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Ion channels are expressed in almost all living cells, controlling the in-and-out
communications, making them ideal drug targets, especially for central nervous system
diseases. However, owing to their dynamic nature and the presence of a membrane
environment, ion channels remain difficult targets for the past decades. Recent
advancement in cryo-electron microscopy and computational methods has shed light
on this issue. An explosion in high-resolution ion channel structures paved way for
structure-based rational drug design and the state-of-the-art simulation and machine
learning techniques dramatically improved the efficiency and effectiveness of computer-
aided drug design. Here we present an overview of how simulation and machine learning-
based methods fundamentally changed the ion channel-related drug design at different
levels, as well as the emerging trends in the field.
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INTRODUCTION

Ion channels are a group of pore-forming proteins located at the membrane of cells or intracellular
organelles, controlling the flow of ions across the membranes. Such transportation of ions plays a
critical role in the physiology of all living cells (Hille, 1978; Hille, 1986), thus the malfunction of ion
channels leads to numerous diseases at the fundamental level. Although spanning a broad spectrum
of families, ion channels can be roughly categorized into the voltage-gated and the ligand-gated based
on activation mechanisms and structural similarities (Figure 1). Most voltage-gated ion channels
contain four individual subunits or four repeats within one continuous polypeptide, each includes a
similar six-transmembrane-helix core architecture, which can be further divided into a four-helix
voltage sensor domain S1-S4 and the pore domain S5-S6 connected by the pore loop (Gulbis et al.,
1999). The typical voltage-gated ion channels, mainly the sodium (Catterall, 2000), potassium (Wulff
et al., 2009), and calcium channels (Catterall, 2011), are mostly depolarization activated and
responsible for fast reactions upon voltage changes at the cell membrane, thereby playing a key
part in electric signaling (Catterall, 2000; Sands et al., 2005; Catterall, 2010). While some members of
the transient receptor potential (TRP) family, mainly facilitate their biological function via other
stimuli including temperature, force, and chemical compounds. They serve as the vanguard of the
sensory system (Clapham, 2003). As for ligand-gated ion channels, they are mostly activated by
ligands like neurotransmitters and are crucial for nervous activities. There are three families in
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mammals: Cys-loop receptor ion channels (Sine and Engel,
2006), Glutamate receptor ion channels (Traynelis et al.,
2010), and ATP gated ion channels (Schmid and Evans, 2019),
they are typically composed of a transmembrane domain forming
the pore and an extracellular domain carrying the ligand-binding
sites. Besides, some other ion channels are beyond these two
types, for example, the ubiquitously expressed trimeric Piezo 1/2
channels that respond to mechanical stimuli (Coste et al., 2010).

Due to the vital function of ion channels in physiology,
mutations of ion channels were identified to be responsible for
various diseases: inherited neuronal diseases like epilepsy (Escayg
et al., 2000), cardiac diseases like Long-QT syndrome (Keating,
1996), muscle diseases like Hyperkalemic periodic paralysis
(Brugnoni et al., 2022) and many others (Ackerman and
Clapham, 1997). Also, the blockage of ion channels can
directly regulate sensory perception such as pain (Tominaga
and Caterina, 2004; Bourinet et al., 2014; Bennett et al., 2019).
Consequently, ion channels are among the most pursued drug
targets in the past decades (Bagal et al., 2013) and several drugs
were developed against a wide range of diseases (Clare, 2010). To

be specific, for the most related central nervous system (CNS)
diseases: Diazepam, the famous anxiolytic launched in 1963 and
the best-seller in the United States between 1968 and 1982
(Calcaterra and Barrow, 2014), was identified as a positive
allosteric modulator of the gamma-aminobutyric acid (GABA)
type-A receptors in 1977 (Braestrup and Squires, 1977; Mohler
and Okada, 1977). A detoured but successful development of
ketamine, the N-methyl-D-aspartate (NMDA) receptor
antagonist (Alessandri et al., 1989; Zhang et al., 2021) into an
anti-depressant drug is even considered a sign of a renaissance in
the psychiatric drug industry (Daly et al., 2018; Reardon, 2018).
Recent studies also revealed more potential applications of
channel modulators in Parkinson’s (Daniel et al., 2021) and
Alzheimer’s diseases (Tan et al., 2012; Gonzales and Sumien,
2017; Lu et al., 2017). Additionally, the prevalent expression
makes ion channels adequate targets for other diseases as well.
Varenicline is derived from the modification of (-)-cytisine, an
alkaloid that could be found in nature (Coe et al., 2005). As a
partial agonist of nicotinic receptors with the beta 2 subunit
(Papke and Heinemann, 1994), Chantix (varenicline tartrate) was

FIGURE 1 | Classification of ion channels based on activation mechanisms and structural similarities. The evolutionary relationships among these ion channels are
measured by the phylogenetic tree of ion channels (Alexander et al., 2019) with representative channel structures (center). Representative ion channels selected from
each class are shown with their 3D molecular structures.
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launched by Pfizer in 2006 for smoking cessation (Coe et al.,
2005) and is still one of the best-selling drugs in the world with
annual sales of 919 million dollars in the year of 2020 (McGrath
et al., 2010; Njardarson et al., 2020). In addition, cystic fibrosis, a
heritable disease, is caused by a defect in the ATP-activated
chloride channel, cystic fibrosis transmembrane conductance
regulator (CFTR) which is involved in water flow control
during the production of sweat, digestive fluids, and mucus
(Bobadilla et al., 2002). The latest treatment for cystic fibrosis,
Trikafta, was developed by Vertex Pharmaceuticals and hit the
market in 2019, and was considered at the top of 2019’s new
approvals by expected revenue (Mullard, 2020). Another case for
diabetes treatment is the blocking of ATP-sensitive potassium
channel KATP by Glipizide leads to depolarization of beta cells,
resulting in the opening of voltage-gated calcium channels which
encourages insulin release (Shuman, 1983). Ion channels were
also reported to be potential anti-cancer targets. Their role in
proliferation, migration, and metastasis of cancer was well-
explored (Litan and Langhans, 2015) and the over-expression
of TRPA1 and TRPV1 channels was observed in several tumors
suitable for topical administration, allowing for a safe and
efficient therapy (Kiss et al., 2020).

Despite the vast opportunities, the discovery of drugs targeting
ion channels faces unique obstacles. To begin with, the
development of biological assays for ion channels is usually
challenging, and the low expression rates further hindered the
high-throughput screening. Ever since Hodgkin and Huxley
firstly described the movement of ions in nerve cells of squid
axons during an action potential (Hodgkin and Huxley, 1952),
electrophysiology has been used to study the function of ion
channels. Yet, such methods require considerable expertise and
are labor-intensive and time-consuming, therefore not realistic
for large-scale screening, even with the great advancement in
automated patch clamp devices (Dunlop et al., 2008;
Kodandaramaiah et al., 2012). Another major stumbling block
is ligand selectivity because channels from the same or close
families usually share great similarities in sequence and structure
yet bear diverse functions. Lead compounds, especially channel
blockers, often suffer from side effects due to poor selectivity
(Vandenberg et al., 2017; Flood et al., 2019). As the “low-hanging
fruit” is becoming rare in modern drug discovery, cases like
carbamazepine, a pan-ion-channel inhibitor with broad
pharmacological properties (Bagal et al., 2013), may be very
rare and not welcomed nowadays, for which mechanism
studies came several decades later than discovery (Schindler
and Hafliger, 1954; Grant and Faulds, 1992).

Because of the aforementioned problems, the rational design
of drugs is critical for the efficiency and efficacy of ion channel
drug discovery. Such designs require precise structural
information, which is largely missing until the rise of single-
particle cryo-electron microscopy (cryo-EM) (Li et al., 2013; Liao
et al., 2013). Starting from the high-resolution structures,
computer-aided drug design (CADD) can be applied to
perform large scale virtual screenings before the costly wet-lab
experiments to greatly narrow down the size of the library to an
affordable range (Lyne, 2002); molecular dynamics (MD)
simulations can be performed to further model the structures

and study the mechanism at atomistic details (Maffeo et al.,
2012). On the other hand, recent advancement in machine
learning begins to demonstrate their power in cryo-EM and
drug development. Towards accelerating the ion channel drug
discovery, in this review, we will provide a broad overview of the
current machine-learning and simulation-based techniques in
structural biology and drug design, and discuss how they can be
applied to ion channel research.

