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Background: Central fatigue (CF) is a subjective sense of tiredness associated

with cognitive and memory disorders, accompanied by reduced physical

endurance and negative emotions, such as anxiety and depression. Disease

progression and prognosis with regards to CF have been unfavorable and

possibly contribute to dementia, schizophrenia, and other diseases.

Additionally, effective treatments for CF are lacking. KangPiLao decoction

(KPLD) has been widely applied in clinical treatment and is composed of six

Chinese herbal medicines, some of which have confirmed anti-fatigue effects.

While glutamic acid (Glu) is the main excitatory transmitter in the central

nervous system (CNS), gamma-aminobutyric acid (GABA) is the major

inhibitory transmitter. Both are involved in emotional, cognitive, and memory

functions. This research was designed to explore how KPLD regulates cognitive

and emotional disorders in rats with CF and to identify the relationship between

the regulatory effect and the GABA/Glu pathway.

Methods: The compounds comprising KPLD were analyzed using high-

performance liquid chromatography-mass spectrometry. Sixty Wistar rats were

randomly divided into six groups. The modified multiple platform method was

used to induce CF. Cognitive, emotional, and fatigue states were evaluated by

performing behavioral tests (Morris watermaze [MWM], open-field test [OFT], and

grip strength test). Histomorphology, western blotting, immunohistochemistry,

and RT-qPCRwere performed to investigate protein andmRNA expression levels

in the hippocampus and prefrontal cortexes involved in the GABA/Glu pathway.

Results: Rats with CF exhibited impaired spatial cognition and increased

negative emotions in the MWM and OFT. KPLD enabled the improvement of

these symptoms, especially in the high-concentration group. Western blotting

and RT-qPCR demonstrated that the expression of GABAARα1, GABAARγ2,
GABABR1, andGAD67 in rats with CFwas higher, whereas GAT-1 andNMDAR2B

were lower in the hippocampus and prefrontal cortex. KPLD decreased the

expression of GABAARα1, GABABR1, GABAARγ2, and GAD67 in the

hippocampus and prefrontal cortex and enhanced the expression of NR2B

in the prefrontal cortex.
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Conclusion: KPLD significantly improved cognitive and emotional disorders in

rats with CF by regulating the GABA/Glu pathway. Overall, KPLD may be a

promising candidate for developing a drug for treating CF.

KEYWORDS

chinese herbal medicine, γ-aminobutyric acid, glutamic acid, central fatigue, chronic
fatigue, cognitive disorder, mood disorders

1 Introduction

Fatigue is a symptom or comorbidity of a neurological

disorder. Studies have found that more than 50% of people

feel fatigued, and more than one-third of them clearly believe

that they are affected by fatigue, which seriously reduces their

quality of life and productivity (Ishii et al., 2014; Penner and

Paul, 2017). As early as 1904, Italian physiologist, A. Mosso,

discovered that fatigue could occur after thinking tasks such as

lectures and consequently introduced the concept of CF

(Dalsgaard and Secher, 2007). Unlike peripheral fatigue

(Nybo and Secher, 2004), The Lancet proposes that CF is

not just a feeling of physical exhaustion but a cognitive

impairment with limited ability to maintain focus and

withstand mental tasks (Chaudhuri and Behan, 2004; Ayache

and Chalah, 2021). Cognitive fatigue may manifest as 1)

subjective fatigue sensations or negative emotional feelings

and 2) a decline in learning, cognition, and memory

performance (Lindqvist and Malmgren, 1993; Kluger et al.,

2013). CF can aggravate the disease course over time, and the

cognitive impairment associated with the early stage of CF

could progress to dementia (Rajan et al., 2015; Sander et al.,

2016). As such, early intervention of CF is of great significance.

Studies have shown that CF may be related to abnormal

regulation of the immune system (Nakatomi et al., 2014) or

neurotransmitter systems (Davis et al., 2000; Newsholme and

Blomstrand, 2006), nerve pathway conduction damage (Leavitt

and Deluca, 2010), and energy expenditure (Jason et al., 2010).

However, the mechanism underlying CF remains unclear.

Glutamic acid (Glu) and gamma-aminobutyric acid (GABA)

are the brain’s principal excitatory and inhibitory

neurotransmitters, respectively. They are associated with

cognitive functions, such as memory, learning, and emotional

control (Akerman and Cline, 2007; Tessier and Broadie, 2009).

Glu is essential for the functional transmission and processing of

information within the CNS (Lynch, 2004). Astrocytes are the

main site for maintaining the level of GABA transporters and are

inseparable from the formation of memory. GABA is associated

with fatigue (Riekki et al., 2008), and the neuronal activity related

to learning and cognitive function is modulated by GABAergic

neurons, with significant effects on information processing,

plasticity, and network synchronization (Bhat et al., 2010).

The hippocampus and prefrontal cortex may be the critical

sites involved in cognitive and emotional changes in CF. Studies

have confirmed that the hippocampus is closely related to

emotional cognitive activity (Tannenholz et al., 2014) and that

the prefrontal cortex processes higher cognitive functions

(Arnsten, 2015). Sepulcre et al. (2009) found that CF in

multiple sclerosis was mainly distributed in the frontal and

temporal lobes, as well as other brain regions. Functional

magnetic resonance imaging scans also provided evidence that

functional brain activation of the frontal lobe was markedly

reduced in fatigued patients (Filippi et al., 2002). However,

relevant studies focusing on the cognitive and emotional

disorders of CF are limited. Therefore, the changes in the

GABA/Glu mechanism in the hippocampus and prefrontal

cortex in CF require further investigation.

There are no specific drugs for the treatment of CF. The

currently reported treatment regimens mainly include: 1) energy

supplement preparations, e.g., CoQ10 (Hargreaves, 2014;

Maguire et al., 2020), L-carnitine (Malaguarnera et al., 2007),

creatine monohydrate (Watanabe et al., 2002), etc.; 2)

Neurotransmitter-modulating drugs: dopamine and

norepinephrine analogs, such as amphetamine (Sacks et al.,

2018), serotonin reuptake inhibitors and excitatory

transmitters (Meeusen et al., 2006), which require long-term

use and result in severe drug dependence and withdrawal

symptoms (Meng et al., 2020); 3) Complementary alternative

therapy, such as aromatherapy (Sanoobar et al., 2016), hot baths,

yoga, and music therapy (Varney and Buckle, 2013); or 4)

Nutritional supplements such as branched-chain amino acids,

carbohydrates, etc. A systematic review found that carbohydrates

attenuated CF; however, direct evidence for this is limited

(Khong et al., 2017).

