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Background: Non–small cell lung cancer (NSCLC) is highly malignant with driver somatic
mutations and genomic instability. Long non-coding RNAs (lncRNAs) play a vital role in
regulating these two aspects. However, the identification of somatic mutation-derived,
genomic instability-related lncRNAs (GIRlncRNAs) and their clinical significance in NSCLC
remains largely unexplored.

Methods: Clinical information, gene mutation, and lncRNA expression data were
extracted from TCGA database. GIRlncRNAs were screened by a mutator hypothesis-
derived computational frame. Co-expression, GO, and KEGG enrichment analyses were
performed to investigate the biological functions. Cox and LASSO regression analyses
were performed to create a prognostic risk model based on the GIRlncRNA signature
(GIRlncSig). The prediction efficiency of the model was evaluated by using correlation
analyses with mutation, driver gene, immune microenvironment contexture, and
therapeutic response. The prognostic performance of the model was evaluated by
external datasets. A nomogram was established and validated in the testing set and
TCGA dataset.

Results: A total of 1446 GIRlncRNAs were selected from the screen, and the established
GIRlncSig was used to classify patients into high- and low-risk groups. Enrichment
analyses showed that GIRlncRNAs were mainly associated with nucleic acid
metabolism and DNA damage repair pathways. Cox analyses further identified
19 GIRlncRNAs to construct a GIRlncSig-based risk score model. According to Cox
regression and stratification analyses, 14 risk lncRNAs (AC023824.3, AC013287.1,
AP000829.1, LINC01611, AC097451.1, AC025419.1, AC079949.2, LINC01600,
AC004862.1, AC021594.1, MYRF-AS1, LINC02434, LINC02412, and LINC00337)
and five protective lncRNAs (LINC01067, AC012645.1, AL512604.3, AC008278.2,
and AC089998.1) were considered powerful predictors. Analyses of the model
showed that these GIRlncRNAs were correlated with somatic mutation pattern,
immune microenvironment infiltration, immunotherapeutic response, drug sensitivity,
and survival of NSCLC patients. The GIRlncSig risk score model demonstrated good
predictive performance (AUCs of ROC for 10-year survival was 0.69) and prognostic value

Edited by:
Hongtao Xiao,

University of Electronic Science and
Technology of China, China

Reviewed by:
Yueguo Li,

Tianjin Medical University Cancer
Institute and Hospital, China

Yaojiang Huang,
Minzu University of China, China

Nishant Karadkhelkar,
The Scripps Research Institute,

United States

*Correspondence:
Sihe Zhang

sihezhang@nankai.edu.cn
https://orcid.org/0000-0002-8923-

1993

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 06 May 2022
Accepted: 23 June 2022

Published: 03 August 2022

Citation:
Zhang Q, Liu X, Chen Z and Zhang S
(2022) Novel GIRlncRNA Signature for
Predicting the Clinical Outcome and
Therapeutic Response in NSCLC.

Front. Pharmacol. 13:937531.
doi: 10.3389/fphar.2022.937531

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 9375311

ORIGINAL RESEARCH
published: 03 August 2022

doi: 10.3389/fphar.2022.937531

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.937531&domain=pdf&date_stamp=2022-08-03
https://www.frontiersin.org/articles/10.3389/fphar.2022.937531/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.937531/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.937531/full
http://creativecommons.org/licenses/by/4.0/
mailto:sihezhang@nankai.edu.cn
mailto:https://orcid.org/0000-0002-8923-1993
mailto:https://orcid.org/0000-0002-8923-1993
https://doi.org/10.3389/fphar.2022.937531
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.937531


in different NSCLC datasets. The nomogram comprising GIRlncSig and tumor stage
exhibited improved robustness and feasibility for predicting NSCLC prognosis.

Conclusion: The newly identified GIRlncRNAs are powerful biomarkers for clinical
outcome and prognosis of NSCLC. Our study highlights that the GIRlncSig-based
score model may be a useful tool for risk stratification and management of NSCLC
patients, which deserves further evaluation in future prospective studies.

Keywords: long non-coding RNA, somatic mutation, genomic instability, prognostic signature, non–small cell lung
cancer

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide, with
an approximate 1.8 million deaths each year (Sung et al., 2021).
About 85% of lung cancer patients are diagnosed with non–small
cell lung cancer (NSCLC), of which lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) are the
two major subtypes (Herbst et al., 2018). Although clinical
approaches have achieved significant advances in NSCLC
treatment, the 5-year survival rate is only 25% in 2021 (Sung
et al., 2021), and there is an urgent need for the identification of
novel prognostic biomarkers for improved risk stratification and
enhanced therapeutic efficiency of NSCLC (Gridelli et al., 2015;
Chen and Dhahbi, 2021; Peng et al., 2021).

Genomic instability and somatic mutations are two hallmarks
of cancer and contribute essentially to malignant transformation
(Hanahan and Weinberg, 2011). As predicted by the “Mutator
Phenotype” hypothesis, mutations of DNA repair genes,
oncogenes, and tumor suppressor genes (TSG) can cause
increased genomic instability, which drives cancer onset and
progression (Negrini et al., 2010). Additionally, defects in
genes controlling chromosome cohesion, mitotic kinetochore-
microtubule attachment, centrosome copy number, checkpoint
function, and cell-cycle regulation can accelerate the genomic
instability. Beyond that, chromosomal instability such as
translocations, deletions, insertions, amplifications, and
inversions of large segments as well as gains or losses of whole
chromosomes can also cause genomic instability (Thompson
et al., 2010; Bastians, 2015). Furthermore, epigenetic
modifications, like DNA modification, histone variants and
modifications, nucleosome remodeling, and non-coding RNA,
together play important roles in keeping genomic stability (Reis
et al., 2016; Feng and Riddle, 2020). Moreover, an undesirable
tumor microenvironment can also increase genomic instability
(Rummel et al., 2012), of which hypoxia is a major factor
(Sonugur and Akbulut, 2019). Notably, genomic instability
contributes to the acquisition of multidrug resistance in
malignancy (Lee et al., 2011; Osrodek and Wozniak, 2021),
which frequently gives rise to poor therapeutic response and
patient outcome (Lukow et al., 2021). Therefore, novel
biomarkers correlated with genomic instability are critical for
cancer diagnosis, treatment, and prognosis.