COMPUTATIONAL METHODS FOR
SINGLE-PARTICLE CRYO-EM

While being essential for mechanistic studies and rational drug
design, molecular structures for ion channels are more difficult to
purify and crystallize than soluble proteins, mainly due to the
necessity and difficulty of preserving the membrane-like
environment. Detergents, amphipols, and nanodiscs have been
commonly used to extract membrane proteins such as ion
channels, and also serve as substitutes for the local membrane
to stabilize the transmembrane domains (Zampieri et al., 2021).
In recent years, the single-particle cryo-EM technique has rapidly
evolved as a powerful method for structure determination for
various ion channels (Martin et al., 2017; Basak et al., 2019; Dang
et al., 2019; Masiulis et al., 2019; Zhao et al., 2019; Wang Q. et al.,
2020; Sun and MacKinnon, 2020; Lin et al., 2021; Song et al.,
2021; Yu et al., 2021). Cryo-EM eliminates the need for protein
crystallization and is capable of resolving multiple protein
conformations within a single cryo-EM dataset (Frank and
Ourmazd, 2016; Frank, 2017; Cheng, 2018; Wu and Lander,
2020). The structural resolution of cryo-EM experiments has
also been improved over the years, with the highest resolution
reaching ~1.2 �A (Nakane et al., 2020; Yip et al., 2020). High-
resolution cryo-EM enables its use in target identification and
lead-optimization for developing drugs targeting ion channels.

A typical single-particle cryo-EM experiment includes sample
purification, vitrification via plunge freezing, electron microscopy
data collection, image processing, and structural model building
(Figure 2) (Lyumkis, 2019; Wu and Lander, 2020). We will focus
on the last two steps in this review, which rely heavily on
computational techniques.

Cryo-EM Image Analysis
The goal of cryo-EM image analysis is to reconstruct the three-
dimensional (3D) structure of the target proteins represented as
statistically estimated density maps. A large collection of two-
dimensional (2D) projection maps are subjected to image
preprocessing, particle picking, 2D image classifications, 3D
classifications, and 3D reconstructions (Singer and Sigworth,
2021). Many software programs are available for building
cryo-EM density maps from 2D projection maps, such as
RELION (Scheres, 2012; Kimanius et al., 2021), cryoSPARC
(Punjani et al., 2017), Xmipp (Sorzano et al., 2004), Warp
(Tegunov and Cramer, 2019), CisTEM (Grant et al., 2018),
EMAN2 (Tang et al., 2007). Although these programs are
sufficient for most cryo-EM experiments, their output density
maps are mostly limited to a few representative classes of particles
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in the projection map dataset. Recent machine-learning-based
methods focus on characterizing the continuous distribution of
particle distributions within a cryo-EM experiment, e.g.,
cryoDRGN (Zhong et al., 2020; Zhong ED. et al., 2021; Zhong
E. D. et al., 2021) and e2gmm (Chen and Ludtke, 2021).
CryoDRGN is a method for heterogeneous cryo-EM
reconstruction based on deep neural networks. It is powerful
and general for analyzing structural heterogeneity in
macromolecular complexes of various sizes and degrees of
heterogeneity. The cryoDRGN model consists of two neural
networks structured in an image-encoder-volume-decoder
architecture with a continuous latent variable representation
for describing the sample heterogeneity. Although the initial
version of cryoDRGN (Zhong et al., 2020) can optimize image
poses together with image reconstruction/classification, for better
efficiency and accuracy, the pose estimation component was
dropped and pre-computed image poses estimated from an
upstream homogeneous reconstruction were used (Zhong ED.
et al., 2021). CryoDRGN2 combines a traditional cryo-EM image
pose search algorithm with deep neural networks, which
eliminates the need for pre-computed image poses (Zhong E.
D. et al., 2021). Compared with the initial version of cryoDRGN,
both the speed and accuracy are increased significantly in pose
estimation. The e2gmm algorithm can also find the structural
variability of target macromolecules captured by cryo-EM
experiments. In this method, each structural domain is
modeled by a 3-dimensional (3D) Gaussian function,
parameterized by its center coordinates, amplitude, and width.
Autoencoder-like neural network architecture is used to generate
a latent vector representation of each projection image through

an encoder. Then the decoder component converts each latent
vector into a set of 3D Gaussian function parameters which
represents a Gaussian mixture model (GMM). This GMM
representation is converted back to a 2D projection image
through a projection operation. In e2gmm, training was first
done for the decoder only, then for the encoder and decoder
together. Unlike the standard autoencoder, the input to the
encoder is not the projection image, but the gradient of loss
function score with respect to the GMM parameters (Chen and
Ludtke, 2021). The projection orientation of each image must be
given as inputs which can be refined later once the network has
been trained. The conformational variability of the cryo-EM
dataset can be visualized through dimension reduction of the
4D latent space based on the latent vectors from the encoder. The
cryoDRGN and e2gmm algorithms are similar in terms of the use
of latent vectors for characterizing the structure variability,
although latent vectors are obtained differently.

Reconstructed cryo-EM density maps usually suffer from loss
of contrast at high resolution due to factors such as specimen
movement, radiation damage, particle flexibility/heterogeneity,
and deficiencies in extracting/averaging micrograph signals in the
reconstruction algorithms (Rosenthal and Henderson, 2003).
Algorithms, known as sharpening, have been designed to
reduce this type of contrast loss. A commonly used
sharpening method is based on global B-factor correction
(Rosenthal and Henderson, 2003). Other methods, such as
LocScale (Jakobi et al., 2017), LocalDeblur (Ramirez-Aportela
et al., 2020), and LocSpiral (Kaur et al., 2021), improved upon the
previous method by considering local variations in B-factors.
Instead of explicitly performing sharpening calculations, deep-

FIGURE 2 | Singe-particle cryo-EM workflow and relevant computational methods. Traditional methods for image processing and structural model building are
shown in grey and ML-based methods in blue. Electron micrographs and particle images were visualized using cryoSPARC (Punjani et al., 2017). The density map and
structural model were generated using Mol* viewer (Sehnal et al., 2021).
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learning-based methods can implicitly encode the sharpening
transformation. One example is DeepSharpen (Zehni et al., 2020),
which uses a Convolutional Neural Network (CNN) trained on
~15,000 pairs of low and high-resolution synthetic cryo-EM
density maps. The benefit of this approach is that sharpening
on a new density map only requires inference through trained
CNN parameters which can be very fast. Deep cryo-EM Map
Enhancer (DeepEMhancer) is another deep-learning-based
sharpening method (Sanchez-Garcia et al., 2021). It uses a 3D
U-net architecture (Ronneberger et al., 2015) to learn the local
sharpening effect of the LocScale algorithm by training on paired
map datasets from the Electron Microscopy Data Bank (EMDB).
Each map pair consists of an experimental density map and a
post-processed map using LocScale. DeepSharpen and
DeepEMhancer share similar deep learning designs, although
their training strategies and training targets differ. More realistic
and better-labeled training datasets can further improve these
supervised-learning-based methods.

