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Background and Aim: Tacrolimus (TAC) is a first-line immunosuppressant for

the treatment of refractory nephrotic syndrome (RNS), but the

pharmacokinetics of TAC varies widely among individuals, and there is still

no accurate model to predict the pharmacokinetics of TAC in RNS. Therefore,

this study aimed to combine population pharmacokinetic (PPK) model and

machine learning algorithms to develop a simple and accurate prediction

model for TAC.

Methods: 139 children with RNS from August 2013 to December 2018 were

included, and blood samples of TAC trough and partial peak concentrations

were collected. The blood concentration of TAC was determined by enzyme

immunoassay; CYP3A5 was genotyped by polymerase chain reaction-

restriction fragment length polymorphism method; MYH9, LAMB2, ACTN4

and other genotypes were determined by MALDI-TOF MS method; PPK

model was established by nonlinear mixed-effects method. Based on this,

six machine learning algorithms, including eXtreme Gradient Boosting

(XGBoost), Random Forest (RF), Extra-Trees, Gradient Boosting Decision

Tree (GBDT), Adaptive boosting (AdaBoost) and Lasso, were used to

establish the machine learning model of TAC clearance.

Results: A one-compartment model of first-order absorption and elimination

adequately described the pharmacokinetics of TAC. Age, co-administration of

Wuzhi capsules, CYP3A5 *3/*3 genotype and CTLA4 rs4553808 genotype were
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significantly affecting the clearance of TAC. Among the six machine learning

models, the Lasso algorithm model performed the best (R2 = 0.42).

Conclusion: For the first time, a clearance prediction model of TAC in pediatric

patients with RNS was established using PPK combined with machine learning,

by which the individual clearance of TAC can be predictedmore accurately, and

the initial dose of administration can be optimized to achieve the goal of

individualized treatment.

KEYWORDS

tacrolimus, pediatric nephrotic syndrome, population pharmacokinetic, machine
learning, gene polymorphisms

Introduction

Nephrotic syndrome is a disease characterized by massive

proteinuria, hypoproteinemia, edema and hyperlipidemia as the

main clinical manifestations, and is one of the most common

glomerular diseases in children (Noone et al., 2018). Currently,

tacrolimus (TAC), a calcineurin inhibitor, is the first-line

immunosuppressive agent for the treatment of pediatric

refractory nephrotic syndrome (RNS). However, the narrow

therapeutic window and large individual differences in

pharmacokinetics of TAC require adjustment of individual

dosing by therapeutic drug monitoring (TDM), yet TDM

reflects changes in blood concentrations with a lag. Therefore,

it is important to identify the significant factors affecting the

pharmacokinetic parameters of TAC and establish a prediction

model before dosing to achieve individualized treatment.

Large individual differences in the pharmacokinetics of TAC

are mainly due to clinical characteristics and genetic

polymorphisms of patients. Studies have shown that clinical

factors such as body weight, age and combined use of Wuzhi

capsules significantly influence TAC pharmacokinetic parameters

(Hao et al., 2018; Wang D. et al., 2019a; Wang X. et al., 2019b;

Chen et al., 2020; Huang et al., 2020). Genetic factors include

genetic polymorphisms related to metabolic enzymes, transporter

proteins, receptors and other drug targets (Evans and Relling,

1999). Currently, CYP3A5 genotype is the only key factor that has

been shown to affect TAC pharmacokinetics (Birdwell et al., 2015).

However, CYP3A5 genotype does not fully reflect the individual

differences in TAC pharmacokinetics. Other genetic factors

include the renal podocyte-associated genes ACTN4 and MYH9

(Pecci et al., 2018; Feng et al., 2020), the pharmacodynamic

pathway protein gene MAP3K, the CTLA4 gene associated with

the immune response, and inflammatory cytokine genes such as

IL2RAmay also influence the pharmacokinetics of TAC (Agrawal

et al., 2020). In addition, most established PPK models in children

with nephrotic syndrome incorporate only CYP3A5 as a genetic

variable, with limited studies of other relevant genes. Therefore, it

is necessary to investigate the clinical characteristics and the

comprehensive genetic variables when we build models to

predict TAC pharmacokinetics.