Emerging evidence indicates that long noncoding RNAs
(lncRNAs) play vital roles in regulating genomic stability (Nair
et al., 2020). Multiple studies have revealed that lncRNAs can

preserve genomic stability in the process of DNA damage
response and repair. For instance, a colorectal cancer-
overexpressed oncogenic lncRNA, CRNDE, could reduce DNA
damage and cell apoptosis after oxaliplatin treatment (Gao et al.,
2017). Furthermore, lncRNA LINP1 could serve as a scaffold
linking Ku80 and DNA-PKcs and consequently coordinate non-
homologous end-joining pathways to enhance the repair of DNA
double-strand breaks (Zhang et al., 2016). A poorly characterized
lncRNA, NORAD, maintains genomic stability by sequestering
the PUMILIO protein. Once NORAD was missing, PUMILIO
induce chromosomal instability by hyperactively inhibiting
mitosis, DNA replication, and DNA damage repair (Lee et al.,
2016). These studies strongly suggest that genomic instability-
related lncRNAs (GIRlncRNAs) may provide a vital molecular
signature for predicting the malignant phenotype. Recently, Bao
et al identified a genomic instability-related lncRNA signature
(GIRlncSig) for improved predication of breast cancer outcome,
which combined lncRNA expression and the somatic mutation
profile (Bao et al., 2020). Geng and Peng have identified two sets
of GIRlncSig in LUAD and early LUAD with the favorable
prognostic outcome (Geng et al., 2021; Peng et al., 2021).
Although these GIRlncSigs have been associated with the
prognosis of particular subtypes of lung cancer, GIRlncSig-
associated tools for NSCLC prognosis have yet to be
established. More importantly, the clinical significance and
biological function of GIRlncSig in NSCLC remain largely
unexplored.

In this study, we identified 19 somatic mutation-derived
GIRlncRNAs in NSCLC by using the mutator hypothesis-
derived computational frame. A GIRlncSig-based risk score
model with reliable prognostic performance was constructed,
which can be a powerful indicator of genomic instability,
immune microenvironment infiltration, therapeutic response,
drug resistance, and patient stratification, thereby improving
the personalized treatment of NSCLC.

MATERIALS AND METHODS

Data Collection and Preprocessing
The overall procedure in this study is outlined as the roadmap
(Supplementary Figure S1). Transcriptomic and clinical
information on NSCLC (LUAD and LUSC) were downloaded
from The Cancer Genome Atlas (TCGA) database via the UCSC
Xena Browser (https://xenabrowser.net/). Somatic mutation data
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were downloaded from TCGA database (https://portal.gdc.
cancer.gov/). Counts data were used for the transcriptome
data, and the muTect version was used for the somatic
mutation data. The human gtf file containing the gene symbol
was downloaded from the Ensembl database (Homo_sapiens.
GRCh38.99.gtf.gz; http://www.ensembl.org). Transcriptomic,
somatic mutation data, and clinical information were matched
according to the sample name, and samples with missing data
were excluded. Finally, 975 complete samples including gene
expression, mutation, patient’s survival, and other clinical
variables were obtained. The mRNAs and lncRNAs of
975 samples were annotated based on the gtf file containing
the gene symbol. Then, these samples were randomly distributed
into training and testing sets at a ratio of 7:3 using the “caret”
package in R. The training set of 683 patients was used to identify
the GIRlncSig and construct the prognostic risk model. The
testing set of 292 patients was used to validate the
performance of our risk model. The clinical information of
NSCLC patients is summarized in Table 1.

Identification of GIRlncRNAs
The lncRNA expression profile and somatic mutation pattern of
975 patients were combined to identify GIRlncRNAs by a
mutator hypothesis-derived computational frame (Bao et al.,
2020) (Supplementary Figure S2). Briefly, NSCLC patients
were ranked in increasing order according to the cumulative
number of somatic mutations. The top 25% of patients with low
mutation frequency were designated as the genomic stable (GS)
group, and the last 25% of patients with high mutation
frequency were designated as genomic unstable (GU)
group. LncRNA expression profiles between the two groups
were compared, and a volcano plot was made using the “edgeR”
package in R. Differentially expressed (DE) lncRNAs (|Fold
Change| > 1.0 and adjusted p < 0.05) were defined as
GIRlncRNAs, and their expression levels were normalized to
all patients.

Co-Expression Network, GO and KEGG
Enrichments, and Alternative Splicing
Analysis
The mRNA-interacting GIRlncRNAs were extracted from the
RNAInter database (http://www.rna-society.org/rnainter/). Then,
the co-expression network of mRNA-interacting GIRlncRNAs was
visualized by Cytoscape (V3.7.2) (Chin et al., 2014). To explore the
biological function of GIRlncRNAs, GO functional enrichment and
KEGG pathway analyses were performed using the “clusterProfiler,”
“org.Hs.eg.db,” “enrichplot,” and “ggplot2” packages in R. Statistical
significance was considered with adjusted p-value < 0.05. To
determine the AS events associated with GIRlncRNAs, AS data of
NSCLC were downloaded from LncAS2Cancer database (https://
lncrna2as.cd120.com/), and integrated with corresponding
GIRlncRNAs. Statistical histogram and Upset plot were drawn
using “ggplot2” and “UpSetR” packages in R, respectively.

Hierarchical Cluster Analysis
The normalized DE-lncRNAs from 975 samples were collected
for hierarchical cluster analysis using the pam method, and the
spearman distances were calculated using the
“ConsensusClusterPlus” package in R. All samples were
divided into two clusters based on the spearman distances.
One cluster with low mutation counts was assigned as GS-like
subtype. The other with high mutation counts were defined as
GU-like subtype (Mann–Whitney U test, p < 0.05). Finally,
Kaplan–Meier survival curves and the expression heatmap of
DE-lncRNAs in the two subtypes were plotted using “survival,”
“survminer,” and “ComplexHeatmap” packages in R.

GIRlncRNA-Clustered Molecular Subtype
and Characteristic Analyses
To estimate the differential mutation frequency between GS and
GU-like subtypes of NSCLC patients, driver genes from Cancer

TABLE 1 | Clinical information of NSCLC patients.