Cryo-EM Structural Model Building
In the final step of cryo-EM experiments, 3D atomic structural
models are built based on the reconstructed 3D density maps. The
goal is to search for the most probable 3D atomic structure that
can best interpret the reconstructed density map. Traditionally,
these atomic structural models are built semi-automatically using
software like Coot (Casañal et al., 2020) and Phenix (Liebschner
et al., 2019). These types of methods require the users to have
extensive knowledge of the biochemical compositions of the
target biological entities. More automated methods can be
roughly divided into three categories. The first class of
automated methods performs rigid-body fitting of initial
structures into the density maps. Examples of such methods
include EMfit (Rossmann et al., 2001), HermiteFit (Derevyanko
and Grudinin, 2014), GTMC (Wu et al., 2003), ADP_EM
(Garzón et al., 2007), and Situs-colores (Chacón and Wriggers,
2002). These methods solve the problem of placing an atomic
structure model into a target cryo-EM density map as a rigid body
and they differ in their specific implementation of translational/
rotational search. Most of these methods are developed for low-
resolution maps before the so-called “resolution revolution”
during the development of cryo-EM (Crowther, 2016; Frank,
2017; Alnabati and Kihara, 2019).

As the average resolution of cryo-EM increased, the second
class of automated methods emerged which allows flexible fitting
of initial structures into density maps. One type of flexible fitting
method combines molecular dynamics (MD) simulations and the
experimental density maps to automatically fit some initial
structural models into density maps. Examples of such
methods include molecular dynamics flexible fitting (MDFF)
and correlation-driven molecular dynamics (CDMD). In
MDFF (Trabuco et al., 2008; Chan et al., 2011; Singharoy
et al., 2016), an additional potential energy term derived from
the density map was added to the simulation force field. The
derivative of this potential generates forces that drive the initial
structural model into the target density map. CDMD acts
similarly (Igaev et al., 2019). Instead of directly adding a
density-map-derived potential energy term, the cross-

correlation coefficient (ccc) between the intermediate
structures and the target density map is calculated. Forces
derived from ccc drive the initial structure into the density
map. Although both methods are equivalent, CDMD is more
sensitive to the quality of initial structures and noises in the
density maps compared to MDFF in practice. ISOLDE is a hybrid
method that combines user interactions and MDFF to achieve a
semi-automated structure modeling (Croll, 2018). The same
hybrid modeling can also be performed using interactive
MDFF (iMDFF) (McGreevy et al., 2016). NMMD is another
MD-based cryo-EM structural fitting method (Vuillemot et al.,
2022). Compared to CDMD and MDFF, NMMD combines
normal mode analysis (NMA) and MD to perform global
structural fitting with NMA and local structural fitting with
MD. Other NMA-based flexible fitting methods include
MDeNM-EMFit (Costa et al., 2020), NMFF (Tama et al.,
2004a; b), NORMA (Suhre et al., 2006), and a coarse-grained
fitting method with a modified elastic network model (Zheng,
2011). Besides MD, Monte Carlo (MC) simulations together with
MD can also be used to fit structures into density maps (Topf
et al., 2008).

Another approach to building cryo-EM structures is de novo
modeling, which doesn’t require any initial structural models.
This class of methods includes RosettaES (Frenz et al., 2017),
EM-fold (Lindert et al., 2009; Lindert et al., 2012a; Lindert
et al., 2012b), Gorgon (Baker et al., 2011), Pathwalking (Baker
et al., 2012; Chen et al., 2016), Phenix (Terwilliger et al., 2018;
Terwilliger et al., 2020), MAINMAST (Terashi and Kihara,
2018b; a), etc. (see the recent review (Alnabati and Kihara,
2019)). More recently, deep-learning-based de novo cryo-EM
structural model building has been gaining much ground, such
as DeepTracer (Pfab et al., 2021), CR-I-TASSER (Zhang et al.,
2022), DeepMM (He and Huang, 2021), and A2-Net (Xu et al.,
2019). DeepTracer (Pfab et al., 2021) uses four U-Net-based
neural networks to extract structural information from the
input density amp. Each network can classify each density map
voxel into a certain category. The Atoms U-Net predicts four
classes: C-alpha, nitrogen, carbon (non-C-alpha), and non-
atom. The Backbone U-Net predicts three classes: backbone,
side chain, and neither. The Secondary Structure U-Net
predicts four classes: loop, helix, sheet, and none of these.
The Amino Acid Type U-Net predicts 21 classes: 20 types of
amino acids and non-protein density. Then, protein backbone
tracing is done in three steps: identifying protein chains based
on Backbone U-Net outputs, estimating C-alpha atom
coordinates, and connecting C-alpha atoms into chains
using a modified traveling salesman algorithm. The
assignment of amino acid residue types to each C-alpha
atom was done through a customized sequence alignment
algorithm based on the U-Net-predicted and input protein
sequences. The all-atom backbone structure is subsequently
reconstructed based on information from the Atoms U-Net
predictions and some assumptions on the peptide bond
geometries. One of the major limitations of DeepTracer is
its inability to predict the side-chain conformations, which is
delegated to an external program called SCWRL4 (Krivov
et al., 2009). CR-I-TASSER (cryo-EM iterative threading
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assembly refinement) is a hybrid method that uses information
from both homology modeling and density-map-based de
novo C-alpha tracing (Zhang et al., 2022). Like DeepTracer,
C-alpha atom positions are predicted based on density maps
using machine learning techniques, which is a deep
convolutional network (3D-CNN) in this case. Then, CR-I-
TASSER solves the problem of C-alpha tracing using a local
meta-threading server (LOMETS). After that, the atom
structure models are built using the iterative threading
assembly refinement method (I-TASSER) driven by model-
map correlation under deep-learning boosted template
restraints. The novelty of this method is the C-alpha
position prediction using 3D-CNN and the use of C-alpha
locations for better template reselection in LOMETS. CR-I-
TASSER shows good performance in terms of TM scores
compared to other methods such as MAINMAST and
MDFF. However, its accuracy is limited for low-resolution
cryo-EM data, and its C-alpha tracing method is also
problematic in long-loop/tail or disordered regions. Another
major limitation of CR-I-TASSER is that it can only handle
single-chain proteins, thus the density maps have to be
manually segmented first. DeepMM takes a workflow design
similar to DeepTracer (He and Huang, 2021). Based on cryo-
EM density maps, it uses one Densely Connected
Convolutional Network (DenseNet) to predict the main
chain (backbone N, C, and C-alpha atoms) and C-alpha
probabilities at each density map voxel. Using the
MAINMAST method, the main-chain paths are determined
based on the main-chain probability map. Then, another
DenseNet is used to predict the residue identities and
secondary structure types for each main chain point. Smith-
Waterman dynamic programming is used to align the target
sequence to the main-chain paths. Finally, all-atom structure
models are based on the top-10 C-alpha models using the ctrip
program (Xiang and Honig, 2001; Petrey et al., 2003) and
refined by energy minimization using Amber (Case et al.,
2005). Like CR-I-TASSER, DeepMM can only handle
building single protein chains and segmentation tools, such
as Segger (Pintilie et al., 2010) are needed to preprocess multi-
chain density maps into individual chain map segments.
Compared to DeepTracer, DeepMM’s main feature is the
ability to build full-length protein structures from high-
resolution EM maps, while DeepTracer only builds
backbone segments in high-resolution map regions. All
these methods only apply machine learning techniques to
convert cryo-EM maps into basic protein structural models
without side chains. A2-Net (Xu et al., 2019) is another de novo
structure building method based on a deep Convolutional
Neural Network (Srivastava et al., 2015). Like the methods
mentioned above, it contains neural networks for amino acid
residue identity detection. The main difference is that A2-net
also contains a poseNet based on the 3D stacked hourglass
network (Newell et al., 2016) for estimating the coordinates of
each residue (side chain included). Then, these residues are
connected to form the target protein using a Monte Carlo tree
search algorithm. In the advent of accurate protein structure
prediction methods such as AlphaFold2 (Jumper et al., 2021)

and RoseTTAFold (Baek et al., 2021), new possibilities are
brought to cryo-EM structure building. For example,
ChimeraX added a new feature to allow users to start cryo-
EM structure modeling from AlphaFold predictions1. Phenix
also added a new workflow2 (Terwilliger et al., 2022), to
iteratively refine cryo-EM structural models by integrating
AlphaFold predictions using ColabFold (Mirdita et al.,
2022). Recently, Yan and Shen reported that AlphaFold2-
predicted structure could help model the density map
regions with moderate resolutions in voltage-gated sodium
channel Nav1.7 (Huang et al., 2022). With the rapid progress in
the field of machine learning, more accurate and efficient de
novo cryo-EM structure modeling methods are expected in the
near future.