Currently, methods for predicting pharmacokinetics in

different individuals mainly include traditional multiple linear

regression methods, population pharmacokinetic (PPK)

methods, and machine learning methods (Agrawal et al., 2020;

Li et al., 2021; Woillard et al., 2021). Multiple linear regression

methods are simple to operate, but they cannot distinguish inter-

and intra-individual variability. In contrast, PPK can fully

account for inter-and intra-individual variation, but requires

collecting multiple blood points for perfect model

performance (Bon et al., 2018; Campagne et al., 2019). Unlike

traditional statistical methods and PPK methods, machine

learning methods are capable of handling complex,

multidimensional data. Based on the characteristics of these

various methods, Tang et al. developed a prediction model for

six renal clearance drugs by combining PPK with machine

learning methods (Tang et al., 2021), validating the good

performance of novel approach of combining PPK with

machine learning. Nevertheless, it is worth mentioning that

there is no model for predicting TAC pharmacokinetics using

PPK combined with machine learning.

Therefore, the purpose of this study was first to investigate

the effects of clinical characteristics and genetic polymorphisms

on the pharmacokinetics of TAC in pediatric patients with

nephrotic syndrome, and to develop a PPK model for this

population. Further, a simpler and more accurate machine

learning model for predicting the clearance of TAC was

developed based on the above PPK model, to provide a

powerful tool for individualized therapy of TAC in pediatric

patients with nephrotic syndrome.

Methods

Patients and sample collection

Patients diagnosed with nephrotic syndrome and taking oral

TAC ((Prograg™, Astellas, Killorglin, Ireland) at Guangzhou

Women and Children’s Medical Center between August

2013 and December 2018 were included in this study.

Inclusion criteria: (1) All children were diagnosed in
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accordance with the 2012 KDIGO guidelines for the diagnosis of

nephrotic syndrome (Lombel et al., 2013). (2) Steroid resistance

or dependence. (3) Age of onset was less than 18 years. (4)

Regularly taking TAC (Prograg™, Astellas, Killorglin, Ireland)
and steroid (prednisone, prednisolone) as prescribed; Exclusion

criteria: (1) Those who cannot take the medication regularly and

follow up. (2) Combined use of other immunosuppressive agents

(e.g. cyclophosphamide). (3) Combined use of drugs affecting the

blood concentration of TAC (e.g. verapamil, ketoconazole,

itraconazole). (4) Those who are allergic to macrolides. (5)

Combination of liver and renal impairment and other disorders.

The starting dose of TAC in the dosing regimen was

500–3000 μg, administered orally every 12 h, and the dose was

adjusted according to the whole blood trough concentration

(target concentration 5–10 μg L−1). 2 ml of peripheral venous

blood was collected in ethylenediaminetetraacetic acid (EDTA)

anticoagulation tubes from children half an hour before dosing in

the early morning, and blood samples at peak concentration were

also collected from some children after dosing (0.5~3 h). Clinical

data (gender, age, weight, daily dose of TAC, records of co-

administered drugs, laboratory test results, etc) were collected

from the children. The whole blood concentration of TAC was

determined by enzyme multiplication immunoassay technique

(Viva-E, Siemens, Germany).

DNA extraction and genotyping

DNA was extracted using the Genomic Tiangen Blood

Deoxyribonucleic Acid Extraction Kit (DP348, Beijing, China).

Polymerase chain reaction-restriction fragment length

polymorphism method was used to determine CYP3A5 rs776746,

and MALDI-TOF MS method (Agena Bioscience MassARRAY®

system [Agena Bioscience, San Diego, CA, United States)] was used

to detect other SNPs. The Hardy-Weinberg equilibrium test was

performed using the chi-square test.