Overall, effective treatments for CF are lacking. Studies

have confirmed that traditional Chinese medicine can

significantly improve fatigue (Tharakan and Manyam,

2006), such as Panax ginseng C.A.Mey [Araliaceae] (Bao

et al., 2016), Astragalus mongholicus Bunge [Fabaceae] (Liu

et al., 2017), and Angelica sinensis (Oliv.) Diels [Apiaceae]

(Yeh et al., 2014). Based on safety and the potential

application scope of the drug, we selected medicine and

food homologous herbal varieties that are known to

contain anti-fatigue ingredients in order to prepare the

KangPiLao decoction (KPLD), which has been shown to

possess fatigue attenuation effects (Li et al., 2015; Han

et al., 2018a). KPLD has been widely used in the clinical

treatment of fatigue and is composed of six Chinese herbal

medicines, including Astragalus mongholicus Bunge

[Fabaceae], Angelica sinensis (Oliv.) Diels [Apiaceae],
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Dendrobium officinale Kimura & Migo [Orchidaceae],

Citrus × aurantium L. [Rutaceae], Crataegus pinnatifida

Bunge [Rosaceae], and Schisandra chinensis (Turcz.) Baill.

[Schisandraceae]. The aim of this study was to investigate the

effects of KPLD on cognitive and emotional disorders and

whether these effects are regulated by the GABA/Glu pathway

in the brain.

2 Materials and methods

2.1 Preparation and analysis of KangPiLao
decoction

The ingredients of KPLD were purchased from the

Tongrentang Drug Store (Beijing, China): Astragalus

mongholicus Bunge [Fabaceae] (Huang Qi), Citrus ×

aurantium L. [Rutaceae] (Zhi Qiao), Crataegus pinnatifida

Bunge [Rosaceae] (Shan Zha), Schisandra chinensis (Turcz.)

Baill [Schisandraceae] (Wu Wei Zi), Dendrobium officinale

Kimura & Migo [Orchidaceae] (Shi Hu), and Angelica sinensis

(Oliv.) Diels [Apiaceae] (Dang Gui) with a dispensing proportion

of 9:9:6:5:4:3. The ingredients were combined and boiled in

distilled water for 30 min and then filtered. The solution was

freeze-dried, ground into powder, and stored in a refrigerator at

4°C. Thereafter, the powder was accurately weighed and

dissolved in 1 ml of 50% methanol water. Lysis was performed

by sonication for 40 min at 23 ± 1°C. The solution was then

centrifuged at 12,000 rpm for 10 min, and the supernatant was

filtered through a 0.22-μm microporous membrane. Finally, the

filtrate was injected into a liquid vial as a solution for ultra-high

performance liquid chromatography-mass spectrometry

(UHPLC-MS) testing, and the main KPLD compounds were

identified.

Synapt G2-Si Qtof MS (Waters, Milford, MA,

United States) and ACQUITY I Class-HPLC (Waters) were

used to analyze the components of the KPLD extracts. In all

chromatographic separations, an HSS T3 column (100 mm ×

2.1 mm × 1.8 μm; Waters) was used at 35°C. The mobile phase

was comprised of 0.1% formic acid solution (A) and 0.1%

formic acid solution with acetonitrile (B) and had a flow rate of

0.25 ml/min. The gradient elution was as follows: 0–15 min,

0%–20% B; 15–50 min, 20%–100% B; 50–60 min, 100% B;

60–70 min, 100%–0% B. The MS utilized a 3 keV positive

ionization voltage and 2.5 keV negative ionization voltage

for electrospray ionization. The MS conditions were as

follows: A sheath gas flow rate of 40 (arbitrary units), an

auxiliary gas flow rate of 10 (arbitrary units), and a sweep

gas flow rate of 3 μl/min were used, and a mass scanning range

of 100–1,500 was employed. Compositional identification of

each compound was compared to a theoretical database

containing 6,400 natural products in the MS compound

library.

2.2 Animals and treatment

Sixty SPF male Wistar rats (weight, 210 ± 10 g) were used in

this study, all purchased from SPF Biotechnology Co., Ltd

(Beijing, China), License number: SCXK 2019–0010. The

animal feeding and experimental procedures were approved

by the Animal Care and Use Committee of the Beijing

University of Chinese Medicine (BUCM-4-2020120102-4093).

The rats were left for five days to adapt to the environment (23 ±

1°C, 30%–40% relative humidity) with free access to water

and food.

They were randomly divided into six groups of 10: control

group, model group, CoQ10 group [Coenzyme Q10 (Maguire

et al., 2020) of 10 mg/kg/d, positive drug], low dose group

(LDG, KPLD crude of 3.24 g/kg/d), normal dose group (DG,

KPLD crude of 6.48 g/kg/d), and high dose group (HDG,

KPLD crude of 12.96 g/kg/d). Each herb of KPLD were

obtained separately from the Tongrentang Drug Store

(Beijing, China) and decocted in the lab. The

administration dosage of the KPLD crude drug was

calculated using the rat-to-human dosage relationship (Wei

et al., 2010) based on the following conversion formula: crude

drug dosage per kilogram of rats = adult drug dosage (g)/adult

body weight × 6.3. The dose of KPLD extract was calculated as

510 mg/kg/d of DG, 255 mg/kg/d of LDG and 1.02 g/kg/d of

HDG by calculating the human equivalent dose. The dosage of

the DG was calculated from the clinical application dosage.

The dosage of the LDG was half of that of the DG and that of

the HDG was twice that of the DG. Rats in the control and CF

model groups received the same amount of drinking water.

Coenzyme Q10 was purchased from the China-Japan

Friendship Hospital (Beijing, China). Drug administration

was initiated on the 15th day of modeling. During the

experiment, all animals that died due to model

establishment, behavioral testing, anesthesia, or any other

reason were not included as experimental observation

subjects.

2.3 Establishment of the central fatigue
model

To induce CF, we used the modified multiple platform

method (MMPM) in all the rats except the controls (Zhang

et al., 2018). We placed 15 platforms at the bottom of each plastic

tank (110 × 60 × 40 cm) and filled the tanks with water at

22–25°C to 1 cm below the platform surfaces (Han et al., 2017).