Evaluation of the Cryo-EM Structural Model
Quality
Evaluation of the quality of the density-map-derived molecular
structural models is yet another challenge. Global metrics (such as
map-model cross-correlation coefficient and FSC curve) between
the experimental density map and a simulated map converted
from the structural model are often insensitive to local mis-
fittings (Hryc et al., 2017). Moreover, these metrics usually do not
account for densities not modeled by the atomic structural
models such as lipids and detergents, and masks are usually
needed to access local features (Pintilie et al., 2016). EMRinger
and Z-scores are metrics defined based on how well the structure
models interpret the experimental density maps. EMRinger score
is based on the expectation that the map density values near the
beta-carbon atoms should peak at certain angles when rotating
the side-chain chi-1 dihedral angle (Barad et al., 2015). Although
the EMRinger score correlates well with the protein backbone
modeling quality and map density quality near the beta-carbons,
it is suspectable to noise and lacks assessment of the rest of the
side chains. Z-score has been proposed to quantify the density
map quality at the secondary structure element level and side-
chain level (Pintilie and Chiu, 2018). Its definition is based on the
cross-correlation coefficients between the experimental and
simulated maps of the secondary structure elements or side
chains with and without some geometric displacements
(Pintilie and Chiu, 2018). To make even finer-scale
assessments, Q-score is established to quantify the resolvability
of individual atoms in cryo-EM maps (Pintilie et al., 2020). The
basic idea of the Q-score is to measure the cross-correlation
coefficient between experimental density map values for
individual atoms and ideal densities represented by a three-
dimensional (3D) Gaussian-like function centered at each
atom in the structure model (Pintilie et al., 2020). FSC-Q is
another method that can also assess structure modeling quality
on a per-atom basis (Ramírez-Aportela et al., 2021). FSC-Q
calculates the difference between two local resolution maps
calculated using the blocres program. The first local resolution

1https://www.rbvi.ucsf.edu/chimerax/data/stanford-sep2021/alphafold.html
2https://phenix-online.org/documentation/reference/alphafold_in_colab.html

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9395556

Zhu et al. Computational Ion Channel Research Review

https://www.rbvi.ucsf.edu/chimerax/data/stanford-sep2021/alphafold.html
https://phenix-online.org/documentation/reference/alphafold_in_colab.html
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


map is calculated using the full density map and the simulated
map based on the structure model, while the second is calculated
using the half maps. Then the FSC-Q difference map can be
projected onto atomic models to obtain an FSC-Q score for each
atom. Alternatively, the FSC-Q map can be normalized by
dividing by the local resolution map based on the half maps
for better cross-comparison between experimental density maps
of different resolutions.

Challenges in Cryo-EM Structure
Determination for Ion Channels
Ion channels naturally reside in biological membranes which
means preserving the amphiphilic local environment for the
channel transmembrane domains is essential during cryo-EM
sample preparation. Techniques such as nanodiscs can serve as
good replacement for the membrane (Zampieri et al., 2021).
However, the disordered nature of these membrane memetics
also add difficulties to the cryo-EM structural analysis. In cryo-
EM image analysis, algorithms such as non-uniform refinement
can reduce the negative impact of the disordered detergent/lipid
molecules (Punjani et al., 2020). In addition, certain ion channels,
such as mechanosensitive channels, have flexible transmembrane
domains and often require specific protein-lipid interactions for
structural stability (Kefauver et al., 2020). Preserving their local
membrane environment can be very difficult. For example, it has
been reported that mechanosensitive channel YnaI’s
transmembrane domain couldn’t be resolved using cryo-EM
with membrane-active polymer SMA2000 except for core
helices TM4 and TM5 (Catalano et al., 2021). Computational
techniques such as normal model analysis and molecular
dynamics can offer additional insights into these protein-lipid
interactions required for the structural stability and functions of
mechanosensitive channels (Jojoa-Cruz et al., 2018; Argudo et al.,
2019). In addition, the application of toxins, truncation of flexible
regions and mutations are often introduced in cryo-EM studies of
ion channels (Jiang D. et al., 2021). Although sometimes intended
by the researchers for their specific projects, these conditions have
also been used to artificially stabilize ion channels to capture a
certain conformation during structure determination (Rook et al.,
2021). Computational techniques can reverse these effects if
needed and can also be used to evaluate the impact of such
conditions (Gupta and Vadde, 2021; Saikia et al., 2021).

COMPUTER-AIDED DRUG DESIGN
APPROACHES TARGETING ION
CHANNELS
In the glorious history of the era driven by occasions and classic
synthetic chemistry, numerous ion-channel modulators were
discovered. For example, the series of “-caine” analogues was
inspired and chemically modified from cocaine, an alkaloid
derived from plants (Plowman, 1982), including benzocaine,
amylocaine, procaine, procainamide, and lignocaine
(lidocaine), which showed potency as sodium channel
inhibitors and were approved for medical use as anesthetics

and/or antiarrhythmics (Cox, 2015). Typical cases also include
the previously mentioned varenicline and carbamazepine, and
maybe even ethanol and neurotoxic peptides in venoms. Ethanol
was proved to be able to interact with various post-synaptic ion
channel receptors (Howard et al., 2011; Murail et al., 2012; Zhang
et al., 2016), while neurotoxic peptides in venoms were sometimes
regarded as good starting points for modification as modulators
targeting ion channels such as voltage-gated sodium, potassium,
and calcium channels as well as some ligand-gated channels
(Clark et al., 2010; Dutertre and Lewis, 2010; Bagal et al.,
2013; Wulff et al., 2019).

In recent years, under the concept of rational drug design,
considering the features of ligands, the structures of receptors,
and the motions and dynamics of the system becomes more and
more important. Accordingly, numerous computational methods
and machine-learning algorithms have been developed
(Figure 3).

Ligand-Based Approaches
Benefit from these data collected in the early era, ligand-based
approaches could be applied to build relatively reliable models to
describe the relationship between modulators and the
corresponding ion channels, especially when the
experimentally-resolved protein structures are absent. One of
the typical cases should be the development of ligand-based
models for the prediction of human ether-a-go-go related gene
hERG potassium ion channel blockage, which is believed to be
important in avoiding sudden cardiac death considering its
relationship with drug-induced long QT syndrome. In the past
few years, a considerable amount of associated data was collected
(Konda et al., 2019) and numerous quantitative structure-activity
relationship (QSAR) or classification models (Cavalli et al., 2002;
Ekins et al., 2002; Roche et al., 2002; Keseru, 2003; Nisius and
Goller, 2009; Braga et al., 2015; Siramshetty et al., 2018; Konda
et al., 2019) were built for hEGR blockage prediction based on the
traditional regression models such as partial least squares,
machine learning algorithms including support vector
machines (SVM), random forest (RF), gradient boosting
machine (GBM) or neural network models. These models
have been systematically discussed in the previous reviews
(Aronov, 2005; Taboureau and Jorgensen, 2011; Villoutreix
and Taboureau, 2015; Vandenberg et al., 2017; Menke et al.,
2021).

