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Purpose: Alpha-1 blockers, often used to treat benign prostatic hyperplasia

(BPH), have been hypothesized to prevent COVID-19 complications by

minimising cytokine storm release. The proposed treatment based on this

hypothesis currently lacks support from reliable real-world evidence,

however. We leverage an international network of large-scale healthcare

databases to generate comprehensive evidence in a transparent and

reproducible manner.
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Methods: In this international cohort study, we deployed electronic health

records from Spain (SIDIAP) and the United States (Department of Veterans

Affairs, Columbia University Irving Medical Center, IQVIA OpenClaims, Optum

DOD, Optum EHR). We assessed association between alpha-1 blocker use and

risks of three COVID-19 outcomes—diagnosis, hospitalization, and

hospitalization requiring intensive services—using a prevalent-user active-

comparator design. We estimated hazard ratios using state-of-the-art

techniques to minimize potential confounding, including large-scale

propensity score matching/stratification and negative control calibration. We

pooled database-specific estimates through random effects meta-analysis.

Results: Our study overall included 2.6 and 0.46 million users of alpha-1

blockers and of alternative BPH medications. We observed no significant

difference in their risks for any of the COVID-19 outcomes, with our meta-

analytic HR estimates being 1.02 (95% CI: 0.92–1.13) for diagnosis, 1.00 (95% CI:

0.89–1.13) for hospitalization, and 1.15 (95% CI: 0.71–1.88) for hospitalization

requiring intensive services.

Conclusion:We found no evidence of the hypothesized reduction in risks of the

COVID-19 outcomes from the prevalent-use of alpha-1 blockers—further

research is needed to identify effective therapies for this novel disease.

KEYWORDS

treatment for SARS CoV-2, observational study, electronic health records, federated
data model, causal inference, open science

Introduction

As the number of infections with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) continues to increase, so

does the search for therapies to prevent its respiratory and multi-

organ complications. Treatments under study have been classified

into antiviral/repurposed ones, aiming to reduce viral uptake, and

concomitant/adjunctive ones, aiming to minimise the risk of or to

treat complications (Sanders et al., 2020). Despite the large number

of proposed therapies, most drug trials have been negative: an

increasing list of therapies including azithromycin,

hydroxychloroquine, lopinavir/ritonavir, and tocilizumab have

little or no impact on mortality or patient-relevant outcomes;

whilst only corticosteroids and remdesivir have potential effects

on mortality, mechanical ventilation, length of hospital stay, or

duration of symptoms (Siemieniuk et al., 2020). Given the scarcity of

available treatments, the search formedicines with putative effects to

treat COVID-19 and minimize its complications is due to continue.

Activation of inflammatory and related cascades are part of

innate immunity and crucial in the immune response against

SARS-CoV-2. However, aggressive inflammatory response to

SARS-CoV-2, known as cytokine release syndrome (CRS), has

been recognized as a driving cause of high morbidity and

mortality in COVID-19. In animal studies using mice, a direct

disruption of catecholamine synthesis reduced cytokine release

and offered protection against lethal complications of CRS

(Staedtke et al., 2018). The same study found a similar

protection from use of prazosin, an alpha-1 adrenergic

receptor antagonist (alpha-1 blocker), to block catecholamines

signalling. It has therefore been postulated that CRS may be

prevented by targeting the catecholamine-cytokine axis.

Koenecke et al. (2021) investigated this hypothesis through a

cohort study based primarily on US claims databases, comparing

alpha-1 blocker users to non-users among patients hospitalized for

acute respiratory distress or pneumonia. A companion paper by

Rose et al. (2021) carried out a similar analysis for hospitalized

COVID-19 patients in Veterans Health Administration hospitals.

While they found the alpha-1 blocker users to have lower rates of

progression to mechanical ventilation and/or mortality, such users

vs. non-users comparisons are notoriously prone to systematic

biases from residual confounding (Schneeweiss et al., 2007; Lund

et al., 2015; Schuemie et al., 2019). In fact, Thomsen et al. (2021),

another companion paper of theirs based on Danish cohorts

hospitalized with pneumonia, found the difference in mortality to

become closer to the null and substantially less significant when the

comparator cohort is restricted to 5ARI users. Overall, given the

complex and dynamic interplay between catecholamines and

immune-inflammatory regulation, the net effect of inhibition of

catecholamines on COVID-19 thus remains uncertain (Gubbi et al.,

2020).

Currently, one randomized controlled trial is ongoing to

study the efficacy of prazosin for SARS-CoV-2 infection

(Thorlund et al., 2020). Clinical trials are inherently limited

in sample size and patient representation, however. There is

thus an urgent demand for further reliable and generalizable

real-world evidence on the effect of alpha-1 blockers as a
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prophylaxis or treatment of COVID-19. In this article, we

aimed to provide this much needed evidence by studying the

association between the use of alpha-1 blockers and the

susceptibility to COVID-19 disease (diagnosis), related

hospitalization, and requirement of intensive services.

Methods

Study design

We conducted a prevalent-user active comparator cohort

analysis across an internationally distributed network of

databases. Our protocol is available at https://github.com/

ohdsi-studies/Covid19SusceptibilityAlphaBlockers and

registered in the EU PAS register (EUPAS36231). The study

design described in this section is visually summarized in a

schematic diagram of Figure 1.

Data sources

We obtained routinely-collected electronic health

records (EHRs) and claims data from Spain and the United States

(US). All data sources had been previously mapped to the

Observational Medical Outcomes Partnership (OMOP) Common

Data Model (CDMv5) (Hripcsak et al., 2015). This enabled

distributed network analyses without sharing patient-level data,

whilst ensuring data provenance, by applying common analytical

programmes across data partner centers. The included data

sources are:

• Information System for Research in Primary Care

(SIDIAP) database, covering approximately 80% of the

population of Catalonia, Spain, or six million patients in

number. SIDIAP contains data since 2006 from general

practice EHRs linked to hospital admissions with

information on diagnoses, prescriptions, laboratory tests,

and lifestyle and sociodemographics and the central

database of RT-PCR COVID-19 tests.