We left each rat in its own tank from 18:00 to 08:00 the next

morning with access to food and water. After MMPM, rats were

able to freely sleep, eat, and drink water until the next day before

modeling. This procedure was repeated for 21 consecutive days.

Figure 1 shows the experimental procedure and drug

administration method.
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2.4 Behavioral testing

The behavioral tests were all conducted the day following the

training. After arriving in the testing room, each rat was allowed

to acclimate for 1 h before testing commenced. The behavioral

tests were performed as follows: grip strength, open-field test

(OFT), and Morris water maze (MWM) with 2 h breaks between

tests to minimize any adverse effects. All animals were tested at

the same time. The video tracking system (SONY Inc., Japan) was

placed above the apparatus to record and analyze the animals’

behavior using EthoVision XT (Noldus, Holland), a system used

for analyzing the behavioral trajectory.

2.4.1 Morris water maze
The MWM is a test of spatial learning and long-term memory

for rats that utilizes distal cues to locate a submerged escape platform

around the perimeter of an open swimming arena (Vorhees and

Williams, 2006; D’Hooge and De Deyn, 2001). A circular tank

(150 cm in diameter and 50 cm in depth) with a removable hidden

platform (9 cm in diameter) submerged about 2 cm below the

surface of the water (24 ± 1°C) served as the apparatus (Li et al.,

2018). To provide location cues, different marker colors and shapes

were placed, and each rat was trained four times for four consecutive

days. During each training session, the rat was manually guided to

the platform if the escape latency exceeded 60 s. On day 5 of the

experiment, the platform was removed, and the rats were allowed to

swim freely for 120 s.

2.4.2 Open field test
An open-field experiment is a method used to evaluate the

exploratory behavior, anxiety, and depression of experimental

animals in a new environment (Prut and Belzung, 2003). The

open-field arena (100 × 100 × 40 cm) was constructed with gray

walls and a black floor and was divided into 25 equally sized

squares, including the central and surrounding areas (Han et al.,

2018b). Each rat was placed in the area for 5 min, during which

we recorded the trajectory and measured the time in the central

square, central percentage, total distance traveled, vertical

activity, grooming behavior, and number of crossings. After

each test, the equipment was wiped with a 75% alcohol solution.

2.4.3 Grip strength
Each rat’s grip strength was quantitatively monitored using a

grip strength meter (Biosep, France). The rats were placed over

the instrument grid such that their claws fully grasped the grid.

Their tails were pulled back horizontally and stably along the

sensor axis until they released the grid. The apparatus was used in

peak mode, and the recorded values corresponded to the

maximum force generated by the animal. Grip strength was

measured thrice, and the average value was recorded.

2.5 Blood serum analysis

The rats were euthanized using a deep intraperitoneal

anesthetic injection of 10% pentobarbital sodium (4 ml/kg),

and the blood was withdrawn from the abdominal aorta. The

procedure strictly adhered to ethical requirements. Serum

isolation was performed by centrifuging the blood at

3,000 rpm for 20 min at 4°C after collecting the blood in a

blood collection tube. Serum levels of aspartate transaminase

(AST), blood urea nitrogen (BUN), lactic acid (LAC), and lactate

dehydrogenase (LDH) were measured with an automatic

biochemical analyzer (Beckman Coulter, Brea, CA, United

states) using standard laboratory methods. Glu and GABA

serum concentrations were measured using Glu (CES122Ge;

Cloud-clone Corp., Wuhan, China) and GABA (CEA900Ge;

Cloud-clone Corp.) ELISA kits.

2.6 Hematoxylin and eosin staining

We fixed the prefrontal cortex and hippocampal tissues in 4%

paraformaldehyde for 1 day, dehydrated them in a graded series

FIGURE 1
Experimental procedure and drug administration method.
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of alcohols, subsequently embedded them in paraffin, and cut

them into 5 mm-thick sections. The tissues were then stained

with Hematoxylin and Eosin (H&E) according to routine

protocols. Briefly, after dewaxing and rehydration, tissue

sections were stained with hematoxylin solution (Servicebio,

China) and rinsed. They were then stained with eosin solution

(Servicebio, China), dehydrated with graded alcohol, and

removed in xylene. Sections were assessed using an upright

optical microscope (Nikon Eclipse E100, Tokyo, Japan).

2.7 Immunohistochemistry staining

The IHC staining distribution pattern of GABABR (Sheilabi

et al., 2018) proteins was performed as previously reported. Brain

sections were dewaxed with xylene and rehydrated using a

reduced concentration of alcohol. The sections were placed in

a repair cassette filled with citrate antigen repair buffer (pH 6.0)

for microwave antigen repair then washed for 15 min and

incubated with 0.3% H2O2 in phosphate buffer saline (PBS)

for 25 min. Subsequently, the sections were rinsed three times

with PBS (pH 7.4) for 5 min each, and the tissue was covered

uniformly with 3% bovine serum albumin (BSA) dropwise for

30 min. GABABR2 (ab75838, 1:50; Abcam, Cambridge,

United Kingdom) and NR2B antibodies (21920-1-AP, 1:100;

Proteintech, Rosemont, IL, United states) were diluted in

TRIS buffered saline solution (TBS) containing 1% BSA

overnight at 4°C. Afterward, sections were washed in PBS and

incubated with secondary antibodies for 50 min. After being

washed thrice in PBS, the slices were incubated for 5–15 min

with 0.05% diaminobenzidine tetrahydrochloride (DAB)

solution in 50-mM Tris buffer (TB) containing 0.01% H2O2 at

22–25 °C for 10–12 min with controlled color development time

under a microscope (Peyvandi et al., 2021). The slices were then

counterstained for 3 min with hematoxylin, dehydrated with

ethanol and xylene, and sealed.

2.8 Western blotting

The hippocampal and prefrontal cortex tissues were mixed

with 10 times the volume of RIPA buffer, protease, and

phosphatase inhibitor (KeyGEN, China) to extract brain tissue

protein, and the protein concentration was measured by the

bicinchoninic acid (BCA) method. Then, 50 μg of protein from

each sample was loaded onto an SDS-PAGE gel of 10%–12% and

electroblotted onto polyvinylidene fluoride (PVDF) membranes.