Data analysis software

SPSS software (version 25.0) was used for univariate analysis;

Phoenix NLME pharmacokinetic software (Version 8.1,

Pharsight Corporation, United States) was used for PPK

modelling; Scikit-learn 0.19.1 plug-in package in Python

3.6.5 was used for machine learning modelling.

Population pharmacokinetic modelling

Pharmacokinetic data of TAC were analyzed for PPK using a

nonlinear mixed effects model (NLME) approach. First-order

conditional estimation-extended least squares (FOCE-ELS) was

applied to all model runs.

Base model

A one-compartment model of first-order absorption and

elimination was used to fit the data. The absorption rate

constant (Ka) was fixed at 4.48 h−1 based on reports in the

literature and suitability for pediatric populations (Wang D.

et al., 2019a; Chen et al., 2020; Huang et al., 2020; Li et al.,

2021). Inter-individual variation was described using an

exponential model.

Pi � TV(P) × exp(ηi); ηi ~ N(0, ω2
p)

(where Pi is the value of the pharmacokinetic parameter for the

ith subject, TV(P) is the population typical value of this

parameter, and ηi is the interindividual random variation

obeying a normal distribution with mean 0 and variance ω2
p)

The following model was used to assess the residual variance.

Additivemodel: Yobs � Ypred + ε

Proportionalmodel: Yobs � Ypred × (1 + ε1 )
Combinedmodel: Yobs � Ypred × (1 + ε1 ) + ε2

Exponentialmodel: Yobs � Ypred × exp (ε)

(where Yobs is the measured concentration, Ypred is the model

prediction, and ε is the residual variance obeying a normal

distribution with mean 0 and variance σ2)
The optimal residual variance model was determined using

-2 times the logarithm of the maximum likelihood (−2 log

likelihood, −2LL), the standard value of the Akaike

information criterion (AIC), and the goodness-of-fit

plot (GOF)).

Covariate screening

The variables screened included: gender, age, weight,

erythrocyte pressure (HCT), serum albumin (ALB), etc, prior

to administration, and the combination of Wuzhi capluses

(combWZ) was considered in the combined dosing. Gene-

related factors were included in CYP3A5 rs776746, MYH9

rs2239781, LAMB2 rs62119873, ACTN4 rs62121818, ACTN4

rs3745859, MAP3K11 rs7946115, ACTN4 rs56113315, MYH9

rs4821478, INF2 rs1128880, IL2RA rs12722489, NPHS2

rs2274622, CTLA4 rs4553808, etc. These SNPs were all

variables that were correlated with TAC concentrations after a

prior univariate analysis (p < 0.1) (Mo et al., 2020).

In this study, the stepwise regression method was used to

screen covariates, and the selection of covariates was determined

by the objective function value (OFV). In the forward selection

process, covariates with an OFV decrease >3.84 (p < 0.05) were

included in the model. In the backward elimination process,

covariates with an OFV increase >6.63 (p < 0.01) were retained in

the model. The principle follows the extended least square (ELS)

method, where OFV is the -2LL value in the fitting process, and
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the smallest value of -2LL is used as the overall measure of the

fitting effect. The expressions for the continuous and categorical

covariate models are as follows, respectively.

Pi � TV(P) × ( COV
COVmedian

)
θ

Pi � TV(P) × exp (θCOV)
(COV: value of covariate; θ: fixed parameter coefficient of

covariate; COVmedian: median of covariate)

Model evaluation and validation (1) Plot the goodness-of-fit

(GOF) of the base model and the final model for visual evaluation,

including: ① population predicted value-detected value (PRED-

DV), ② individual predicted value-measured value (IPRED-DV),

③ conditional weight residual-population predicted value

(CWRES-PRED), and ④ conditional weight residual-time

(CWRES-TIME) of the scatter plot. (2) The final model is

validated using visual predictive check (VPC). (3) Bootstrap

method based on data resampling technique is used for internal

validation of the final model. (4) Normalized prediction distribution

error (NPDE) is used to evaluate the predictive performance of the

final model based on a Monte Carlo simulation with the R software

(Version 4.1.0,http://www.r-project.org). NPDE results are

summarized graphically using: ① quantile-quantile plot of the

NPDE, ② a histogram of the NPDE, ③ scatterplot of NPDE vs.

time, and ④ scatterplot of NPDE vs. PRED.