Actually, besides hERG, the application of the mentioned
models is also a common strategy in ligand-based drug design
of ion channel modulators when facing abundant research data.
For example, in the study of structural-activity relationships of
Nav1.4 blockers, both traditional two-dimensional and advanced
three-dimensional QSARmodels were applied by Carrieri et al. to
reveal the structural characteristics of bioactive molecules
(Carrieri et al., 2009). Further design of sodium channel
blockers was thus inspired. Consequently, a series of tocainide
analogues were designed and one of them was verified to have a
favorable pharmacodynamic profile and was proposed to be a
valid Nav1.4 blocker (Muraglia et al., 2014). Based on the data
collected from ChEMBL, BindingDB, and in-house databases,
various machine learning-based QSAR models were built by
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Kristam et al. to predict blockers of the voltage-gated sodium ion
channel Nav1.5, with the balanced accuracy of 0.88 (at the
threshold of 1 μM) and predicted R2 of 0.71 (RMSE = 0.73 for
pIC50) for the classification and regression models, respectively
(Khalifa et al., 2020). Similarly, Huang and Xie et al. trained and
filtered a classification model based on the data from ChEMBL
and BindingDB for the discovery of Nav1.7 blockers (Kong et al.,
2020). The Grammar Variational Autoencoder, the trained
classification model, and simulated annealing were combined to
conduct the molecular optimization and an active compound was
found and identified experimentally (Kong et al., 2020). Li et al.
studied the pharmacophore hypothesis of ligands that bind at the
benzodiazepine site of GABAA receptors based on ligand-based
pharmacophore, 3D-QSAR analysis, and Bayesian models, which
might provide useful viewpoints in the discovery of GABAA

modulators (Yang Y. et al., 2013). Because of the potentially
limited chemical space the pore-blockers could adapt,
approaches based on the three-dimensional similarity between
the ligands and reference molecules that take the spatial
molecular shape and electrostatic features into consideration
(Cleves et al., 2019; Jiang Z. et al., 2021) are possibly another
practical ligand-based method in discovering ion channel
modulators. Additionally, Bahar et al. proposed a probabilistic
matrix factorization (PMF) based scheme to predict unknown
drug-target interactions, which focused on the phenotypic
similarity of the drugs by grouping the drugs according to the

corresponding therapeutic effects (Cobanoglu et al., 2013). The
obtained model showed good performance when applied to large
data sets of ion-channel-drug pairs (Cobanoglu et al., 2013).

Structure-Based Approaches
In terms of the structural-based approaches, recent
computational and machine-learning technologies have
empowered the exploration of ion channel modulators mainly
in three aspects, viz., structures with higher quality, binding
affinity prediction with higher accuracy, and virtual screening
with higher throughput (Figure 3).

The recent rapid development of protein structure modeling,
as well as structural biology, possibly enables the rational design
and exploration of ion channel modulators with atomic-
resolution structures. Taking again the case of hERG as an
example, in the past, owing to the lack of solved hERG
channel structure, structural-based exploration mainly relies
on structures from homology modeling. With the modeled
structure and docked model, Vaz et al. illustrated that the π-
stacking formed between the blockers and Phe656 in the protein
as well as that of the cation-π interaction involving Tyr652 might
be the potential key elements of the pharmacophore (Pearlstein
et al., 2003). Similar conclusions associated with the important
character of Phe656 were also drawn by the work of Åqvist et, al.,
which explored the binding of potential hERG blockers using
docking and molecular dynamics combined with the linear

FIGURE 3 | Computational approaches in the structure modeling, mechanistic study and drug discovery of ion channels. Several subplots were collected using
Hermite (https://hermite.dp.tech), Mol* viewer (Sehnal et al., 2021), PyMOL (https://github.com/schrodinger/pymol-open-source) and the Pred-hERG web-server
(Braga et al., 2015).
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interaction energy method to evaluate the binding affinities of the
potential blockers (Osterberg and Aqvist, 2005). However,
numerous experimental ion channel structures have been
determined with the cryo-EM technique nowadays, including
the human hERG structures that were resolved in 2017 (Wang
and MacKinnon, 2017), which might provide a significant
cornerstone of the structure-based prediction. Beneficial from
the high-resolution structures of the TRPM8 channel in various
states (Yin et al., 2018; Diver et al., 2019; Yin et al., 2019), Yang
et al. conducted a rational design of the TRPM8 channel and
developed a modality-specific inhibitor DeC-1.2, which showed
the potential as a novel analgesic against oxaliplatin-induced
neuropathic pain (Aierken et al., 2021). Additionally, various
protein-folding and modeling tools were also developed (Baek
et al., 2021; Jumper et al., 2021), which provide an alternative way
for protein structure modeling besides the classic homology
modeling approach (Huang et al., 2022), and may also
contribute as a start point for the construction of single-
particle cryo-EM structures (Figure 3). The application of
molecular dynamics may be another powerful approach to
structural exploration and refinement (Hollingsworth and
Dror, 2018; Carnevale et al., 2021). For example, following a
multistep protocol, Noskov et al. modeled the open, closed and
open-inactive states of the hERG channel to explore the
molecular mechanisms behind the state-dependent binding of
potential hERG blockers (Durdagi et al., 2012). The missing
elements in the homology model were complemented with
Rosetta, following all-atom molecular dynamics simulation to
refine the obtained structure. The Poisson-Boltzmann
calculations conducted based on the ligand-channel complex
obtained by the Glide induced-fit docking (IFD) protocol
showed a good correlation with the experimental results
(Durdagi et al., 2012). Also, starting from the modeled
structure, Barakat et al. performed the structural refinement of
the Nav1.5 ion channel based on a long-time molecular dynamics
simulation of 680 ns in the lipid membrane bilayer (Ahmed et al.,
2017). The binding affinities between the reported molecules and
the obtained model of the channel were evaluated with AMBER-
MM/GBSA. The results demonstrated a good computational-
experimental correlation (Pearson coefficient = 0.7) to
distinguishing drugs that block or not block the Nav1.5
channel (Ahmed et al., 2017).

Binding affinities of the ion channel modulators are usually
evaluated after the construction of reliable modulator-channel
complexes. As discussed above, numerous algorithms are
available in the historical explorations for binding affinity
prediction, including LIE, MM/PBSA, and MM/GBSA, and
showed relatively satisfactory results (Osterberg and Aqvist, 2005;
Durdagi et al., 2012; Ahmed et al., 2017). Nevertheless, to derive the
theoretically more accurate results, the more rigorous defined
alchemical methods such as free energy perturbation (FEP) could
also be applied to access the binding potency of the channel
modulators (Limongelli, 2020). Based on the extensive search for
the isoflurane binding sites in the proton gatedGloeobacter violaceus
ligand-gated ion channel (GLIC) in their previous study (Brannigan
et al., 2010), Klein and Brannigan et al. performed free energy
perturbations to evaluate the binding affinities of two anesthetics

against GLIC, viz., isoflurane and propofol (LeBard et al., 2012). The
evaluated affinities demonstrated good correlations with the
previous electrophysiology data (LeBard et al., 2012). In the work
of Rempe and Ren et al., FEP was used to determine accurately the
thermodynamic stabilities of ion configurations for the potassium
channel of streptomyces A (KcsA), by comparing the relative free
energy difference between various configurations (Jing et al., 2021).
The computation results showed good agreement with evidence
derived from crystal structures, ion binding experiments, and
mutagenesis experiments (Jing et al., 2021). Moreover, machine
learning techniques could be introduced in large-scale screening
considering the large computational cost of alchemical methods.
Bhat et al. showed that it is possible and acceptable to performmore
than 5000 FEP calculations in one lead optimization task with the
acceleration of active learning (Konze et al., 2019). System-specific
scoring functions might provide another efficient way for
discovering ion channel modulators. These scoring functions
could be constructed either with deep learning or machine
learning methods alone or combined with physical-based models
(Ain et al., 2015; Wang et al., 2019; Guedes et al., 2021). Numerous
studies have demonstrated that the application of target-specific
scoring functions outperforms the universal scoring functions on the
validation set of DUD-E, which usually covers the major druggable
target classes and ion channels are also included (Ain et al., 2015;
Wojcikowski et al., 2017; Wang et al., 2019; Guedes et al., 2021).