Covariate Type TCGA set
(n = 975)

Training set
(n = 683)

Testing set
(n = 292)<

p-valuea

Gender Male 584 (59.9%) 417 (61.05%) 167 (57.19%) 0.2597
Female 391 (40.1%) 266 (38.95%) 125 (42.81%)

Age (years) >60 698 (71.59%) 489 (71.60%) 209 (52.74%) 0.9574
≤60 262 (26.87%) 184 (26.93%) 78 (45.55%)
NA 15 (1.54%) 10 (1.46%) 5 (1.71%)

Tumor stage Stage I-II 772 (79.18%) 541 (79.21%) 231 (79.11%) 0.8944
Stage III-IV 192 (19.69%) 135 (19.76%) 57 (19.52%)
Unknown 11 (1.13%) 7 (1.02%) 4 (1.37%)

Pathologic M M0 723 (74.15%) 517 (75.7%) 206 (70.55%) 0.1359
M1 31 (3.18) 23 (3.37%) 8 (2.74%)
MX 221 (22.67%) 143 (20.93%) 78 (26.71%)

Pathologic N N0 626 (64.21%) 441 (64.57%) 185 (63.36%) 0.2510
N1-3 333 (34.15%) 228 (33.38%) 105 (35.96%)
NX 16 (1.64%) 14 (2.05%) 2 (0.68%)

Pathologic T T1-2 821 (84.21%) 571 (83.6) 250 (85.62%) 0.4256
T3-4 151 (15.49%) 109 (15.96%) 42 (14.38%)
TX 3 (0.31%) 3 (0.44%) 0 (0%)

aChi-squared test, p < 0.05 means significantly different.
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Gene Census (CGC) catalog in the COSMIC database (https://
cancer.sanger.ac.uk/census) were downloaded. Fifty-four driver
genes with corresponding MAF files were extracted and
determined their mutation frequency. The landscape of
mutation frequency was drawn using the “maftools” package
in R. Furthermore, the differential expression of driver genes
from two NSCLC subtypes was analyzed using “edgeR” package
in R. The cutoff criteria were |log2 FC|>1 and adjusted p < 0.05.
TheWilcoxon test was used to analyze the differentially expressed
GIRlncRNAs. Moreover, the immune, stromal, and ESTIMATE
scores for the two NSCLC subtypes were determined by the
“estimate” package in R. In addition, tumor mutation burden
(TMB) data were downloaded from TCGA database (https://gdc.
cancer.gov/) and TMB scoring for the two NSCLC subtypes was
performed. Finally, the scores for the mRNA expression-based
stemness index (mRNAsi) were calculated, and NSCLC patients
were stratified into different molecular subtypes by referring to
the matrix in Malta et al. (2018). Boxplots for GS- and GU-like
groups were drawn using the “ggpubr” package in R (Student
t-test, adjusted p<0.05).

Identification of GIRlncSig and
Performance Evaluation
To estimate the correlation of GIRlncRNA expression with overall
survival (OS) of NSCLC patients, a univariate Cox proportional
hazards regression analysis was performed in the training set by
using “survival” and “survminer” packages in R. The candidate
GIRlncRNAs were screened with p < 0.01. Then, the least absolute
shrinkage and selection operation (LASSO) Cox regression analysis
was carried out to identify the GIRlncRNAs with the most robust
prognostic values. Finally, the resulting GIRlncRNAs were collected
to construct a GIRlncSig based on the weighted expression level and
coefficient (coef) from LASSO regression analysis. The risk score
formula for GIRlncRNAs was calculated as follows:

GIRlncSig Risk Scorei � ∑
n

j�1
expji × βj.

The “exp” and “β” represent the expression level and coefficient
of each prognostic lncRNA, respectively. GIRlncSig risk score
represents the sum of expression level of each prognostic
lncRNA multiplied by the coef of corresponding GIRlncSig. i
represents the sample, and j represents the prognostic lncRNA.
Based on the risk score for all samples, high and low-risk patients
were then recognized by using themedian value as the cut-off point.
Evaluation analyses, including the Kaplan–Meier survival curve,
receiver operating characteristic curve (ROC), risk distribution,
survival status of all patients, and heatmap of selected GIRlncSig
expression profile were applied to test the predication performance
of our risk model in training, testing, and TCGA sets.

Independent Prognostic and Clinical
Stratification Analysis
To test whether the GIRlncSig risk score could be potentiated as a
prognostic factor independently from other clinical variables

(age, gender, and tumor stage), univariate and multivariate
Cox regression analyses (UCRA and MCRA) were performed.
All variables with independent prognostic values were selected
from TCGA database when their p-values were less than 0.05. To
test the prognostic stability of GIRlncSig scoring, a clinical
stratification analysis was conducted. Patients were first
divided into subgroups according to clinical variables,
including age (≤60 and >60), gender (female and male),
pathologic T (T1-T2 and T3-T4), and tumor stage (I-II and
III-IV). Second, patients in each subgroup were ranked according
to their GIRlncSig risk score, and assigned to high or low-risk
subgroups by referring to the median value. Finally, the survival
difference between high and low-risk subgroups was calculated
(log-rank test, p < 0.05).

Correlation Analysis Between GIRlncSig
and Drive Genes or the Microenvironment
Expression profiles of GIRlncSig and driver genes of NSCLC were
extracted, and their correlation was calculated using “ggplot2”
and “ggpubr” packages in R. The cutoff criteria were R > 0.3 and
p < 0.05, respectively. Correlation between GIRlncSig score and
immune, or stromal, or ESTIMATE, or mRNAsi or TMB scores
were further calculated (p < 0.05).

Immune Cell Infiltration, Checkpoint
Inhibitor-Related Genes, and Therapeutic
Response
The mRNA expression matrix of each patient was converted to
22 types of immune cell matrix with cutoff criteria of p < 0.05.
Tumor-infiltrating immune cells include naive B cells, memory
B cells, plasma cells, CD8+ T cells, naive CD4+ T cells, resting
memory CD4+ T cells, activated memory CD4+ T cells, follicular
helper T cells, regulatory T cells (Tregs), gamma delta T cells,
resting dendritic cells, activated dendritic cells, monocytes,
macrophages M0, M1, M2, resting natural killer (NK) cells,
activated NK cells, resting mast cells, activated mast cells,
eosinophils, and neutrophils. Based on their association with
clinical outcomes, NSCLC patients were classified into high- and
low-risk groups using the Cell type Identification by Estimating
Relative Subsets of RNA Transcript (CIBERSORT) algorithm
(Chen et al., 2018). The type and distribution of infiltrating
immune cells were analyzed by “ggplot2” package in R, and
presented as barplots and boxplots. Subsequently, we analyzed
the expression profile of immune checkpoint inhibitor genes in
high and low-risk groups. A significant difference was determined
by using the Wilcoxon test with p-value < 0.05. Based on the
functional enrichment of gene expression, SubMap module from
GenePattern was used to map and merge two datasets with
different traits. This module can eliminate the batch effect and
predict the possible traits that are not included in the original
dataset. To predict the therapeutic response by checkpoint
inhibitor blocking, SubMap module was used to map the high
and low-risk groups based on the therapeutic information.
Prediction of the response to CTLA4 and PD1 inhibitors was
particularly studied in high and low-risk NSCLC patients. The
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p-value was corrected by Bonferroni to increase the predictive
sensitivity. Finally, we used R package “pRRophetic” to predict
chemotherapeutic responses of each sample based on the
genomics of drug sensitivity in the cancer (GDSC) database.
The half-maximal inhibitory concentration (IC50) of each sample
was calculated using ridge regression (p < 0.001). The Spearman
correlation (Cor) between the RS score and IC50 to particular
drugs was calculated and the significant correlations were cutoff
with | Cor | > 0.1 and p < 0.001.