Machine learning modelling

Data pre-processing

Machine learning modelling was performed on the variables

screened by PPK. The categorical variables were first discretized.

Data modelling

The data set is randomly divided into a test set and a training set by

3:7. Based on the five-fold cross-validation and hyperparameter search,

the training set is used for the model generation: the training set is

randomly divided into five equal parts, and the leave-one method is

used. Each time, one piece of data is left for model verification, and the

remaining four pieces of data are searched for hyperparameters to build

amodel. This is repeated 5 times, and the best model hyperparameters

combination is finally determined. Furthermore, the five data sets are

used to build a model based on a combination of certain

hyperparameters, and the test set is used to evaluate the model. In

this step, the hyperparameters will be fine-tuned. Then, re-divide the

data set randomly into the test set and the training set by 3:7, repeat the

above modelling process, and loop 5 times in this way. Finally, each

algorithmwill get 5 models, and the average of the performance of the

5 models is taken as the final model performance result.

Results

Patient demographic characteristics

A total of 139 patients with 432 blood concentration data were

included in this study, of which 35 were peak concentrations and the

rest were trough concentrations. The curve of concentration varying

with time is shown in Figure 1. All participants met the inclusion

and exclusion criteria and signed an informed consent form.

139 patients had a median age and weight of 5.3 (range

1.1–15.6) years; 19.7 (range 9.5–88.0) kg, respectively, and a

median blood concentration of 6.48 (range 2.0–41.2) μg/L. The

final genotypes included in the PPK analysis were 12 SNPs,

genotyping of 12 SNPs by genetic testing. All SNPs met Hardy-

FIGURE 1
Tacrolimus concentration vs. time.

TABLE 1 Demographic and clinical characteristics of patients.

Characteristics Value (median, range)

Gender (male/female) 37/102

Age (years) 5.3 (1.1–15.6)

Weight (kg) 19.7 (9.5–88)

ALB (g/L) 18.3 (7.6–46.8)

HCT (%) 41.2 (23.4–447.6)

Combined use of wuzhi capsules (Yes/No) 6/133

Blood concentration (μg/L) 6.48 (2.0–41.2)
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TABLE 2 Genotypes and allele frequencies of patients.

Genotypes Number of
patients

Percentage (%) Allele Allele frequency H-W p-value

CYP3A5*3 rs 776746

*1/*1 18 13.0 *1 0.338 0.727

*1/*3 58 41.7 *3 0.662

*3/*3 63 45.3

MYH9 rs 2239781

TT 52 37.4 T 0.604 0.908

TC 64 46.0 C 0.396

CC 23 16.6

LAMB2 rs 62119873

AA 73 52.5 A 0.727 0.986

AG 56 40.3 G 0.273

GG 10 7.2

ACTN4 rs 62121818

CC 27 19.4 C 0.414 0.532

CT 61 43.9 T 0.586

TT 51 36.7

ACTN4 rs 3745859

TT 28 20.1 T 0.417 0.416

TC 60 43.2 C 0.583

CC 51 36.7

MAP3K11 rs 7946115

CC 3 2.2 C 0.133 0.925

CG 31 22.3 G 0.867

GG 105 75.5

ACTN4 rs 56113315

TT 51 36.1 T 0.582 0.252

TC 60 44.0 C 0.418

CC 28 19.9

MYH9 rs 4821478

AA 11 7.9 A 0.233 0.273

AG 43 30.9 G 0.767

GG 85 61.2

INF2 rs 1128880

GG 3 2.2 G 0.108 0.477

GT 24 17.3 T 0.892

TT 112 80.5

IL2RA rs 12722489

CC 110 79.1 C 0.885 0.628

CT 26 18.7 T 0.115

TT 3 2.2

NPHS2 rs 2274622

CC 22 16.9 C 0.349 0.166

CT 53 63.2 T 0.651

TT 64 58.9

CTLA4 rs 4553808

GG 2 1.4 G 0.119 0.999

GA 29 20.9 A 0.881

AA 108 77.7
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Weinberg equilibrium test. The clinical characteristics and

genotypes of the patients are shown in Tables 1, 2, respectively.