After blocking the PVDF membranes with 4% skim milk in Tris-

Buffered Saline and Tween (TBST) buffer for 1 h (Zhao et al.,

2021), the following antibodies were incubated overnight at 4°C

with the membranes: NMDAR2B (1:2000; Proteintech),

GABABR1 (1:1,000; Abcam), GAT-1 (1:500; Abcam), GAD67

(1:1,000; Proteintech), GABAARα1 (1:2,000; Proteintech),

GAGAARγ2 (1:1,000; Proteintech), and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (1:10,000, Proteintech).

The membranes were then incubated with secondary

antibodies (goat anti-rabbit IgG or goat anti-mouse IgG) for

2 h and washed thrice. A multifunctional molecular imaging

system (Azure Biosystems, Dublin, CA, United states) was used

for scanning and photography, and the Image J software was used

for band gray analysis. In this study, all experiments were

repeated three times with reproducible results.

2.9 Real-time quantitative polymerase
chain reaction testing

Total RNA was extracted from the prefrontal cortex and

hippocampal tissue using the Hipure Total RNA Mini Kit®

(MAGEN, China). The quality and quantity of RNA were

measured using an Evolution201 spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, United states). The sequences of

the primers used in RT-qPCR testing are listed in Table 1. RNA

(2 μg) was converted to complementary DNA using the Reveraid

First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). RT-

qPCR testing was performed using SYBR Green Master Mix on a

Quantstudio®5 Real-time PCR instrument (Thermo Fisher

Scientific). To normalize the variance between the samples,

GAPDH was chosen as the endogenous control. Fold changes

were calculated as 2−Δ(ΔCt) [ΔCt = Ct (target gene)—Ct

(GAPDH); Δ(ΔCt) = ΔCt (experimental groups)−mean ΔCt
(control groups)] (Lin et al., 2016).

2.10 Statistical analysis

All the data were analyzed using SPSS 20.0 software and

expressed as the mean ± standard deviation (SD). If the normal

distribution was satisfied and the variance was homogeneous, the

data was calculated and analyzed by one-way analysis of variance

(ANOVA) and least significant difference; on the contrary, the

Kruskal–Wallis test was used. Statistical significance was set at

p < 0.05. Graphs were generated using GraphPad Prism eight

(GraphPad, San Diego, CA, United States).

3 Results

3.1 Qualitative analysis of bioactive
compounds in KangPiLao decoction

HPLC was used to determine the contents of the

representative chemical components of KPLD. Figure 2 shows

the total ion chromatography (TIC) on the positive mode

(Figure 2A) and negative mode (Figure 2B) of KPLD.

Compounds were qualitatively identified by comparing
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chromatography retention times and MS/MS data (Figure 2C).

Finally, 36 main compounds were identified from KPLD,

including naringin, nobiletin, Ordolating-7-o-β-D-glucoside,
Schisandra B, and Dendrobium (Table 2).

3.2 Effects of KangPiLao decoction on
cognitive function of learning and
memory

No rats died during modeling, but some of them developed tail,

paw, and eye hemorrhages caused by irritability and aggression.

These rats were excluded from the behavioral experiments. In

addition, individual rats that showed cooperation difficulties,

such as floating on the water surface and abnormal swimming

patterns, were excluded from the MWM test.

In the MWM, the long-term memory and spatial learning of

the rats were measured by the time spent in the target quadrant

and escape latencies (Morris, 1984). In the trial, CF model rats

had delayed escape latencies and spent less time in the target

quadrant (p < 0.01 or p < 0.001, Figures 3I–K), indicating

impaired cognitive function. The model rats also displayed a

reduced number of platform passes (p < 0.001, Figure 3H). The

therapeutic benefits were also observed in the LDG and DG

(p <0.05, Figure 3I) as indicated by the escape latency observed in
the first 4 days. When compared to the model group, the HDG

showed increased swimming time in the target quadrant (p <
0.05). From the escape latency and number of crossings, each

dose of KPLD and CoQ10 had obvious therapeutic effects on rats

with CF (p < 0.01, Figures 3I–K). Among them, the HDG and

CoQ10 groups showed significantly higher efficacy in improving

the number of platform crossings (p < 0.001, Figure 3H).

Figure 3L–M shows a representative trajectory of rats passing

through different quadrants after removing the platform in the

MWM test and a heat map of each group after superposition

according to frequency and position. It can be seen from the

spatial exploration trajectories that, except for the CF model

group, the rats in the other groups adopted the trend-based

search strategy learned after training. This evidence suggested

that rats with CF displayed impaired spatial cognition and

memory and that KPLD could significantly improve the

cognitive function of rats.

3.3 Negative emotion and spontaneous
activity in rats with central fatigue

The OFT is widely accepted as a reliable test of negative

emotion-related motor activity in rodents (Jalewa et al., 2014).

The results of the open field experiment showed that the total

distance, time in the center, central percentage, frequency of

rearing and grooming of the CF model of rats were significantly

reduced (p < 0.001, Figures 3A–E). The number of crossings

decreased significantly (p < 0.01, Figure 3F). According to the

trajectory of the rats in the OFT, it was deduced that the CF

model rats adopted marginal exploration. revealing that the

HDG experienced better therapeutic benefits (Figure 3G). The

HDG significantly improved all of the above indicators, and the

HDG had a better effect than the other drug intervention groups

in the improvement of modification times (Figure 3A). The OFT

results suggested that rats with CF presented with decreased

vitality and increased anxiety and depression. KPLD improved

anxiety, depression, and spontaneous activity in rats with CF.

3.4 Peripheral fatigue in rats with central
fatigue

Figures 4A–D show that the serum AST, BUN, LAC, and

LDH levels of rats with CF were significantly higher than control

group (p < 0.001), suggesting a certain degree of physical fatigue

and liver injury risk. Both the KPLD high-medium-low-dose and

CoQ10 groups showed significantly reduced serum AST levels

(p < 0.001 or p < 0.01, Figure 4A). DG and CoQ10 treatments

effectively reduced the BUN content (p < 0.05, p < 0.01,

Figure 4B). In addition, the DG and HDG showed

significantly decreased serum LAC (p < 0.001, Figure 4C) and

LDH levels (p < 0.01, Figure 4D, n = 7).

TABLE 1 The primers for real-time RT-PCR. The primers of GABABR1, GABAARα1, GABAARγ2, GAD67, GAT-1, NR2B, GAPDH (as control) were
presented in the table.