Gene Set Variation Analysis in High and
Low-Risk Groups
GSVA analysis was conducted to reveal the differential pathways
between high and low-risk patients. Functional enrichment
analysis was conducted based on the distinct GIRlncSig
patterns extracted from KEGG and MSigDB database using
“GSVA” package in R. Significant differential signal pathways
between high and low-risk groups were extracted by “limma”
package with the threshold for adjusted p < 0.05 and |logFC|>0.1.
Visualized heatmap of KEGG pathway was plotted using
“ComplexHeatmap” package in R.

Construction and Validation of the
Nomogram Score System
To develop a nomogram score system for NSCLC patients,
MCRA was performed to extract the powerful OS predictors.
To visualize the results of Cox regression and predict the survival
of NSCLC patients, the prognostic nomogram was plotted by
using “rms” and “survival” packages in R. First, the Cox
proportional hazards regression model was constructed by
using the cph () function, and the survival () function was
used to calculate the survival probability. Finally, the
nomogram () function was used to create the nomogram,
time-dependent ROC, and calibration curves of OS. The
predictive performance of the nomogram was validated by
calibration curves, ROC, and decision curve analysis (DCA).
The area under curves (AUCs) of the nomogram for
predicting 1-, 3-, 5-, and 10-year OS of NSCLC patients were
plotted.

Statistical Analyses
The chi-squared test, Student’s t-test, Wilcoxon test, and
Mann–Whitney U-test were employed to examine the
differential variables from datasets or groups. Statistical
significance was considered as p < 0.05. R (version 3.6.3) was
used to perform all statistical analyses, and the results were
visualized by corresponding functional packages.

RESULTS

Identification of GIRlncRNAs for NSCLC
Patients
Following TCGA data collection, annotation, and preprocessing,
975 samples were obtained. These samples were subsequently

ranked by their gene mutation counts. The top 25% samples (n =
244) with a low mutation frequency were designated as the GS
group, and the last 25% samples (n = 244) with a high mutation
frequency were designated as the GU group (Supplementary
Figure S2; Supplementary Table S1). A total of 1,446 DE-
lncRNAs between these two groups were identified from an
expression matrix containing 10,480 lncRNAs (|log2 FC|>1,
FDR adjusted p < 0.05), among which 1138 lncRNAs were
upregulated and 308 lncRNAs were downregulated
(Figure 1A; Supplementary Table S2). Based on the
expression profile of these DE-lncRNAs, all samples were
clustered under an unsupervised hierarchical clustering
analysis by “ConsumusClusterPlus” package. Two clusters
were obtained as shown in the heatmap (Figure 1B;
Supplementary Table S3). The resulting subtypes were
positively correlated with the mutation frequency (R = 1.22;
p = 0.0001) and the mutation frequency in cluster 2 was
significantly higher than that in cluster 1 (Figure 1C).
Therefore, cluster 1 and cluster 2 were named as GS and GU-
like subtypes, respectively. As shown by the heatmap of DE-
lncRNAs, a significant expression difference was observed
between these two subtypes (Figure 1D). These results
identified 1,446 lncRNAs as candidates for GIRlncRNAs of
NSCLC.

Further analyses found that 60 candidate GIRlncRNAs can
undergo AS events, of which all DE-lncRNAs contained skipped
exon (SE), and 26 DE-lncRNAs contained mutually exclusive
exons (MXE) (Figure 1E; Supplementary Figure S3;
Supplementary Table S4). Co-expression network analyzing
the interaction of DE-lncRNA with mRNA resulted in
4912 interaction pairs (Figure 1F; Supplementary Table S5),
among which 3,802 (77.4%) mRNAs and 334 (6.8%) mRNAs
were respectively interacting with lncRNA FENDRR and
BANCR. It was also found that 38 and 5 lncRNAs were,
respectively, interacting with mRNA AR and TNPO2
(Supplementary Table S6). GO enrichment and KEGG
pathway analyses showed that these mRNA-interacting
GIRlncRNAs were significantly enriched in a nucleoside or
ribonucleoside binding, nuclear membranes enveloping, cell-
cycle checkpoint, tumorigenesis, and virus infection signaling
pathways (Figures 1G–J; Supplementary Tables S7, S8). These
results suggested that the identified mRNA-interacting
GIRlncRNAs may be essential for regulating genomic stability.

Characteristics of GIRlncRNA-Clustered
Molecular Subtypes in NSCLC Patients
Investigating the mutation profile of driver genes showed that
GU-like subtype patients exhibited higher mutation frequency
than that in GS-like subtype patients. Being the most frequent
mutation genes in NSCLC, TP53 and CSMD3 were mutated in
81% and 48% of GU-like subtype patients, respectively. However,
these two gene mutations only occurred respectively in 51% and
37% of GS-like subtype patients (Figures 2A,B). Further
expression analysis of 54 driver genes showed that 16 genes
were differentially expressed between GS and GU-like
subtypes, among which nine genes were upregulated and seven
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genes were downregulated in GU-like patients (Figure 2C).
Tumor microenvironment scoring results showed that the
immune, stromal and ESTIMATE scores in GU-like subtypes
were significantly lower than those in GS-like subtypes (Figures
2D–F). Further analysis of NSCLC tumor characteristics showed

that TMB and mRNAsi scores in GU-like subtypes were
significantly higher than those in GS-like subtypes (Figures
2G,H). Moreover, Kaplan–Meier survival analysis showed that
the survival of GS-like patients was significantly better than that
of GU-like patients (Figure 2I). These data indicated that NSCLC

FIGURE 1 | Identification and functional analysis of GIRlncRNAs for NSCLC patients. (A) Volcano plot of the GIRlncRNA distribution. 1,446 DE-lncRNAs between
the GU group (n = 244) and GS group (n = 244) are shown. (B) Unsupervised clustering of 975 NSCLC patients according to the expression pattern of identified
GIRlncRNAs. Cluster 1, light blue box. Cluster 2, dark blue box. (C) Mutation frequency analysis of DE-lncRNAs in two clusters derived from unsupervised clustering
analyses. Cluster 1, blue scatterplot. Cluster 2, orange scatterplot. (D) Expression heatmap of DE-lncRNAs from 975 NSCLC patients. Subtype classification was
performed by unsupervised hierarchical clustering analysis. Cluster 1 (cyan box) is designated as the GS-like group, and cluster 2 (orchid box) is designated as the GU-
like group. (E) Upset plotting the statistical AS events of 60 DE-lncRNAs. (F) Co-expression network of mRNA-interacting GIRlncRNAs based on Pearson correlation
coefficient. (G) Enriched KEGG pathways for the mRNA-interacting GIRlncRNAs. (H–J) Enriched GO pathways for the mRNA-interacting GIRlncRNAs in three parts: BP
(H), CC (I), and MF (J).
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patients with the GU-like molecular subtype have more
aggressive tumors than those with GS-like molecular subtypes.