Population pharmacokinetic modelling

A one-compartment model of first-order absorption and

elimination was used to characterize the pharmacokinetics of

TAC in pediatric patients with nephrotic syndrome. Exponential

and proportionalmodels were chosen to describe the interindividual

variability and residual variability, respectively. The base model

was Ka(h−1) � 4.48,V(L) � 144.52 × exp(ηV), CL(L/h) �
7.05 × exp(ηCL).

After a stepwise regression approach, covariates retained in

the final model that significantly affected clearance included: age,

co-administration of Wuzhi capsules, CYP3A5 *3/*3 genotype,

and CTLA4 rs4553808 genotype. No covariates were screened

that significantly influenced the apparent volume of distribution.

The final model expression equations are shown in Eqs. 1, 2. The

pharmacokinetic parameters of the final model were estimated in

Table 3. The typical values of the population for CL and V were

10.54 L·h−1and 192.03 L, respectively.

V(L) � 192.03 × exp(ηV) (1)

CL(L
h
) � 10.54 × (AGE

5.3
)0.31

× exp( − 0.34 × (CTLA4GA))
× exp( − 0.15 × (CTLA4AA))
× exp( − 0.25(CYP3A5*3/*3))
× exp( − 0.34(combWZ)) × exp(ηCL)

(2)

(CTLA4 GA = 1 and CTLA4 AA = 1 when genotypes are CTLA4

GA, CTLA4 AA, respectively, 0 otherwise; CYP3A5 *3/*3 =

1 when genotype is CYP3A5 *3/*3, 0 otherwise; combWZ =

1 when combined with Wuzhi capsules, 0 otherwise.)

Model evaluation and validation

The GOF plots of the final model are shown in Figure 2. The

IPRED-DV scatterplot and IPRED-DV scatterplot show that the

data in the final model are more evenly concentrated on both sides

of the reference line, which proves that the prediction errors are not

significantly biased. The CWRES-PRED scatterplot and CWRES-

TIME scatterplot show that the residuals are more symmetrically

distributed, and most of them are in the (y = −2 ~ +2) range.

The VPC results showed that the 95% confidence interval based

on the simulation covered the 50% and 95% quartiles corresponding

to the observed values. The observed values in the 5% quartile

partially did not fall within the prediction interval, but the overall

was closer to the prediction interval (<2.0 μg/L). This indicates that
the final model has good predictive performance. See Figure 3.

The NPDE distribution and histogram are presented in Figure 4.

The assumption of a normal distribution for the differences between

predictions and observations was acceptable. The quantile-quantile

plots and histogramalso confirmed the normality of theNPDE,which

indicates that the final model has strong predictive performance.

The comparison between the model parameters obtained

from 1000 bootstrap validations and the final model parameters

is shown in Table 3. The results show that the median parameter

estimates obtained from the bootstrap process are consistent with

TABLE 3 Parameter estimation results and bootstrap results of the final population pharmacokinetic model.

Parameter Final model Bootstrap

Estimate (shrinkage %) CV% Median 95% CI

tvV(L) 192.03 18.76 192.03 126.72–289.71

vbtvCL (L/h) 10.54 6.81 10.38 7.55–14.21

dCLdAGE 0.31 12.95 0.31 0.22–0.39

dCLdCTLA4 GA −0.34 −18.21 −0.33 −0.63 ~ −0.01

dCldCTLA4 AA −0.15 −28.96 −0.15 −0.43–0.18

dCLdCYP3A5 *3/*3 −0.25 −19.07 −0.25 −0.36 ~ −0.15

dCLdCombWZ −0.34 −25.96 −0.34 −0.52 ~ −0.15

Inter-individual variability

ω2
V

(%) 1.13 (38.09) 5.53 1.13 —

ω2
CL

(%) 0.13 (30.02) 6.03 0.13 —

Residual variability

σ (%) 29.95 4.75 0.30 0.27–0.33

CV%, percent confidence of variation; CI, confidence interval; tvV, typical value of apparent distribution; tvCL, typical value of apparent volume clearance; dCLdAGE, fixed parameter