The development of ultra-high-throughput virtual screening
might also be a chance to accelerate the discovery of ion channel
modulators. Though various experimental techniques including
ion-flux or fluorescence-based assays and electrophysiology
measurements are developed for discovering ion channel
modulators, however, most of the options are time-consuming
and costly for high-throughput screening (Zhang et al., 2016).
Under the logic that screening of larger libraries could generally
lead to higher quality results (Gorgulla et al., 2020), a variety of
programs and algorithms have been developed for ultra-high
throughput virtual screening. Generally, the ideas for these
approaches include optimization in algorithm engineering to
enable high-performance computing (Alhossary et al., 2015;
Hassan et al., 2017) and the usage of graphics processing units
(Santos-Martins et al., 2021; Shidi et al., 2022), the development
of highly-organized workflows (Gorgulla et al., 2020), the
application of deep learning which trained QSAR models on
docking scores of subsets of the library (Gentile et al., 2020), and
the improvement in searching efficiency in a fragment-based
manner with the idea partial similar with dynamic programming
(Sadybekov et al., 2022). These methods have pushed the limit of
virtual screening throughput to libraries with more than tens of
billion compounds, and may potentially help the drug discovery
of various target classes including ion channels.

COMPUTATIONAL APPROACHES FOR
FUNCTIONAL ANALYSIS OF ION
CHANNELS
Recent advances in structural biology such as high-resolution
cryo-EM have enabled the in-depth study of the functions and
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mechanisms of ion channels at the molecular scale. However,
protein dynamics is essential for the functions of ion channels,
which is difficult to infer from static structures. Therefore,
computational approaches have been widely applied to explore
the dynamic responses and microscopic interactions of
macromolecules (Figure 3).

Simulation of Ion Conductance
Since the first ion channel structure was published in 1998 by
Doyle et al. in their study of the KcsA channel (Doyle et al., 1998),
scientists have been using molecular dynamics (MD) simulations
to study the interactions between ion channels and their solvent
environment. In 2000, Berneche et al. simulated the KcsA K+

channel in dipalmitoylphosphatidylcholine (DPPC)
phospholipid bilayer with KCl aqueous salt solution (Bernèche
and Roux, 2000). Their work showed that the translocation of K+

ion along the ion conductance pathway is facilitated by the
structural movements of the extracellular residues Glu 71,
Asp80, Arg89, and the selectivity filter residues Val76, Gly77.
The dynamics of water and K+ ions were reported in several
simulation studies, where a single file of potassium with water
molecules interspersed in between passes along the channel pore
(Guidoni et al., 2000; Shrivastava and Sansom, 2000). The
observed interactions with the fluctuating selectivity filter laid
the foundation for understanding the basis for K+ selectivity over
Na+. Later, Shrivastava et al. showed that K+ ions are
preferentially coordinated by eight carbonyl oxygens of the
filter (Shrivastava et al., 2002), which mimics the salvation
shell of hydrated K+, while the smaller Na+ ion interacts with
four carbonyl organs and two water molecules, which exerts
larger distortion on the selectivity filter. Further simulation
studies revealed that to accommodate the smaller ionic radius
of Na+ and provide the expected coordination, the dynamic
carbonyl groups need to adapt to a “collapsed” state, which
builds up unfavorable strain energy. The local interaction
mediated by the filter residues and coordinating waters
provides a molecular mechanism for ion selectivity in KcsA
(Noskov et al., 2004; Noskov and Roux, 2006; Bostick and
Brooks, 2007; Noskov and Roux, 2007). After the initial surge
of both experimental and simulation studies of the KcsA channel
with the availability of its structural information, research has
been continuously growing in studying the structures and ion
conductance of potassium channels. Long before the crystal
structure of the inward rectifier potassium channel Kir6.2 was
solved, MD simulation studies had already been conducted on its
homology model, which represents another field of
computational applications in pursuing structure-based
approaches to research (John and Sali, 2003). Capener et al.
showed that the Kir6.2 channel model has a similar ion passing
motion with KcsA (Capener et al., 2000).

Despite the success of these early studies, a complete
permeation event was not described until Khalili-Araghi et al.,
who applied an electric field of 1 V across the membrane bilayer
for the open state of Kv1.2 channel during 25 ns of MD
simulations, and observed permeation events that are
consistent with previous studies, where K+ ions pass the
channel pore through the water-mediated knock-on

mechanism (Khalili-Araghi et al., 2006). With increasing
computation power, more detailed studies of the ion
conductance mechanisms have been carried out. In 2010,
Jensen et al. performed simulations on Kv1.2 with the voltage
ranging between −180 and 180 mV over a total of ~30 μs(Jensen
et al., 2010). In this work, not only do they show that the rate-
limiting step of K+ conductance is the formation of the knock-on
intermediate, where two ions form direct contact but also
revealed a then-novel gating mechanism that at reverse or zero
voltage, the channel undergoes a dewetting transition into the
intrinsically more stable closed state.

In addition to the direct application of electric field across the
membrane, computational electrophysiology has also been used
to study ion permeation. This approach uses a double membrane
to separate the system into two isolated compartments, and
different ion concentrations are created in each compartment
to directly form an electrochemical gradient across the
membrane. Köpfer et al. used this method to study the K+

conductance of the archaeal MthK channel from
Methanobacterium thermoautotrophicum and the eukaryotic
Kv1.2-Kv2.1 chimeric channel in the physiological voltage
range (Köpfer et al., 2014). Their results suggest that direct
ion-ion contacts instead of co-translocation of alternating ion
and water is the key to highly efficient K+ conductance. Several
subsequent studies reported this direct knock-on mechanism for
different potassium channels under a variety of simulation
conditions (Schewe et al., 2016; Kopec et al., 2018; Kopec
et al., 2019; Lolicato et al., 2020). These studies proposed that
strong electrostatic repulsion between ions is the main driving
force for the fasting permeation of K+ ions, and the higher
energetic penalty for complete desolvation of Na+ over K+

contributes to the ion selectivity. The two permeation
mechanisms are still under debate. Both experimental and
computational research has been providing various support for
either of the mechanisms. It cannot be excluded that a mixture of
these mechanisms exists depending on the channel and its
physiological conditions.

In contrast to K+ channels, the studies of ion conductance of
sodium selective channels have been hindered by relatively fewer
structural information. The publication of the prokaryotic
voltage-gated sodium channel NavAb from Arcobacter butzleri
with an activated voltage sensor and a closed pore first provided a
structural basis for investigations of the selectivity and transport
of Na+ ions (Payandeh et al., 2011). A notable difference between
Kv and Nav channels lies in the selectivity filter. The backbone
carbonyl oxygens of the Kv channel selectivity filter loop form the
cation binding sites to coordinate and pass on K+ ions. However,
Nav channel selectivity filters are lined by the side chains, which
contribute to the relatively wider and more diversely shaped ion
pathways in Nav channels. This difference puzzled scientists as to
how the wider filter provides selectivity for the ion with a smaller
atomic radius and prevents K+ and Ca2+ to permeate. Corry and
Thomas (Corry and Thomas, 2012) calculated the energetics of
ion permeation in NavAb via MD simulations, and showed that a
plane formed by four of the filter lining glutamate residues
prohibits K+ to be rightly coordinated with water molecule
bridging between the cation and the carboxylate groups.
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Similar binding geometry of partially-hydrated Na+ has also been
reported in the open state sodium channel from the marine
bacterium Magnetococcus sp. (NavMs) (McCusker et al., 2012),
showing that the glutamate side chains form the high field
strength ion binding site, which has a lower permeation
barrier for Na+ over K+ (Ulmschneider et al., 2013). However,
the timescale of these studies hampered the observation of
concerted movement between ions and proteins. Simulations
on the microsecond scale showed that the selectivity filter
fluctuates in a coordinated way with ion translocation
(Chakrabarti et al., 2013; Boiteux et al., 2014; Ke et al., 2014;
Furini and Domene, 2018). With the ion moving across the
narrowest part of the pore, the GLU side chains break the
symmetric arrangement to coordinate multiple ions to
facilitate the passage of the ion into the cavity (Chakrabarti
et al., 2013; Boiteux et al., 2014; Guardiani et al., 2017;
Callahan and Roux, 2018; Chen et al., 2021). Although
simulation studies of bacterial Nav channels have provided
valuable insights into the selectivity and ion conductance of
Nav channels, structures of eukaryotic Nav channels were not
available until 2017 (Shen et al., 2017; Yan et al., 2017; Pan et al.,
2018; Shen et al., 2018; Pan et al., 2019; Shen et al., 2019; Jiang
et al., 2020). Instead of the homo-tetrameric configuration of the
bacterial Nav channels, the four domains of eukaryotic Nav
channels are formed by a single polypeptide chain, which
gives rise to an asymmetrical pore structure. Compared to the
EEEE motif of the prokaryotic SF, eukaryotic SF is constituted by
aspartic acid, glutamic acid, lysine, and alanine (DEKA), each
from one channel domain. Simulation studies suggested that
despite this striking structural difference, the asymmetrical SF
functions similarly to the symmetrical prokaryotic counterpart.
The ASP and GLU residues coordinate the Na+ ion, and the
protonated LYS has been proposed to act as another cation in the
knock-on or pass-by mechanism (Zhang J. et al., 2018; Flood
et al., 2018).