Identification and Evaluation of GIRlncSig
for NSCLC Patients
Univariate Cox proportional hazards regression analysis showed
that the expressions of 23 GIRlncRNAs were significantly
associated with OS of NSCLC patients in our training set (p <
0.01 Figure 3A; Supplementary Table S9). LASSO regression
analysis was performed to identify the GIRlncRNAs with more
significant associations (p < 0.05). When the partial likelihood
deviation reached to the minimum (Log Lambda = −4.4),
19 GIRlncRNAs were screened out and used to construct a

risk model for survival prediction (Figures 3B,C;
Supplementary Table S10). To assess the prognostic risk of
NSCLC patients, a GIRlncSig was created based on the
expression level of 19 GIRlncRNAs and the coefficients from
LASSO analysis. GIRlncSig score = LINC01067* (−0.1595) +
AC012645.1 * (−0.1235) + AL512604.3 * (−0.0989) +
AC008278.2 * (−0.0921) + AC089998.1 * (−0.0401) +
AC023824.3 * 0.0050 + AC013287.1 * 0.0073 + AP000829.1 *
0.0159 + LINC01611 * 0.0177 + AC097451.1 * 0.0197 +
AC025419.1 * 0.0270 + AC079949.2 * 0.0369 + LINC01600 +
0.0474 + AC004862.1 * 0.0518 + AC021594.1 * 0.0623 +
(MYRF–AS1) * 0.0851 + LINC02434 * 0.0858 + LINC02412 *
0.1049 + LINC00337 * 0.1143. In the formula of GIRlncSig,
14 GIRlncRNAs (AC023824.3, AC013287.1, AP000829.1,

FIGURE 2 | Mutation and expression landscapes of driver genes, tumor microenvironment assessment, and Kaplan–Meier survival analyses. (A,B) Mutation
frequency of 54 driver genes (top 30) in 395 GS-like (A) and 508 GU-like (B) NSCLC patients. Each column represents an individual patient. The upper barplot indicates
TMB, and the number on the right indicates the mutation frequency for each regulator. The right barplot shows the proportion of each variant type. (C) Expression
landscape of 17 driver genes differently expressed between GS and GU-like patients. (D–H) Immune (D), stromal (E), and ESTIMATE (F) score and TMB (G) and
mRNAsi (H) analyses in GS and GU-like groups. (I) Survival analysis of GS and GU-like groups of NSCLC patients.
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FIGURE 3 | Identification of the GIRlncSig and its predictive performance in a training set. (A) Forest plot of OS-associated GIRlncRNAs based on the univariate
Cox proportional hazards regression analysis. Five GIRlncRNAs acted as protective risk factors for patients’ survival (green), while 18 GIRlncRNAs acted as prognostic
risk factors (red). (B) Distribution plot of partial likelihood deviation based on LASSO regression analysis. Nineteen GIRlncRNAs were selected when log lambda was
equal to −4.4 (the minimum). (C) Distribution plot of LASSO coefficient (log lambda = −4.4). (D) Kaplan–Meier survival curves of low and high-risk NSCLC patients
predicted by the GIRlncSig (log-rank test, p < 0.0001). (E) ROC of NSCLC patients at 1, 3, or 5 years predicted by GIRlncSig. (F,G) Risk distribution (F) and survival
status (G) of NSCLC patients. (H) Expression heatmap of selected GIRlncRNAs.
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FIGURE 4 | Performance evaluation of GIRlncSig in testing and TCGA sets. (A,B) Kaplan–Meier survival curves of GIRlncSig-predicted low- or high-risk NSCLC
patients in testing [(A), log-rank test; p < 0.05] and TCGA [(B), log-rank test, p < 0.0001] sets. (C,D)ROC of 1-, 3-, or 5- year survival predicted by GIRlncSig in testing (C)
and TCGA (D) sets. (E–J) Risk distribution, survival status of patients, and the expression profile of GIRlncSig in testing (E,G,I) and TCGA (F,H,J) sets. (K) Sankey
diagram for the distribution of NSCLC patients in GS or GU-like groups, low or high-risk groups, and dead or alive groups.
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LINC01611, AC097451.1, AC025419.1, AC079949.2,
LINC01600, AC004862.1, AC021594.1, MYRF–AS1,
LINC02434, LINC02412, and LINC00337) with positive
coefficients were designated as risk factors. In contrast, five
lncRNAs (LINC01067, AC012645.1, AL512604.3, AC008278.2,
and AC089998.1) with negative coefficients were designated as
protective factors. Either upregulated expression of prognostic
GIRlncRNAs or downregulated expression of protective
GIRlncRNAs was significantly related to decreased OS of
NSCLC patients. Based on the GIRlncSig score (cutoff =
0.075), 341 patients with a high score were classified into a
high-risk group, and 342 patients with a low score were
classified into a low-risk group (Supplementary Table S11).
Kaplan–Meier survival analysis showed that the survival of
low-risk NSCLC patients was significantly better than that in
high-risk patients (p < 0.0001, log-rank test; Figure 3D). The
AUCs of time-dependent ROC in the training set were 0.71, 0.73,
0.71 for 1-, 3-, 5-year survival, respectively, as predicted by
GIRlncSig (Figure 3E). Finally, the risk distribution and
survival status of NSCLC patients together with the expression
heatmap of 19 GIRlncRNAs in the training set were plotted
(Figures 3F–H). The results showed that high-risk-scored
patients with such a GIRlncSig were mainly derived from the
GU-like group and exhibited shorter survival. All these results
strongly supported the utility and effectiveness of our GIRlncSig
in predicting NSCLC prognosis.