coefficient of age to CL; dCLdCTLA4 GA, fixed parameter coefficient of CTLA4 GA to CL; dCldCTLA4 AA, fixed parameter coefficient of CTLA4 AA to CL; dCLdCYP3A5 *3/*3, fixed

parameter coefficient of CYP3A5 *3/*3 to CL; dCLdCombWZ, fixed parameter coefficient of WuZhi capsules to CL; ω2
V, variance of interindividual variability for V; ω2

CL, variance of

interindividual variability for CL; σ, square root of residual variability for the final model.
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the final model, and the final model parameters all fall within the

95% confidence interval of the bootstrap parameters, indicating

that the final model has good robustness and accuracy.

Machine learning model results and
application

Based on the PPK model, we further used six machine

learning algorithms, XGBoost, RF, Extra-Trees, GBDT,

AdaBoost, and Lasso, to build a machine learning model on

the clearance of TAC. Among the six machine learning models,

the Lasso algorithm model has the largest R-squared (0.42),

which is greater than the second-ranked Extra-Trees

algorithm model (0.39). Other metrics include MSE, MAE,

MedAE and RE, the Lasso algorithm model has the smallest

value among all six models, indicating that the Lasso machine

learning model is the optimal model. See Table 4. In clinical

practice, we can input patients’ variables into the best model to

predict the patient’s clearance rate, and then adjust the dose

administered according to the target blood concentration.

Discussion

In this study, a PPK model of TAC in a pediatric population

with refractory nephrotic syndrome (RNS) was developed using a

nonlinear mixed-effects model. Similar to most studies (Hao

FIGURE 2
Goodness-of-fit plots for the final model. (A)Observed concentrations (DV) vs. individual predictions (IPRED); (B) DV vs. population predictions
(PRED); (C) conditional weighted residuals (CWRES) vs. PRED; (D)CWRES vs. Time). As shown in figures (A,B), the scatter points generated by the final
model are evenly distributed on both sides of the reference line; as shown in figures C andD, the residual scatter points are symmetrically distributed.
Most of them are in the range of (−2 ~ + 2), which proves that there is no obvious bias in the prediction error.
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et al., 2018; Wang D. et al., 2019a; Wang X. et al., 2019b; Chen

et al., 2020), the classical one-compartment model of first-order

absorption and elimination adequately described the

pharmacokinetic process of TAC, and the final model fit was

good (Figures 2–4). The population typical value of the final

model for estimating TAC clearance was 10.54 L h−1. Age,

combined use of Wuzhi capsules, CYP3A5*3 rs776746 and

CTLA4 rs4553808 significantly affect TAC clearance. Based on

this, six machine learning algorithms, XGBoost, RF, Extra-Trees,

GBDT, AdaBoost, and Lasso, were used to build a machine

learningmodel on TAC clearance, where the Lasso algorithm had

the best model performance with the largest R2 value (0.42).

Unlike previous studies, we used PPK combined with

machine learning for the first time to predict the individual

clearance of TAC. Machine learning is an emerging and more

advanced algorithm that is able to process complex,

multidimensional, interacting variables for predictions by

classification or regression. For example, machine learning has

been used to screen genes affecting TAC pharmacokinetics (Gim

et al., 2020) and to predict stable doses of TAC in renal transplant

patients (Tang et al., 2017). However, machine learning has

drawbacks, such as the inability to measure and distinguish

intra- and inter-individual variability. The advantage of PPK

to fully account for inter-and intra-individual variability and to

quantify the effect of these variations on pharmacokinetic

parameters precisely compensates for the shortcomings of

machine learning (Bon et al., 2018; Campagne et al., 2019).