Genes Forward Reverse

GABABR1 5′-AGATTGTGGACCCCTTGCAC-3′ 5′-AGAAAATGCCAAGCCACGTA-3′
GABAARα1 5′-AGTGCGACCATAGAACCGAAAG-3′ 5′-TCCAAATAGCAGCGGAAAGG-3′
GABAARγ2 5′-CCAAATGAACAATGCCACCCAC-3′ 5′-AACAAGATTGAACAAGCAG-3′
GAD67 5′-GCGGGAGCGGATCCTAATA-3′ 5′-TGGTGCATCCATGGGCTAC-3′
GAT-1 5′-TTCCTGACGCTCATCTTTGC-3′ 5′-GACCACCTTTCCAGTCCATC-3′
NMDAR2B 5′-CCTGGAATGGCATGATCG-3′ 5′-AGCCACCGCAGAAACAAT-3′
GAPDH 5′-GACATGCCGCCTGGAGAAAC-3′ 5′-AGCCCAGGATGCCCTTTAGT-3′
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In addition, we performed a grip strength test to detect skeletal

muscle fatigue in each rat group (Figure 4G). The experimental

results showed that the grip strength value in theCF group decreased

significantly (p < 0.001), suggesting that the CF model of rats

experienced skeletal muscle fatigue and medium- to high-dose

KPLD could improve skeletal muscle fatigue (p < 0.05; n = 6).

3.5 Morphology changes associated with
KangPiLao decoction treatment

Figure 5 shows the effect on tissue morphology of the

hippocampus and prefrontal cortex with KPLD treatment.

H&E staining of the prefrontal cortex (Figure 5A) and

FIGURE 2
Ion chromatography of Bioactive Compounds in KPLD. Total ion chromatogrammonitored in positive (A) and negative (B) ionmodes for KPLD;
KPLD composition analysis: KPLD has naringin, nobiletin, ordolating-7-o-β-D-glucoside, schisandra B and other ingredients (C).
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hippocampal CA1 region (Figure 5B) of the rats was observed

under a microscope. Nissl bodies are characteristic structures of

neurons and thus were observed by light microscopy to identify

neurons. Hippocampal CA1 glial cells in the control group were

tightly arranged and normal in shape. The formation of new

neurons was observed under the microscope. In contrast, glial

cells in the model group were loosely arranged, cells were

missing, some nuclei were condensed and deeply stained, and

the structure was blurred. In addition, the number of pyramidal

cells in the prefrontal cortex and hippocampus of the rats in the

model group was reduced. The morphology of glial cells in the

middle-high-dose treatment groups and the CoQ10 group

improved, and the number of pyramidal cells and Nissl bodies

increased to a certain extent with KPLD.

3.6 Regulation of serum gamma-
aminobutyric acid and glutamic acid levels
by KangPiLao decoction

We measured the expression levels of Glu and GABA in rat

serum using ELISA kits (Cloud-Clone Corp.,Wuhan, China). GABA

TABLE 2 Analysis of the main chemical constituents of KPLD by UHPLC-MS/MS in positive and negative ion modes.

Identification Formula Calculated value Observed value m/z Error (ppm) RT (min) Peak area Ion

Naringin C27H32O14 580.17921 579.1662 −9.9 22.81 10,510,839 −H

Nobiletin C21H22O8 402.13147 403.1395 1.9 35.94 6,617,944 +H

Naringenin C15H12O5 272.06847 273.0767 3.5 22.8 4,006,854 +H

Ordolating-7-o-β-D-glucoside C22H24O9 432.14203 433.1497 1 37.37 3,792,067 +H

Calycosin C16H12O5 284.06847 285.0768 3.6 20.06 2,337,116 +H

Schisandra B (γ-Schisandrin) C23H28O6 400.18859 401.1963 1.2 42.18 2,013,509 +H

Anacardin C27H30O14 578.16356 579.171 0.3 22.89 2,006,726 +H

Schisandrin A C24H32O6 416.21989 417.2278 1.5 50.19 2,000,546 +H

Formononetin C16H12O4 268.07356 269.0818 3.7 32.74 1,779,579 +H

Hesperidin C28H34O15 610.18977 611.1968 −0.4 23.92 1,656,361 +H

Luteolin-7-O-β-D-Neohesperidin C27H30O15 594.15847 595.1661 0.7 16.93 1,645,112 +H