To evaluate the robustness of our GIRlncSig, its prognostic
performance in two independent data sets was further tested. A
total of 392 NSCLC patients from the testing set and 975 NSCLC
patients from the TCGA set were classified into high- and low-risk
groups based on the GIRlncRNA risk score (Supplementary Table
S11). Kaplan–Meier survival curves in the testing set (p < 0.016,
Figure 4A) and entire TCGA set (p < 0.0001, Figure 4B) showed
that patients from the low-risk group had better survival outcomes
than patients from the high-risk group. The AUCs of time-
dependent ROC in the testing set were 0.6, 0.6, and 0.61 for the
1-, 3-, and 5-year survival predicted by the GIRlncSig, respectively
(Figure 4C). Similar results were obtained in TCGA set, where the
AUCs of ROC were overall approximately 0.7 (Figure 4D).
Furthermore, risk distribution, and survival of patients together
with GIRlncSig expression heatmap in both sets showed that high-
risk scored patients were mainly derived from the GU-like group
and exhibited shorter survival (Figures 4E–J). Additionally, the
Sankey diagram also showed that high-risk patients accounted for a
higher proportion of mortality in the GU-like group, while these
patients accounted for a less proportion of mortality in the GS-like
group (Figure 4K). Together, these results further support that our
GIRlncSig can predict the prognosis of NSCLC patients.

Correlation of GIRlncSig With the
Aggressiveness of NSCLC
Since GIRlncSig possessed a robust prognostic performance, the
correlation analysis between identified GIRlncRNAs and
differentially expressed driver genes was further performed. Three
positively correlated regulatory pairs (AC008278.2 and PTPRT,
AP000829.1 and MB21D2, LINC01600 and MB21D2) were

screened out by Pearson correlation analysis (R > 0.3 and p < 0.05)
(Figures 5A–C; Supplementary Table S12). The expression patterns
of these correlated pairs were consistent in high- and low-risk groups
(Figures 5D–F). To determine the relationship of GIRlncSig with
tumor microenvironment characteristics, Pearson correlation
coefficients between GIRlncSig risk score and immune, or stromal,
or ESTIMATES, or mRNAsi, or TMB scores were calculated
separately. The results of correlation analysis showed that
GIRlncSig-based risk scores were positively correlated with all
characteristics of the tumor microenvironment (Figures 5G–K).
Notably, the strongest correlation of the risk score with TMB was
observed (R = 0.135; Figure 5K). Further correlation analyses between
the GIRlncSig and infiltrating immune cells were performed. Although
the resulted NSCLC-infiltrated immune cell types were different
depending on algorithms, similar trends of cell distribution were as
follows: high infiltrating level of B cell (especially memory B cell) and
T cell (especially CD4+ and CD8+ memory T cells) populations were
positively associated with the expression of five protective lncRNAs. By
contrast, infiltrating B and T cells presented an opposite association
trend for fourteen risk lncRNAs (Supplementary Figures S4–S10).
High infiltrating levels of macrophages (especially M1 and M2),
neutrophils, monocytes, and myeloid dendritic cells were positively
associated with the expression of protective lncRNAs but negatively
associated with the expression of risk lncRNAs (Supplementary
Figures S4–S10). These results suggested that GIRlncSig was
significantly correlated with the malignancy of NSCLC.

Risk Stratification of NSCLC Patients With
GIRlncSig Score and Clinical Variables
To validate the stability of our score model, a risk stratification
analysis was conducted to determine the prognostic performance of
GIRlncSig. NSCLC patients were first grouped based on their clinical
parameters, then stratified into subgroups by GIRlncSig-derived risk
score. Kaplan–Meier survival analyses showed that patients with low-
risk scores had better survival outcomes than those with high-risk
scores in all stratified subgroups (p < 0.05; Figures 6A–H). The
distribution of risk scores for all stratified subgroups, including age,
gender, pathologic M, pathologic N, pathologic T, tumor stage, and
GS/GU-like groups, was further determined. No difference in the
distribution of risk score between young and oldNSCLC patients was
observed (p < 0.05; Figure 6I). However, the risk score distribution of
male patientswas significantly higher than that of female patients (p<
0.05; Figure 6J), and the risk score distribution of the GU-like group
was significantly higher than that in the GS-like group (p < 0.05;
Figure 6O). For the groups of pathologic N, T, and tumor stage but
not pathologicM, the risk score for the primary stage was always low.
Interestingly, higher risk scores were frequently observed in patients
with advanced stage (p< 0.05;Figures 6K–N). These results highlight
the stability of our GIRlncSig-based risk score model.

Therapeutic Evaluation of NSCLC Patients
by the GIRlncSig Score
The abundance of tumor-infiltrating immune cells and the
expression profile of immune checkpoint genes have a strong
impact on tumor treatment, so we carried out immune cell
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FIGURE 5 | Correlation analyses between GIRlncSig and malignant characteristics of NSCLC. (A–C) Pearson correlation analysis of GIRlncRNA-driver gene
regulatory pairs: AC008278.2 and PTPRT (A), AP000829.1 and MB21D2 (B), LINC01600 and MB21D2 (C); (D–F) Differential expression analysis of correlated
regulatory pairs in different risk groups: AC008278.2 and PTPRT (D), AP000829.1 and MB21D2 (E), and LINC01600 and MB21D2 (F). (G–K) Pearson correlation
analysis between the risk score and immune score (G), stromal score (H), ESTIMATE score (I), mRNAsi score (J), or TMB score (K) in NSCLC patients.
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FIGURE 6 | Risk stratification analyses based on GIRlncSig score and clinical variables. (A–H) Kaplan–Meier survival curves of high and low-risk subgroups for old
(A), young (B), male (C), female (D), T1-2 stage (E), T3-4 stage (F), stage I-II (G), and stage III-IV (H) patients. (I–N) Boxplots showing GIRlncSig-derived risk scores
stratified by age (I), gender (J), and pathologic M (K), N (L), T (M), and tumor stage (N) in NSCLC patients. (O) Boxplot of GIRlncSig-derived risk scores in GS- and GU-
like NSCLC groups.