Therefore, PPK combined with machine learning to accurately

predict pharmacokinetics may be a better approach (van Gelder

and Vinks, 2021; Yang et al., 2022). Tang et al. (2021) developed

an individual clearance prediction model for neonatal renal

clearance of drugs and successfully validated that PPK

combined with machine learning can improve the prediction

accuracy of drug clearance. In this study, we first obtained

variables significantly associated with TAC clearance (age,

combined use of Wuzhi capsules, CYP3A5*3 rs776746 and

CTLA4 rs4553808) by PPK approach, and then further

developed a machine learning model for TAC clearance, and

the final model had a good predictive performance with an R2

value of 0.42, similar to our previous tacrolimus dose/weight-

adjusted trough concentration prediction model (R2 = 0.44), but

superior to the groups of whether CYP3A5 was expressed (Mo

et al., 2022); and the Lasso algorithm outperformed other

machine learning algorithms such as XGBoost, RF, and Extra-

Trees.

The final PPK model did not screen out covariates affecting

the apparent volume of distribution of TAC, which may be

related to the fact that we included mostly trough

concentration data then not enough for the analysis of the

distribution. The covariates associated with TAC clearance in

the final model included: age, co-administration of wuzhi

capsules, CYP3A5 genotype, and CTLA4 genotype (Table 3).

Among them, age, wuzhi capsules, and CYP3A5 genotype have

been reported (Wang D. et al., 2019a; Chen et al., 2020). The

results of this study showed that age affects the clearance of TAC,

which may be related to the growth and development of children.

Emoto et al. (2019) suggested that the age-dependent changes in

TAC trough concentrations in pediatric patients were mainly

attributable to the individual developmental characteristics of

CYP3A. In addition, the individual clearance of TAC can be

decreased by the combination of Wuzhi capsules. Studies have

shown that the main active ingredients in Wuzhi capsules

(pentosidine and pentosanol) can significantly increase TAC

concentrations by inhibiting CYP3A and P-glycoprotein

(P-gp)-mediated metabolism and transport (Qin et al., 2010;

Wei et al., 2013; Qin et al., 2014; Cheng et al., 2021). In addition

to age and combined use of Wuzhi capsules, CYP3A5 genotype is

an important influencing factor on the clearance of TAC. The

Clinical Pharmacogenetics Implementation Consortium (CPIC)

guideline recommendations for TAC use in transplant patients

suggest that CYP3A5 *3*3 carriers have a lower clearance, which

means CYP3A5 *3*3 carriers require a lower dose (Birdwell et al.,

2015). This is also consistent with our findings that there is a

negative correlation between CYP3A5 *3*3 and clearance.

Among the numerous genetic variables included, in

addition to the CYP3A5 gene, the CTLA4 gene also has a

FIGURE 3
Visual predictive check (VPC) from the final model. DV:
observed concentrations; The red lines from bottom to top
represent the 5th, 50th, and 95th percentiles of the observed
concentrations; Blue shaded regions are 95% confidence
intervals for predicted 5th and 95th percentiles. Red shaded
regions are 95% confidence intervals for the predicted 50th
percentile. As shown in the figure, most of the red lines
representing the measured concentration positioned are within
the predicted shadow range, indicating that the model has good
prediction performance.
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significant effect. CTLA4 (cytotoxic T lymphocyte-associated