5-Hydroxylimidin C20H20O8 388.11582 389.1239 2.1 40.45 1,547,274 +H

Dendrobium C15H16O4 260.10486 261.1133 4.4 25.05 1,481,892 +H

Crotonyl Gomisin P C28H34O9 514.22028 515.2282 1.3 37 1,192,735 +H

Isoliquiritin C21H22O9 418.12638 419.1344 1.8 22.81 1,171,424 +H

Adenosine C10H13N5O4 267.09675 268.1052 4.3 7.48 1,114,902 +H

5-Ortho-Demethyl Tetraritin C20H20O8 388.11582 389.1237 1.7 32.4 1,031,560 +H

Neohesperidin C28H34O15 610.18977 611.1963 −1.3 23.3 957,588 +H

Benzoyl gomisin H C30H34O8 522.22537 523.2303 −4.5 42.18 903,290 +H

Aromaticin B C17H20O6 320.12599 321.1336 1.1 1.2 852,493 +H

Adenine C5H5N5 135.0545 136.0624 4.7 7.49 729,293 +H

Gomisin E C28H34O9 514.22028 515.2279 0.6 35.34 661,844 +H

(−)-Gomisin K1 C23H30O6 402.20424 403.2123 2.1 44.64 536,213 +H

Gomisin J C22H28O6 388.18859 389.1966 2 38.85 510,470 +H

Gomisin G C30H32O9 536.20463 537.2097 −4.1 45.67 459,576 +H

Bergamot lactone C12H8O4 216.04226 217.0503 3.6 32.19 435,691 +H

Gomisin F C28H34O9 514.22028 515.2279 0.7 40.91 369,492 +H

Schisandrin A C24H32O7 432.2148 433.2222 0.4 36.93 337,193 +H

Quercetin C15H10O7 302.04265 303.0511 3.9 20.74 304,959 +H

Kaempferol C15H10O6 286.04774 287.056 3.6 21.26 294,732 +H

E-Ligustilide C12H14O2 190.09938 191.1073 3.5 41.25 131348 +H

Z-Ligustilide C12H14O2 190.09938 191.1074 3.7 50.88 108,024 +H

Vanilla acetone C9H10O3 166.06299 167.071 4.6 34.07 105,218 +H

Pinoresinol C20H22O6 358.14164 357.1365 6.1 31.79 95,474 -H

Astragalus saponin I C45H72O16 868.48204 869.4894 0.1 38.76 83,748 +H

Dendrobin C C16H18O5 290.11542 289.1061 −7.1 7.2 70,580 −H
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FIGURE 3
Effects of KPLD on emotion, spontaneous activity, and cognitive function of learning and memory evaluated by OFT and MWM tests. The total
moving distance, time in the center, central percentage, number of crossing, frequency of rearing and grooming of rats onOFT (A–F), and themap of
representative movement trajectories in each group for 5 min in the open field (G) are shown. The numbers of platform crossings (H) and the time in
target quadrant (J) on the last day during MWM test. The escape latencies in the first four consecutive days of positioning navigation training (I)
and in the last day of spatial probe testing of finding hidden platforms (K) are shown. Representative swim paths during the spatial probe test (L) and
heat map according to frequency and position of swimming paths (M). Data were expressed as (mean ± SD), ΔΔp < 0.01, ΔΔΔp < 0.001 vs. control
group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. CF model group (n = 6).
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levels were significantly increased in the model group (p < 0.001,

Figure 4E). Treatment with the KPLD decoction and

CoQ10 significantly decreased GABA levels, with the most

significant improvement observed in the HDG (p < 0.001). Glu

levels were significantly lower in rats with CF (p < 0.001, Figure 4F).

Both KPLD and CoQ10 interventions increased Glu levels, with the

DG and HDG showing the most significant improvement (p <
0.001; n = 7).

3.7 Regulation of the gamma-
aminobutyric acid/glutamic acid pathway
protein expression by KangPiLao
decoction

We detected the expression levels of GABA/Glu pathway-

related proteins using western blotting (Figure 6). GABAARα1,
GABAARγ2, GABABR1, and GAD67 protein expression levels

were significantly increased (p < 0.001, p < 0.01), whereas GAT-1

and NR2B protein expression levels were significantly decreased

in the hippocampus and prefrontal cortex regions of rats with CF

(p < 0.01). Compared to the model group, both the KPLD

medium-high-dose group and CoQ10 reduced the protein

expression of GABAARα1, GABABR1, GAD67, and

GABAARγ2 in the prefrontal cortex and hippocampus (p <
0.05). In addition, the HDG showed decreased

GABAARγ2 protein expression in the hippocampus of rats

with CF (p < 0.01) and increased NR2B protein expression

levels in the prefrontal cortex (p < 0.05; n = 3).

We detected GABABR2 and NMDAR2B (NR2B) expression

in the hippocampus and prefrontal cortex by IHC. The staining

of GABABR2 (Figure 7) in the glial cell envelope, stroma, and

prefrontal stromal layer of the CA3 region of rats with CF

deepened, with the expression significantly higher than that in

the normal group. The KPLD and CoQ10 groups stained lighter

than the model group, which could reduce the level of

overexpressed GABABR2. In contrast, the number of positive

cells and the expression of NR2B (Figure 8) in the hippocampal

CA3 region and prefrontal glial cell envelope of rats with CF were

lower, and the improvement of NR2B by KPLD was not obvious.

3.8 Gene expressions of gamma-
aminobutyric acid/glutamic acid pathway
in hippocampus and cortex

The relative mRNA levels of GABAARα1, GABAARγ2,
GABABR1, GAD67, GAT-1, and NR2B in the hippocampus

FIGURE 4
Effects of KPLD on peripheral fatigue and serum GABA and Glu levels in rats. Serum levels of AST (A), BUN (B), LAC (C) and LDH (D) were
measured with an automatic biochemical analyzer. The expression levels of GABA (E) and Glu (F) in rat serumwere tested by ELISA kits. Grip strength
test was performed to detect skeletal muscle fatigue of rats (G). Data were expressed as (mean ± SD), ΔΔΔp < 0.001 vs. control group; *p < 0.05, **p <
0.01, ***p < 0.001 vs. CF model group (n = 7).
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(Figure 9A) and prefrontal cortex (Figure 9B) were detected

using RT-qPCR. We observed a significant upregulation of

GABAARα1, GABAARγ2, GABABR1, and GAD67 and

downregulation of GAT-1 and NR2B in rats with CF (p <
0.01, p < 0.001). In contrast, GABAARα1, GABAARγ2,
GABABR1, and GAD67 were downregulated (p < 0.05),

and GAT-1 and NR2B were upregulated (p < 0.05) in the

KPLD and CoQ10 treatment groups. The high-dose KPLD

group upregulated NR2B expression significantly in the

hippocampus and prefrontal lobes of rats with CF (p <
0.001; n = 6).

4 Discussion

CF is induced by strenuous physical or mental tasks, leading

to cognitive and memory impairment, reduced physical

endurance, negative emotions (e.g., anxiety, depression,

hostility), and various metabolic disturbances in the central

and peripheral systems (Harrington, 2012). The current

research hypotheses related to the abnormal regulation of the

neuroendocrine system and neurotransmitters in the

manifestation of cognitive fatigue are 1) Abnormal reward

mechanisms involving dopamine. It has been found that the

FIGURE 5
Histological changes associated with KPLD Treatment. H&E staining of the prefrontal cortex (A: ×10, ×40 magnification) and hippocampal
CA1 region (B: ×10, ×40 magnification) of the rats were observed by light microscopy.
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underlying motivational system that drives the brain to work is

the subconscious reward system (Boksem and Tops, 2008),

including liking, wanting, and learning and that fatigue occurs

when this mechanism is abnormal (Hauber, 2010); 2)

Hypothalamic-pituitary-adrenal (HPA) axis disorders. The

HPA axis is the main sensing system of the body when stress

is experienced. Long-term stress, insomnia, and other mental

factors affect the neuroendocrine system to produce a series of

changes that eventually leads to the onset of fatigue (Kempke

et al., 2015); 3) Compensation effects. When cognitive work is

overloaded and efficiency decreases, the CNS inhibits negative

feedback regulation to compensate for decreased work efficiency,

which leads to fatigue (Lewis and Moghaddam, 2006); and 4)

Imbalance in the excitation/inhibition pathway regulation.When

there is an imbalance in the inhibition-excitation pathway in the

CNS, fatigue occurs (Leavitt and Deluca, 2010).