Analysis of Functional States
Ion channels control the flux of ions by changing between their
active and inactive states, which relies on changes between
different conformations. Such transitions have proven to be
difficult to capture by experimental methods, and even when
structures of different states are available, the process of induction
and transformation of conformational changes is still hard to
explain with the static pictures, which might be important for
rational drug design. As a result, computational techniques,
especially MD simulations, become useful in studying different
function states of ion channels.

As an example, Wen and Zheng performed extensive
simulations on the wild-type closed state and the constitutively
active mutant of the heat-sensitive cation channel TRPV1 at
different temperatures (Wen and Zheng, 2018). They observed a
range of hydrogen-bonding network rearrangement between
domains in the WT simulations, which are consistent with
previous mutational studies, providing a mechanistic
explanation of the transition between a closed to pre-open
state. Simulations of the gain-of-function mutant complete the
process from pre-open to an open state. Similar propagation of

movements in the S2-S3 and S4-S5 linkers were observed,
suggesting that the dynamic motions in these domains are the
key to the channel opening. To study the gating process,
Guardiani et al. used targeted molecular dynamics to simulate
the transition between closed and open states of the calcium
release-activated calcium channel (CRAC) (Guardiani et al.,
2021). They reported that upon binding of the activator
protein STIM1, a propagation of conformation change occurs
from the TM4 to TM1 helices. The extension of TM4 pulls TM3
outward, which in turn moves the lower part of TM1 backward
and opens the hydrophobic region of the pore. This result is
consistent with patch-clamp experiments on a series of mutants,
which showed that disruption of the TM11-TM3 interactions
reduces Ca2+ influx (Liu et al., 2019).

For mechanosensitive ion channel TREK-2, Aryal et al.
simulated changes in membrane tension by changing the area
per lipid, and thus studied the effect of lateral pressures on the
conformation of the channel (Aryal et al., 2017). They observed
that increase in membrane tension induced a transition from the
downstate to the upstate. The expansion of the bilayer increases
the cross-sectional area of the lower half of the protein, while the
upper half remains unchanged to maintain the integrity of the
selectivity filter. Interestingly, such membrane stretch does not
induce a conformational change in the homologous non-
mechanosensitive TWIK-1 channel, indicating that the
membrane tension-dependent conformational change is
specific to mechanosensitive K2P channels. NOMPC is also a
mechanosensitive ion channel, it has, however, been shown to be
activated by compression of the intracellular ankyrin repeat
domain on the normal plane of the membrane instead of a
stretch along the bilayer. In MD simulations, Wang et al.
observed that when a pushing force is applied, the TRP
domain undergoes an upward movement and clockwise
rotation, which induced a rotation in the S6 helices leading to
the opening of the channel (Wang et al., 2021). They validated
this using patch-clamp experiments and showed that clear
electrical signals could be detected when a compressing force
was applied, which were abolished with the addition of a NOMPC
blocker. Yet, a pulling force was not able to induce a clear
NOMPC-dependent current. Another well-known
mechanosensitive channel Piezo1 has also attracted a large
amount of research attentions. Due to the local bilayer convex
curvature imposed by the bowl-like shape of Piezo1, it has been
proposed that as membrane tension increases, the protein
flattens, which leads to opening of the channel (Guo and
MacKinnon, 2017). Since the membrane is a crowded
environment, any effects of alteration of the membrane are
likely to propagate beyond a single channel. Jiang et al. used a
hyperbolic tangent model to study the membrane topology and
channel opening as a result of overlapping neighboring Piezo1
membrane footprints. Together with atomistic MD simulations,
they found that this overlap decreased bilayer curvature, creating
a tension-free opening of Piezo1 (Jiang W. et al., 2021).

Not only has computational methods showed their broad
applicability in studying single protein properties, but they
also have been used to investigate interactions between
channels and their auxiliary proteins. Catte et al. simulated the
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human Kv4.3 channel in complex with one of its auxiliary β-
subunits, Kv channel-interacting protein 1 (KChIP1), and
detailed the structural and energetic changes of the complex
upon mutations in the interfaces of the complex (Catte et al.,
2019). By combining computational protein-protein docking,
MD simulations, and electrophysiology, Kuenze and co-
workers showed that the S1, S4, S5 helices of voltage-gated
KCNQ1 potassium channel interacts with a three-amino-acid
motif (F57-T58-L59) in the auxiliary protein KCNE1, which
modulates the channel gating through an allosteric network
with S5-S6 pore helices (Kuenze et al., 2020). With more
structures of channel-auxiliary protein complexes available,
such as the sodium leak channel NALCN in complex with
auxiliary subunit FAM155A (Xie et al., 2020) or the AMPA-
subtype ionotropic glutamate receptor with the auxiliary subunit
γ2, more computational investigations can be conducted to reveal
the underlying mechanistic details of such interactions
(Yelshanskaya et al., 2022).

Identification of Binding Site and Allosteric
Site
Identifying potential binding sites has become a key step in
rational drug discovery. Computational methods for
identifying protein-ligand binding sites can be roughly
classified into sequence-based and structure-based methods.
The main assumption for sequence-based approaches is that
functionally important binding sites are highly conserved for
proteins to maintain their functionalities. Therefore, these
methods scan protein sequences for conserved residues as
potential binding sites (Capra and Singh, 2007). However, the
lack of spatial and physicochemical information in such
predictions limits the ability of these methods in providing
reliable binding sites. Consequently, structure-based methods
have become the mainstream methods for predicting potential
binding sites with the advances in obtaining reliable structures
both experimentally and computationally. One of the most
common approaches in this category is searching for cavities
on protein surfaces. Since such methods were pioneered in the
1990s (Levitt and Banaszak, 1992; Laskowski, 1995),
developments in this field have not only incorporated both
structural and conservation information (Huang and
Schroeder, 2006; Capra et al., 2009), but also allowed
predictions regarding properties that are highly relevant to
drug discovery such as binding affinities (Laurie and Jackson,
2005; Ngan et al., 2012; Liu et al., 2020) and druggability (Le
Guilloux et al., 2009; Volkamer et al., 2012; Yuan et al., 2013;
Hussein et al., 2015). Methods that infer binding sites from
structurally similar template proteins have also been developed
(Brylinski and Skolnick, 2008; Wass et al., 2010; Roy and Zhang,
2012; Yang J. et al., 2013). They take advantage of the quick
accumulation of protein structures, and provide relatively reliable
binding sites for proteins with templates of high structural
similarities. In recent years, artificial intelligence methods have
also been applied in the prediction of protein-ligand binding sites,
which learned the structural or interaction patterns of the binding
sites using schemes such as 3D convolutional neural networks

(Jiménez et al., 2017) or grid-based approaches (Pu et al., 2019),
and may provide satisfactory results when compared with
traditional structure-based methods (Capra et al., 2009; Le
Guilloux et al., 2009). Additionally, to consider the dynamic
nature of ligand binding, MD simulations are also frequently
used besides or together with static pocket detection algorithms
(Schmidtke et al., 2011; Ung et al., 2016; Chen et al., 2019).