protein 4) is a receptor on the surface of T cells which is an

inhibitory stimulator that inhibits T cell activation. Our results

showed that the CTLA4 rs4553808 significantly affected the

clearance of TAC, The GA and AA genotypes showed a negative

correlation with the clearance of TAC (Table 3). Similar to our

findings, (Liu et al., 2017) found that the CTLA4

rs4553808 genotype significantly affected the postoperative

TAC concentration in Chinese kidney transplant patients. As

is well known, CTLA4 is an inhibitory co-stimulatory factor in

the CD28 family, competing with the T cell co-stimulatory

receptor CD28 for the ligand B7-1 (CD80)/B7-2 (CD86) on the

surface of antigen-presenting cells (Thompson and Allison,

1997; Crespo et al., 2013). This inhibits the activation of

T cells and suppresses the secretion of the cytokine

interleukin 2 (IL2). Similarly, the complex formed by TAC

and FK-binding protein 12 (FKBP12) can block the production

of IL2 (Li and Li, 2015; Martial et al., 2021). Therefore,

CTLA4 may act as an upstream regulator of IL2 secretion

and indirectly influence the pharmacokinetic process of TAC

by affecting IL2 production. In addition, some in vitro

experiments have shown that increased inflammatory protein

production by hepatocytes during the inflammatory response

reduces the ability of hepatocytes to metabolize drugs through

the cytochrome P450 system (Abdel-Razzak et al., 1993;

Elkahwaji et al., 1999; Ferri et al., 2016). IL2, one of the

important inflammatory cytokines, decreased the activity of

CYP3A4 by 39% (Elkahwaji et al., 1999). Therefore,

polymorphisms in the CTLA4 gene may affect the individual

clearance of TAC by influencing the concentration of IL2 and

thus the activity of TAC CYP3A4 metabolizing enzymes. In

addition to this, there are also relevant studies suggesting that

the pathogenesis of nephrotic syndrome may be related to

CTLA4-mediated T-cell dysfunction (Reiser et al., 2004; Yu

et al., 2013). Therefore, the effect of CTLA4 on TAC in the

nephrotic syndrome population deserves to be explored in

depth.

Our study also has some limitations. First, most of the blood

samples collected were trough concentration points, and only a

few had other points such as peak concentration points. This

FIGURE 4
Normalized prediction distribution error (NPDE) for the final model. Quantile-quantile plots of NPDE vs. the expected standard normal
distribution (A). Histogram of NPDE values with the standard normal distribution overlayed (B). Scatter plot of the time vs. NPDE (C). Scatterplot of
predictions vs. NPDE (D).

TABLE 4 Algorithm performance results (test set).

Algorithm R2 MSE MAE MedAE RE

XGBoost 0.37 4.35 1.65 1.33 0.22

RF 0.34 4.57 1.68 1.40 0.24

Extra-Trees 0.39 4.17 1.58 1.22 0.22

GBDT 0.37 4.30 1.61 1.34 0.22

AdaBoost 0.38 4.25 1.63 1.30 0.23

Lasso 0.42 3.98 1.51 1.13 0.21

XGBoost: eXtreme Gradient Boosting, RF: Random Forest, GBDT: Gradient Boosting

Decision Tree, AdaBoost: Adaptive boosting, MSE: Mean Square Error, MAE: Mean

Absolute Error, MedAE: Median Absolute Error, RE: Root Mean Square Error.
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causes the performance of the model still needs to be improved,

and also causes the present model less predictive at low

concentrations. Second, the covariates we included can still be

expanded, we currently included only clinical characteristics of

patients and genomic data. In the future, more bioinformatics

data, such as metabolome, proteome, gut microbiome and other

multi-omics data, need to be incorporated by using machine

learning to improve the prediction performance of TAC

pharmacokinetics.

Conclusion

In summary, we firstly used PPK combined with machine

learning to develop a precise model of TAC clearance in

pediatric patients with nephrotic syndrome from the

perspective of clinical characteristics and genetic

polymorphisms. Age, combined use of Wuzhi capsules,

CYP3A5*3 rs776746 covariates and CTLA4 rs4553808 were

found to significantly affect the pharmacokinetics of TAC.

For the first time, CTLA4 rs4553808 gene polymorphism was

found to affect the clearance of TAC in the nephrotic

syndrome population. The model can predict the

individual clearance of TAC more accurately. It provides a

reference for the clinical pharmacist or clinician to optimize

the initial dose administered, ensuring the effectiveness and

safety of drug treatment for each patient.
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