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 93753112

Zhang et al. GIRlncSig for NSCLC Clinical Outcome

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


infiltration analysis with the CIBERSORT algorithm to evaluate
our GIRlncSig. Abundance ratios and differential boxplots of
22 types of immune cells in high and low-risk NSCLC patients
were plotted (Figure 7A; Supplementary Table S13). The
abundance ratios of infiltrated M0, M1 macrophages, and
resting NK cells in the high-risk score group were significantly
higher than those in low-risk score group. However, naive B cells,
plasma cells, monocytes, and resting mast cells in the high-risk
score group were remarkably lower than those in the low-risk
score group (Figure 7B). Subsequently, the expression profile of
immune checkpoint genes, CTLA4 (CD152), B7-1 (CD80), B7-2

(CD86), PDL1 (CD274), PD1 (PDCD1) and PDL2 (PDCD1LG2),
in high and low-risk groups was further analyzed (Figures
7C–H). The violin plots showed a significant difference in the
expression levels of CTLA4, CD80, CD86, CD274, PDCD1, and
PDCD1LG2 between low and high-risk groups (Figures 7C–H).
Therefore, the SubMap module in GenePattern database was
further employed to predict the risk score effect on
immunotherapy of NSCLC patients. Results of the corrected
Bonferroni analysis suggested that the patients in the high-risk
group were slightly more sensitive to CTLA4 and PD1 inhibitors
than those in the low-risk group (p = 0.0619 and 0.0739;

FIGURE 7 | Immune evaluation and drug resistance analyses in high- and low-risk groups of NSCLC patients. (A) Distribution of 22 types of immune cells in high-
and low-risk groups of NSCLC patients. (B) Boxplot of differentially infiltrated immune cells in high- and low-risk groups of NSCLC patients (p < 0.05). (C–H) Violin plot of
the differentially expressed checkpoint genes in high- and low-risk NSCLC patients. (I) Immunotherapy response predicted for high- and low-risk NSCLC patients by
SubMap module. (J-O) Chemotherapeutic sensitivity predicted for high- and low-risk NSCLC patients by the pRRophetic package.
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Figure 7I). We also evaluated the chemotherapeutics sensitivity
in different risk groups predicted by pRRophetic package. It was
found that a total of 76 drugs, including four resistant drugs and
72 sensitive drugs, were correlated with the RS scores
(Supplementary Figure S11). The predicted results showed
that NSCLC patients in the high-risk group were more
resistant to KIN001-135, erlotinib and phenformin than those
in the low-risk group. However, these high-risk NSCLC patients
were more sensitive to A-770041, WH-4-023, and CGP-60474
(Figures 7J–O). Overall, these results suggested that GIRlncSig
could be used for the evaluation of immune cell distribution and
immunotherapy response in NSCLC patients.

Genomic Instability-Related Signal
Pathways Were Enriched in High-Risk
Patients
To explore the biological function associated with the GIRlncSig,
functional enrichment analysis was conducted for high and low-
risk groups of NSCLC patients using “GSVA” package. MSigDB
database-based KEGG analysis revealed that 32 differentially

enriched items were significantly enriched in the high-risk
scored group (Figure 8). Notably, two types of signaling
pathways were markedly enriched in the high-risk scored
group. One was the nucleic acid metabolic pathway including
pyrimidine metabolism, folate biosynthesis, DNA replication,
and RNA degradation. The other was the DNA damage repair
pathway including mismatch repair, base excision repair,
nucleotide excision repair, non-homologous end joining, and
homologous recombination. Notably, these two types of
pathways were strongly associated with genomic stability.

Independent Prognostic Evaluation and
Nomogram Construction Based on the Risk
Score and Clinical Variables
To verify whether GIRlncSig was an independent prognostic
factor, UCRA was conducted on variables including clinical
variables and GIRlncSig-based risk score. Then, MCRA was
used to evaluate the prognosis of all included variables. The
UCRA and MCRA results showed that the GIRlncSig-based risk
score and tumor stage exhibited good prognostic performance

FIGURE 8 | Heatmap of KEGG pathway enrichment in high- and low-risk groups of NSCLC patients.
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FIGURE 9 | Independent prognostic evaluation and nomogram construction. (A,B) UCRA (A) and MCRA (B) based on GIRlncSig-based risk scores together with
clinical variables; (C)MCRA-developed nomogram for predicting 1-, 3-, 5-, and 10-year survival of NSCLC patients; (D)MCRA-developed ROC for predicting 1-, 3-, 5-,
and 10-year survival of NSCLC patients; (E–H) Calibration curves for predicting 1- (E), 3- (F), 5- (G), and 10- (H) year survival of NSCLC patients.

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 93753115

Zhang et al. GIRlncSig for NSCLC Clinical Outcome

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(p < 0.0001; Figures 9A,B; Supplementary Table S14). Other
variables, such as cluster, age, and gender, had no significant
correlation with the OS of NSCLC patients (p > 0.05). These
results suggested that the prognostic value of GIRlncSig was
independent of other clinical variables. To test its clinical
utility, a statistical nomogram was created by integrating
GIRlncSig-based risk score with TCGA clinical information
(age, gender, and tumor stage) (Figure 9C). The C-index of
nomogram was 0.67, and the AUCs of ROC for 1-, 3-, 5-, and 10-
year survival predictions were 0.69, 0.71, 0.70, and 0.69,
respectively (Figure 9D). The calibration plots of 1-, 3-, 5-,
and 10-year OS showed good agreements between the actual
survival rate and the nomogram-predicted survival rate (Figures
9E–H). Therefore, these data suggested that the nomogram has a
good prediction performance and could provide clues for clinical
diagnosis of NSCLC.

DISCUSSION

Genomic instability is an evolving hallmark of most cancers
(Hanahan, 2022). It is also a major driver of carcinogenesis,
drug sensitivity, tumor-microenvironment-shaping, and immune
contexture in NSCLC (Raynaud et al., 2018; Skoulidis and
Heymach, 2019). LncRNAs play a critical role in maintaining
genomic instability (Nair et al., 2020; Jianfeng et al., 2021).
Increasing evidence has revealed the prognostic significance of
GIRlncRNAs for cancers (Fang et al., 2021; Liang et al., 2021;
Maimaiti et al., 2021; Yan et al., 2021). Since NSCLC possesses a
poor survival prognosis due to limited diagnosis and treatment
(Zappa and Mousa, 2016; Li C. et al., 2019), we developed a
prognostic GIRlncSig to support the clinical stratification and
treatment decision for NSCLC patients.