FIGURE 6
Regulation of GABA/Glu pathway-related protein expression levels in all groups. The representative images in hippocampus (A) and prefrontal
cortex (C) and the protein levels of GABAARα1, GABAARγ2, GABABR1, GAD67, GAT-1 and NR2B in hippocampus (B) and prefrontal cortex (D) are
shown. Data were expressed as (mean ± SD), ΔΔp < 0.01, ΔΔΔp < 0.001 vs. control group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. CFmodel group (n = 3).
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Glu and GABA are considered the major excitatory and

inhibitory neurotransmitters in the CNS, respectively

(Figure 10). Studies have identified the homeostatic

mechanisms associated with cognitive and emotional

functions (Lewis and Moghaddam, 2006). GABA synthesis in

the brain relies on the conversion of Glu (Kuriyama and Sze,

1971), an excitatory neurotransmitter and raw material for the

production of GABA, which is produced by the action of the

FIGURE 7
Immunohistochemical staining for GABABR2 in the hippocampal CA3 region (×5, ×10, ×40 magnification) and the prefrontal cortex stromal
layer (×10, ×40 magnification) of rats.

FIGURE 8
Immunohistochemical staining for NMDAR2B in the hippocampal CA3 region (×5, ×10, ×40 magnification) and the prefrontal cortex stromal
layer (×10, ×40 magnification) of rats.
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FIGURE 9
Expression levels of GABA/Glu pathway-related genes in the hippocampus and cortex. Relative mRNA expression levels of GABAARα1,
GABAARγ2, GABABR1, GAD67, GAT-1 and NR2B in the hippocampus (A) and prefrontal cortex (B) were detected by real time-PCR analysis
respectively. Data were expressed as (mean ± SD), ΔΔp < 0.01, ΔΔΔp < 0.001 vs. control group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. CF model group
(n = 6).
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glutamate decarboxylase GAD. Under normal conditions, the

secretion of Glu and GABA in the brain is balanced.

GABAAR is a heterodimeric structure with 19 different

subunits (Rudolph et al., 2001), of which GABAARα1 and

GABAARγ2 are more widely distributed in the hippocampus

and cortex. Blocking GABAAR can lead to changes in neural

responses, such as anxiety and altered voluntary activity (Shekhar

and Katner, 1995; Asinof and Paine, 2013; Kangarlu-Haghighi

et al., 2015). GABABR is a heterodimer comprising

GABABR1 and GABABR2 subunits (Pin and Bettler, 2016).

Studies have shown that GABABR is associated with learning

memory (Getova et al., 1997; Fujita et al., 2011). As an important

inhibitory signal, GABAB receptor-mediated disruption of the

GABAergic system is associated with many neurological and

neuropsychiatric disorders such as anxiety, depression, and

epilepsy (Ramamoorthi and Lin, 2011). GABA is formed

through Glu conversion, which is mediated by the rate-

limiting enzyme GAD. The content of GAD can reflect GABA

concentration to some extent, and GAD67, an important

isozyme, is involved in the synthesis of GABA (Sloviter et al.,

1996). GAT-1 is a GABA transporter that regulates GABA

reuptake to reduce GABA levels (Jensen et al., 2003).

Excitatory transmission in neurons may be regulated by the

number and composition of Glu receptors. Functional NMDA

receptors are mainly composed of NR1 and NR2 subunits in a

certain ratio (Hardingham and Bading, 2010). Among them,

FIGURE 10
GABA/Glu signaling pathway prediction. CF over-activated the GABAergic system and inhibited the Glu-ergic system, resulting in hippocampal
and prefrontal cortex damage, as well as cognitive and emotional disorders in rats. KPLD could be used to regulate the changes in Glu and GABA
levels as well as improve the cognitive, emotional, and physical disorders of rats with CF. GABAARα1 andGABAARγ2, as subunits of GABAAR, aremore
widely distributed in the hippocampus and cortex. GABABR is a heterodimer comprising of GABABR1 and GABABR2 subunits. GABA is formed
through Glu conversion, which is mediated by the rate-limiting enzyme GAD. GAD67, an important isozyme, is involved in the synthesis of GABA.
GAT-1 is a GABA transporter that regulates GABA reuptake to reduce GABA levels. NMDAR2B, as receptor of Glu, is of significant importance in
dynamic processes such as learning and memory.
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NR2B is an important subunit involved in the formation of the

NMDA receptor and plays a key role in NMDA receptor

function. Many studies on neurodegenerative diseases and

mental diseases have found that the NR2B subunit exhibited

abnormal function (Wang et al., 2011). One such receptor,

NMDAR2B, is of significant importance in dynamic processes

such as learning and memory (Pérez-Otaño and Ehlers, 2004).

We found that the protein and mRNA expression of

GABAARα1, GABAARγ2, GABABR1, and GAD67 were

significantly higher, while GAT-1 and NR2B were lower in

the hippocampus and prefrontal lobe of rats with CF. The

change in GABA and Glu receptor levels in the serum of CF

model rats is consistent with the changes of GABA and Glu

receptor levels in the brain. IHC revealed increased staining of

GABABR2 in the glial cell envelope, stroma, and prefrontal

stromal tissue layer in the CA3 region of the hippocampus and

decreased expression of NMDAR2B. In some studies related

to cognitive fatigue, the expression of GABA/Glu transmitter

receptors showed an opposite trend (Gao et al., 2018). Gao

et al. found that the reduced verbal memory and visuospatial

memory observed in patients with MS correlated with

decreased levels of GABA and Glu, respectively, by

combining J-difference-edited magnetic resonance

spectroscopy and resting-state functional magnetic

resonance imaging. However, the different results may be

due to the differences between research methods and the

different diseases being studied. CF may be the early stage

of a series of cognitive memory disorders associated with the

bidirectional regulation of GABA/Glu transmitters. In the

later stage with further aggravation of neurons, glial cells,

and other tissue damage, the compensatory ability could not

be adjusted. KPLD reduced the protein and mRNA expression

of GABAARα1, GABABR1, GAD67, and GABAARγ2 in the

prefrontal cortex and hippocampus. KPLD also increased the

protein and mRNA expression of NR2B in the prefrontal

cortex and GAT-1 mRNA in the prefrontal cortex and

hippocampus, which is advantageous compared with

CoQ10. Related studies have also shown that the CNS of

rats is inhibited after fatigue, with a significant increase in

the GABA content (Blanco-Lezcano et al., 2017). In addition,

the improvement of NR2B and GAT-1 by drugs is not obvious,

and some studies have reported similar results (Sta et al.,

2017), which may be related to drug activation sites and

receptor sensitivity. Activation of the relevant receptors

could be studied in greater depth in the future.