These methods have been widely applied to investigate ligand
binding in ion channels. To validate their deep learning-based
binding site detection algorithm BiteNet, Igor and Popov applied
it to the ATP-gated cation channel P2X3 (Kozlovskii and Popov,
2020). They were able to successfully identify the binding sites for
the endogenous agonist ATP and the antagonist AF-219. It is
worth noting that such success depends on the protein
conformational state. The difference between the agonist-
bound and the antagonist-bound conformations prevents the
correct prediction of the agonist binding site in the antagonist-
bound conformation and vice versa. This is a common limitation
of pocket prediction methods using static structures. Nguyen
et al. constructed a homology model of human Nav1.5 based on
electric eel Nav1.4 (Yan et al., 2017), and used molecular docking
to identify binding locations of antiarrhythmic and local
anesthetic drugs, lidocaine, flecainide, and ranolazine (Nguyen
et al., 2019). Starting from five different initial locations, they were
able to locate binding hot spots of each drug, which are consistent
with regions suggested by experimental data. Further multi-
microsecond MD simulations revealed detailed mechanistic
insights into the dynamic passage and binding of the ligands.
Faulkner et al. performed atomistic MD simulations to probe the
binding sites of the opioid analgesic fentanyl on the GLIC channel
(Faulkner et al., 2019). Fentanyl molecules were placed in a bulk
solution to allow free exploration of potential binding sites on the
protein, and binding affinities of each site were assessed by
molecular mechanics Poisson−Boltzmann surface area (MM/
PBSA) calculations (Miller et al., 2012). The newly identified
stable binding sites in GLIC are different from previously
observed sites for other general anesthetics. They also reported
that the binding of fentanyl to one of these novel sites leads to
conformational changes, which results in the formation of a
hydrophobic gate inhibiting ion conductance through the
channel.

Targeting allosteric binding sites of ion channels has aroused
more and more attention in recent years considering that the
emblematic pore-blocking strategy that targets the highly
conserved region might suffer from poor subtype specificity
(Marzian et al., 2013). The allosteric effect refers to the
phenomenon that the modulation of a binding site (named as
allosteric site) differed from the classic active site (referred to as
the orthosteric site) resulting in the functional change of the
protein. A variety of allosteric sites and the corresponding
modulators have been discovered in the field of ion channels,
according to that organized in the Allosteric Database (Huang
et al., 2011; Huang et al., 2014). Using the comprehensive alanine-
scanning mutagenesis, patch-clamp electrophysiological
recordings as well as molecular docking and molecular
dynamic simulation approaches, Decher et al. showed that the
Kv1 inhibitor Psora-4 could bind to another less conserved site of
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the channel in addition to the central pore cavity, which
demonstrated a new allosteric site of the Kv1.x channels and
thus provided the molecular basis for the development of novel
selective voltage-gated channel inhibitors (Marzian et al., 2013).
Under the similar strategies, with TKDC, an inhibitor of the
TREK subfamily, as the chemical probe, Yang et al. conducted a
study combining molecular simulation, mutagenesis, and
electrophysiology, and revealed an allosteric site of the two-
pore domain potassium (K2P) channel that located in the
extracellular cap of the channel (Luo et al., 2017). Accordingly,
virtual screening was performed and a series of new inhibitors
were identified (Luo et al., 2017). With the combination of
molecular dynamics and oocyte electrophysiology studies,
Lindahl et al. revealed the special motion and modulation with
the modification of a transmembrane binding site within each
subunit of the GLIC channel, which thus supports the multisite
model of transmembrane allosteric modulation of the channel
(Heusser et al., 2018). Using microseconds long atomistic MD
simulations, Botello-Smith et al. identified the binding site of the
allosteric agonist Yoda1 of Piezo1 (Botello-Smith et al., 2019).
Their study indicated that Yoda1 binds at a site approximately 40
A aways from the channel pore, and modulates the channel
activity by facilitating force-induced motions of the bound
subunit. Similar research was also conducted in various ion
channel systems by different groups, including the voltage-
gated KCNQ1 potassium channel (Kuenze et al., 2020) and
the large-conductance mechanosensitive channel MscL
(Kapsalis et al., 2019).

The prediction of potential allosteric sites might also be
empowered with the combination of machine learning or deep
learning approaches and molecular simulation strategies. The
general idea of these algorithms is to analyze the correlation
between the orthogonal site and the allosteric site. The
prediction could be conducted based on either a single
protein structure or combined with trajectories from
molecular simulation. In the former case, the correlation
might be analyzed based on perturbation exerted on the
orthogonal sites using a network model including an elastic
network model, anisotropic network model, and graph-based
model (Amor et al., 2016; Dokholyan, 2016; Zhang and
Nussinov, 2019; Wang J. et al., 2020; Huang et al., 2021;
Mersmann et al., 2021; Zheng, 2021; Wu et al., 2022). In
the latter case, as described in the cases mentioned above,
the results of the simulation-based approaches rely heavily on
sampling efficiency. Recently, the reinforced dynamics scheme
was reported by Zhang andWang et al. by constructing the free
energy surface with deep neural network models, which turn
out to be highly efficient in sampling high-dimensional free
energy landscapes (Zhang L. et al., 2018; Wang et al., 2022),
and thus might provide new insights into the allosteric
modulation of ion channels based on the comprehensive
exploration of the protein structural dynamics. Additionally,
the evolutionary-based approach could predict the allosteric
communication in proteins as well by analyzing the
evolutionarily conserved networks of residues (Suel et al.,
2003). Case studies also showed that the evolutionary
insights could contribute to the understanding of allosteric

regulation of the TRP Ion channels (Hilton et al., 2019).
However, an in-depth discussion of the principle of the
algorithms is beyond the scope of this paper. Details of the
algorithms are referred to in the previous literature
(Dokholyan, 2016; Liu and Nussinov, 2016; Zhang and
Nussinov, 2019).

CONCLUSION

Ion channels have long been concerned as medically important
drug targets. Increasing the ligand screening throughput and
ligand binding selectivity are the main challenges in the search for
highly potent ion-channel modulators. As the potential key to
meeting these challenges, the practice of rational drug design has
long been expected.

Resolving the molecular structures of ion channels is getting
easier owing to the rapid development of single-particle cryo-
EM. Also, the impressive progress in protein structure
prediction is bringing fundamental changes to structural
biology. Although accurate predictions of multimeric
structures, protein-protein interactions and multiple
conformations remain challenging, we are already seeing
progress in these directions such as the structural prediction
of core eukaryotic protein complexes (Humphreys et al., 2021),
heterodimeric protein complexes (Bryant et al., 2022) and
alternative conformations for receptors and transporters
(Del Alamo et al., 2022). Innovations and applications of
protein folding algorithms have been accelerated through
open-sourcing AlphaFold2-comparable high-performance
training code3, and online tools such as ColabFold (Mirdita
et al., 2022) and Uni-Fold4. It is expected that protein folding
algorithms will soon be used to study ion channel
conformational states and channel-modulator interactions,
even for new channel discoveries. Results from the
exploration in the drug discovery era driven by occasions
and classic synthetic chemistry enabled reliable
computational models through ligand-based approaches.
More abundant and higher quality ion channel structures
(obtained either experimentally or computationally), as well
as accurate binding affinity predictions and ultra-high-
throughput virtual screening, have pushed forward
structure-based rational drug design. Besides techniques
based on static protein structures, simulation and machine-
learning-based methods also allow us to explore the dynamic
nature of ion channels and direct the rational drug design
process. Various computational studies have revealed the
molecular mechanisms of channel functions and potential
ligand-binding sites, especially allosteric binding sites. With
help from these computational methods, we expect the
implementation of a more effective drug discovery
paradigm in the coming future (de Oliveira et al., 2021;
Lees et al., 2021; Robertson et al., 2022).

3https://github.com/dptech-corp/Uni-Fold
4Hermite platform: https://hermite.dp.tech
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