In this study, we screened out 1446 GIRlncRNAs for NSCLC by a
somatic mutation burden hypothesis-derived computational frame.
Functional analysis revealed that these lncRNAs were mainly
enriched in nucleoside or ribonucleoside metabolism, cell-cycle
checkpoint, nuclear membrane enveloping, and tumorigenesis,
which are involved in maintaining genomic instability (Sieber
et al., 2003; Deng, 2006; Aird and Zhang, 2015; Lim et al., 2016).
TP53 and CSMD3 were the two most frequently mutated genes in
NSCLC (Liu et al., 2012), and their mutation status was closely
associated with high TMB causing genomic instability and poor
clinical prognosis (Zhang et al., 2017; Bernard et al., 2020; Lu et al.,
2021;Wen et al., 2021).We further conducted hierarchical clustering
analysis and differential analysis of mutation counts and found that
GIRlncRNA-clustering GU-like patients were burdened with a
higher TMB than GS-like patients. The mutation frequencies of
TP53 and CSMD3 genes in GS-like subtype patients were expectedly
higher than those in GU-like subtype patients. The survival of GS-
like subtype patients was significantly better than that of GU-like
subtype patients. Furthermore, we constructed a GIRlncSig
encompassing 19 lncRNAs with robust performances, which
could predict prognosis independently of other clinicopathological
variables and data sets. Among the 19 GIRlncRNA signature,
14 lncRNAs (AC023824.3, AC013287.1, AP000829.1, LINC01611,
AC097451.1, AC025419.1, AC079949.2, LINC01600, AC004862.1,

AC021594.1, MYRF-AS1, LINC02434, LINC02412, and
LINC00337) were risk factors for prognosis, while the other five
lncRNAs (LINC01067, AC012645.1, AL512604.3, AC008278.2, and
AC089998.1) were protective factors for survival of NSCLC patients.
To the best of our knowledge, most lncRNAs we identified here are
novel GIRlncRNAs for NSCLC, while some GIRlncRNAs were
already reported in lung adenocarcinoma (Geng et al., 2021; Peng
et al., 2021; Wu G. et al., 2021). Notably, lncRNA AC023824,
AC025419.1, AC079949.2, LINC02412, and LINC00337 were
verified as risk factors associated with the OS of LUAD patients
(Li R. et al., 2019; Song et al., 2020; Shao et al., 2021; Wu G. et al.,
2021;WuY. et al., 2021). LINC01600 and LINC02434 were reported
as predictors for the prognosis of PCa and HNSCC patients,
respectively (Xu et al., 2020; Jiang et al., 2021). Importantly, we
performed ROC and calibration analyses to evaluate the GIRlncSig-
based risk score and found that it possessed an intact performance
with good agreement between the actual survival and predicted
survival in 10 years. In contrast, Wang and Geng’s prognostic
GIRlncSig only displayed a decreased value of AUCs in 3 years.
Therefore, our novel GIRlncSig could provide robust clues for
clinical diagnosis and stratification of NSCLC.

Mutations in driver genes are crucial to promoting
tumorigenesis and development. NSCLC with positive driver
genes possesses high mortality and metastasis risk (Wu Y.
et al., 2021; Yuan et al., 2022). We found here that nine driver
genes (SOX2, FGFR2, NFE2L2, PTPRD, PTPRT, EGFR, NRG1,
MB21D2, and CSMD3) were upregulated. Notably, the
expression levels of CSMD3, NFE2L2, and MB21D2 were
substantially higher in GU-like samples than those in GS-like
samples. NFE2L2 mutation, a major molecular driver of clinical
radio resistance (Binkley et al., 2020), was more frequently found
in advanced patients to cause a worse prognosis than in patients
carrying the wild-type genotype (Sasaki et al., 2010). MB21D2, a
key enzyme involved in the cGAS/STING signaling pathway, is
also frequently mutated in NSCLC and HNSCC to promote
tumor progression (Campbell et al., 2016; Gracilla et al.,
2020). The high risk lncRNAs AP000829.1 and
LINC01600 from GIRlncSig were positively correlated with
MB21D2 expression, which was remarkably upregulated in the
high-risk group. Another high-risk lncRNA, AP000829.1, was
negatively correlated with NKX2-1. In fact, upregulated
AP000829.1 was always accompanied by downregulated
NKX2-1 in the high-risk group. NKX2-1 may control lung
cancer progression through the induction of DUSP6, an ERK
phosphatase, to decrease ERK activity (Ingram et al., 2022). The
protective lncRNA, AC008278.2, was positively correlated with
the driver gene PTPRT, and this pair was downregulated in the
high-risk group. Because PTPRT is an endogenous inhibitor of
STAT3 (Sen et al., 2020), loss-of-function mutations in PTPRT
resulted in STAT3 hyperactivation to promote the malignancy of
NSCLC (Wang et al., 2021). Moreover, the functional genes
markedly enriched in the high-risk group mainly involve
mismatch repair, base excision repair, nucleotide excision
repair, non-homologous end joining, and homologous
recombination. These pathways were evidenced to be strongly
associated with genomic stability (Majidinia and Yousefi, 2017).
Together, these findings suggested that the lncRNAs of our
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GIRlncSig are remarkably modulated by the NSCLC driver genes,
and that their functions are highly consistent with important
biological behaviors.

The contextures of the tumor microenvironment, like
infiltrated immune cells, stromal cells, cancer stem cells, and
TMB, critically determine the progression of cancer (Whiteside,
2008). Hence, pursuing them can help to predict clinical
outcomes, guide early diagnosis and improve the therapeutic
response (Binnewies et al., 2018). We found here that the novel
GIRlncSig could reflect the characteristics of the tumor
microenvironment, and GIRlncSig-predicted high-risk patients
exhibited features of malignancy with high levels of TMB and
mRNAsi, as well as immune, stromal, and ESTIMATE scores.
These results accord with the fact that genome instability
contributes to neoplasia and metastasis (Bakhoum et al., 2018;
Nguyen et al., 2022). Moreover, we found that NSCLC patients
from high-risk groups were more sensitive to CTLA4 inhibitors
than those from the low-risk group. Collectively, our GIRlncSig
may guide the diagnosis and improve the clinical outcome of
NSCLC by selecting a subgroup of patients that are more sensitive
to this type of immunotherapy.

Two limitations are associated with this study. First, as
appropriate GEO datasets were not found, some potential
lncRNAs may have been excluded in our GIRlncSig. Hence,
more external dataset validation is needed in future studies.
Second, the biological functions of twelve newly identified
GIRlncRNAs (AC013287.1, AP000829.1, LINC01611,
AC097451.1, AC004862.1, AC021594.1, MYRF–AS1,
LINC01067, AC012645.1, AL512604.3, AC008278.2, and
AC089998.1) are not known yet. Future investigations
should elucidate their functions, both in vitro and in vivo.

CONCLUSION

In summary, we constructed a GIRlncSig consisting of
19 GIRlncRNAs. This signature could predict the clinical
outcome of NSCLC patients independently of other variables.
Moreover, our GIRlncSig could dissect the contextures of the
tumor microenvironment and driver genes to guide the diagnosis
for improved stratification and individualized treatment of
NSCLC patients.
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