al., 2012).

Similar trade-offs between the metabolism of serine and

glutamine have been observed in estrogen-positive versus

estrogen-negative cells. Aktipis and others provided a

perspective on applying life-history theory to the

evolution of cancer (Aktipis et al., 2013). In particular,

they posited that different hallmarks of cancer are

associated with faster or slower life histories depending on

the stability and availability of resources in the

microenvironment.

Simulations were used to explain how such task trade-offs

could work in the context of cancer. Driven by a hypoxic

FIGURE 5
Enrichment of the hallmark gene sets in the archetypes of cancer cells. Genes known to be involved in the ten cancer hallmarks were compiled
in gene sets (Zhang et al., 2020). Gene expression profiles of cancer cell lines (N = 46) with and without drug perturbations were obtained from the
library of integrated network-based cellular signatures (LINCS). The characteristic direction (CD) of change between treated and control cells was
determined. Genes were ranked based on the CD, and the overrepresentation of the hallmark gene sets (normalized enrichment scores; NES)
was estimated in the top (NES > 0) or the bottom (NES < 0) of the ranked list.

FIGURE 4
Multidimensional scaling of the average expression profiles of cancer cell lines. Gene expression for the control condition of the library of
integrated network-based cellular signatures (LINCS) cell lines (N = 46) data was used in multidimensional scaling (MDS). Euclidean distances
between the expression profiles were calculated. The relative position of the cell lines across the first two dimensions (D1 and D2) is laid out. Each
point represents a cell type. Cells were colored by the different (A) tissue of origin or (B) the assigned archetype.
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microenvironment, glioblastoma cells switch from

proliferative to invasive phenotype (Hatzikirou et al., 2012),

rather than being transformed to the more aggressive form by

mutations. Godlewski et al. suggested a possible mechanism

for phenotype switching in glioma cells (Godlewski et al.,

2010). More recent research studies have made apparent the

non-static dynamic nature of tumor growth (Gallaher et al.,

2019). In simulated models, the turnover rate in glioma cells

affects the tumor growth rate and the proliferation/migration

trade-off. Increasing cell turnover slows the overall growth

and accelerates the evolution of proliferation in the interior

and migration at the edge of the tumor.

The concept of the Pareto front has been used to infer the

trade-off between the phenotypes of the organisms that

multi-task (Shoval et al., 2012). The authors of this

previous study proposed to use the weighted average of the

archetypes that specialize in one or more tasks to find the

trade-offs. This scheme was applied to high-dimensional gene

expression data to infer the biological tasks (Hart et al., 2015).

Hausser et al. used the aforementioned approach to study task

specialization and trade-offs in tumors (Hausser et al., 2019).

Their analyses predict and test how tumors that specialize in a

given task are sensitive to drugs that disrupt that task. Several

issues were raised about this approach and about the use of

static (snapshot) high-throughput data to study the life

history of evolving cancer.

Considering many tasks may hinder defining trade-offs

for several of the tumors that were included in the study

(Hausser et al., 2019). Plutynski pointed out The Cancer

Genome Atlas (TCGA) data, on which the study was based,

might be biased toward the task that the study explains

(Plutynski, 2021). In addition, an analysis of life history

and trade-offs should draw on phenotypes as well as

FIGURE 6
Correlation between hallmark enrichment in archetypes and in response to drug perturbations. A set of six archetypes was estimated from gene
expression data of cancer cell lines (N= 46) obtained from the library of integrated network-based cellular signatures (LINCS). Themodel parameters
(alphas) were used to rank the genes in a list. The characteristic direction (CD) of change between the control and drug perturbed (N = 38) cell lines
were used to obtain a ranked list of genes. The overrepresentation of the hallmark genes sets at the extremes of the archetype parameters and
the drug response lists was calculated. (A) Pearson’s correlation coefficients (PCCs) between the two enrichment scores for each group of absolute
archetype enrichment values. (B) Correlations between the average gene expression profile in MCF7 and the CD in response to drug perturbations
were calculated. Growth inhibition data for the same set of drugs were obtained by Hafner et al. (2016). Growth inhibition for drugs across the range
of correlations is shown as boxplots.

FIGURE 7
Diagram of the study findings. Cancer cell lines represent
variations of cancer cells growing in different tissues. Resources
dedicated to specific cellular functions differ between the cell
types. This results in cancer cells specializing in functions
(tasks) and making trade-offs to their advantage. Cells specialized
in a given task are sensitive to drugs that disrupt this task.
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genotypes. Our present analysis supports the explicit

prediction of the study regarding the drug sensitivity of

specialized tumor cells. Gene expression data of cancer

cell lines reflect an unbiased and wide range of tumor

variations with potentially distinct life histories. We also

show that the extremes of gene expression are sensitive to

drug perturbations and that this association explained the

phenotypic change in the form of reduced growth rates of

breast cancer cell lines.

Genes at the extremes of the expression profiles (very high or

very low expression) disproportionately contribute to

enrichment of the gene sets of which they are part of and to

the variability between cell types. In either case, these genes are

likely to change in response to perturbations. Our analysis

suggests that the susceptibility of specialized cells leads to

changes in the enrichment of the gene sets (tasks) and

expression of the individual genes. In addition, previous

studies have shown that variable genes are more likely to be

differentially expressed between conditions. A meta-analysis of

gene expression variability in yeast concluded that

environmental perturbations, in particular, led to more

significant gene expression variability and overall regulation

than genetic manipulations (Pancaldi et al., 2010). Moreover,

expression variation partially predicted differential expression in

response to perturbations in both Drosophila and humans

(Sigalova et al., 2020). Finally, in the aggressive subtype of

chronic lymphocytic leukemia, high-variability genes were

related to cell cycle, development, and intercellular

communication gene sets, indicating a relation to faster

progression of the subtype (Ecker et al., 2015).

Cell line data, however, are limited by the fact that they

represent discontinuous lines of evolution. These can only be

studied, at least in the current investigation, as the endpoint or

the end product of the process that generated them. In addition,

the way we define tasks as hallmarks of cancer is also a potential

source of bias. On the other hand, we present a flexible way to

define and test for quantitative differences in the tasks in terms of

enrichment of gene sets. We use this approach to examine how

different molecular functions contribute to the archetype that the

cell type belongs to and relate to the drug response. The

interpretation of the drug sensitivity in multi-tasking cells

depends on the existence of the notion of specialization,

which we do not test explicitly in this study.
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