We also found an association between CF and glial cells

where H&E staining showed a loosely disorganized

arrangement of glial cells, cellular deficits, solidified and

deeply stained nuclei, and blurred structures in

hippocampal and prefrontal cortical organization.

Rönnbäck and Hansson (2004) found that in a state of

mental fatigue, there is swelling of astrocytes, which in turn

reduces Glu transmission. Le Meur et al. (2012) found that

hippocampal astrocytes released GABA under the dual

influence of both GABAergic and glutamatergic systems.

We found that KPLD ameliorated glial cell damage in the

hippocampus and prefrontal cortex of rats with CF to a certain

extent. In addition, studies have found that astrocytes and

microglia act together in the CNS and play an important role

in managing neuronal development and alleviating cognitive

impairment (Vainchtein andMolofsky, 2020). The correlation

between CF and glial cells should be studied further in the

future.

It was further reported in this study that decreased cognitive

function and increased negative affect are the main

manifestations of CF, which can be reflected by behavioral

indicators (Leavitt and Deluca, 2010). The MWM detects

cognitive and memory abilities of rats using target quadrant

swimming time, escape latency, number of platform crossings,

and spatial exploration strategy indicators. Emotional and

arousal states are reflected in the OFT, such as the total

distance, time in the center, central percentage and frequency

of rearing and grooming (Zhuang et al., 2014; Guo et al., 2015).

When rats were in a state of depression and anxiety, their

locomotor distance was significantly shortened, and the time

spent in the center decreased (Winocur, 1985).We found that the

MWM results in the CF group of rats showed impaired spatial

learning, and memory and the indicators of the OFT exhibited a

higher negative effect. KPLD treatment significantly improved

negative emotional impact and cognitive dysfunction, especially

in the high-dose group.

At the same time, physical fatigue is closely related to CF

(Martin et al., 2010; Temesi et al., 2014), which leads to the

slowing of oxidative processes and energy metabolite

consumption, as well as reduced muscle strength and

efficiency (Waersted and Westgaard, 1996; Bloemsaat et al.,

2005). Serum BUN, LDH, LAC, and AST levels and grip

strength reflected the degree of body fatigue. Among them,

LAC and BUN reflected the degree of physical and CF

(Sorichter et al., 1999; Draper et al., 2006; Han et al., 2018b),

LDH indicated the state of muscle function (Coqueiro et al.,

2018), and an elevated AST reflected exercise fatigue (Luo et al.,

2019). We found that serum AST, BUN, LAC, and LDH levels in

rats with CF increased and grip strength decreased, suggesting

the existence of central and physical fatigue. Our experimental

results showed that KPLD improved physical fatigue by reducing

serum AST, BUN, LAC, and LDH levels, more prominently than

CoQ10.

Our research confirmed that there is an imbalance between

GABA and Glu regulation in CF. The transmission of the

neuronal synaptic transmitter GABA is mediated by

GABAARα1, GABAARγ2, and GABABR and exerts an

inhibitory effect. In an abnormal state, cognitive function

declined. Symptoms such as increased negative emotions were

consistent with the behavioral performance of rats with CF in this

experiment. For example, in our water maze test, the time taken
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by CF rats to find a platform increased, and the time taken to

swim in the target quadrant decreased, indicating negative

emotions. In contrast, Glu relied on NMDAR2B and other

mediators to exert excitatory effects. This experiment found

that KPLD improved behavioral indicators by regulating

GABA/Glu-related receptor protein and gene expression more

than with CoQ10. In addition, KPLD is composed of medicine

and food homologous herbal ingredients that might slow down

further cognitive impairment and be potentially used in the early

prevention of central fatigue. Studies have confirmed that

naringin (Yang et al., 2020), nobiletin (Wang et al., 2019),

schisandra (Kim et al., 2017) and other major compounds

detected in KPLD can inhibit neuronal apoptosis and

inflammation, reduce neurotoxicity, and play a protective role

in nerve injury. It is worth noting that although the experiment

highlights the positive effects of the HDG on mood and cognitive

function relative to the CoQ10 group, the dose administered in

the HDG is higher than the conventional dose used clinically.

Thus, further studies are required to determine the optimal

clinical usage conditions of KPLD.

Nevertheless, there are still some limitations to this study.

First, the observation period of the CF model study was short;

therefore, the results of this experiment were limited to the

model, which could be later optimized. Second, only the key

indicators were selected in this experiment, and the scope of the

research can be expanded in the future. Finally, the internal

mechanism involved in this experiment was relatively shallow,

and the correlation between glial cells and the GABA/Glu

pathway should be studied further.

5 Conclusion

We noted that there was over-activation of the GABAergic

system and inhibition of the Glu-ergic system in CF and that

KPLD could regulate the changes in Glu and GABA levels, as well

as improve the cognitive, emotional, and physical disorders of

rats with CF. KPLD has advantages in the regulation of Glu-

related transmitter receptors and in improving cognitive

impairment and physical fatigue. The beneficial effects of

KPLD may be mediated by the activation of the GABA/Glu

signaling pathway.
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Glossary

AST aspartate transaminase

ANOVA analysis of variance

BCA bicinchoninic acid

BSA bovine serum albumin

BUN blood urea nitrogen

CF central fatigue

CNS central nervous system

CoQ10 Coenzyme Q10

DAB diaminobenzidine tetrahydrochloride

DG normal dose group

GABA gamma-aminobutyric acid

GAPDH glyceraldehyde-3-phosphate dehydrogenase

Glu glutamic acid

H&E Hematoxylin and Eosin

HDG high dose group

HPA Hypothalamic-pituitary-adrenal

HPLC-MS high-performance liquid chromatography-mass

spectrometry

IHC immunohistochemistry

KPLD KangPiLao decoction

LAC lactic acid

LDG low dose group

LDH lactate dehydrogenase

MMPM modified multiple platform method

MWM Morris water maze

OFT open field test

PBS phosphate buffer saline

PVDF polyvinylidene fluoride

SD standard deviation

TB Tris buffer

TBS Tris-buffered saline solution

TBST Tris-buffered saline and Tween

TIC total ion chromatography
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