• US Department of Veterans Affairs (VA) database,

covering approximately 12 million patients from

170 medical centers across the US and including

administrative, clinical, laboratory, and pharmacy data

repositories that are linked using unique patient

identifiers (Lynch et al., 2019).

• Columbia University Irving Medical Center data

warehouse (CUIMC) EHRs covering approximately six

million patients from the New York-Presbyterian

Hospital/Columbia University Irving Medical Center in

the United States. CUIMC includes data on clinical

diagnoses, prescriptions, laboratory tests, demographics,

and diagnosis and test for COVID-19.

• IQVIA Open Claims, covering approximately 160 million

patients in the US and providing pre-adjudicated health

insurance claims at the anonymized patient-level. The data

FIGURE 1
Alpha-1 blockers and susceptibility to COVID-19 study design schematic. We highlight eligibility criteria, exposure definitions, adjustment
strategies, index date specification (horizontal black arrow) and outcome definitions and time-at-risk. Exposure involves prescriptions to drugs with
RxNorm ingredients that map to medications indicated for treatment of BPH.
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are collected from inpatient, outpatient, and pharmacy

interactions that generates claims for the purpose of

reimbursement.

• Optum® De-Identified Clinformatics Data Mart

Database—Date of Death (Optum DOD), covering

approximately 86.8 million patients under private health

insurance mostly in commercial plans but also in Medicare

Advantage. Optum DOD includes data captured from

administrative claims processed from inpatient and

outpatient medical services and prescriptions as

dispensed, as well as results for outpatient lab tests

processed by large national lab vendors who participate

in data exchange with Optum.

• Optum® De-Identified COVID-19 Electronic Health

Record (Optum EHR), covering approximately

1.73 million patients from a network of healthcare

provider organizations across the US. Optum EHR

includes data since 2007 on demographics, medications

prescribed and administered, lab results, vital signs and

other observable measurements, clinical and inpatient stay

administrative data, diagnosis and test for COVID-19.

Each site obtained institutional review board approval, or

confirmed the study to be exempt or deemed not human subjects

research. At the time of this study, SIDIAP and IQVIA were last

updated in July, 2020; CUIMC in August, 2020; and VA, Optum

DOD, and Optum EHR in September, 2020.

Cohort eligibility, study period and
follow-up

Each cohort consisted of adult males aged 18 years or older

who received at least one eligible prescription or dispensation

for one of the study drugs between 1 November 2019 and

31 January 2020. Index date was set as the date of the last

prescription in this time window. We required participants to

be observable in their data source for at least 180 days prior to

the index date and to have a recorded history of BPH at any

time prior to or on the index date (Figure 1). Participants were

then followed up until the earliest of: occurrence of an

outcome; end of exposure (i.e., discontinuation of drug

use); death; loss or deregistration from the database; or

date of last data collection. The distribution of follow-up

time and number of at-risk patients within each database is

summarized in Supplementary Figures 1A,B.

Exposures

We compared exposures to alpha-1 blockers (alfuzosin,

doxazosin, prazosin, silodosin, tamsulosin, and terazosin) with

exposures to other drug classes commonly indicated for

treatment of BPH as active comparators. More precisely, the

comparator consisted of dutasteride and finasteride (5ARI) and

tadalafil (PDE5 inhibitor). The OMOP CDM concept IDs for

these drug classes are provided in the supplement.

We restricted our analysis to subjects under monotherapy

at cohort entry, excluding those who were exposed to

alternative BPH treatments any time within 180 days prior

to and including the index date. With the exception of our

analysis on the Optum databases, we defined continuous drug

exposures from the start of follow-up by grouping sequential

prescriptions that have ≤30-day refill gaps between them. The

end of exposure was defined as the end of the last

prescription’s drug supply in such a sequence. In the

Optum databases, it is difficult to identify periods of

continuous drug exposure as prescriptions are not recorded

consistently. We therefore used an intent-to-treat (ITT) type

analysis, following patients until their record ends regardless

of treatment persistence.

Outcomes

We investigated three outcomes: 1) COVID-19 diagnosis; 2)

COVID-19 hospitalization (inpatient visit with COVID-19

diagnosis during or up to 3 weeks prior to hospitalization); 3)

COVID-19 hospitalization with intensive services (mechanical

ventilation, tracheostomy, or extracorporeal membrane

oxygenation). For all three outcomes, we required COVID-19

positive status determined through either test results or

diagnostic codes. While administrative claims data only record

administrations of COVID-19 tests and not their results, Kadri

et al. (2020) has demonstrated the COVID-19 diagnosis code as a

reliable proxy for a lab-confirmed case. The definitions of these

outcomes are taken from the prior COVID-19 phenotype

characterization study using OHDSI’s international database

network (Burn et al., 2020; Morales et al., 2021; Prats-Uribe

et al., 2021). We provide the full details of our cohort and

outcome definitions in the supplement, as well as in the

online protocol. We also provide an online data visualization

tool (https://data.ohdsi.org/

Covid19CharacterizationCharybdisDiagCovid/) to demonstrate

the consistency and robustness of our outcome definitions across

our databases.

Study size

We included all patients meeting the eligibility criteria within

each database and hence performed no a priori sample size

calculation. Instead, we provided a minimum detectable rate

ratio (MDRR) for each target-comparator-outcome triplet across

each data source. MDRR is for achieving 5% type-1 error rate and

80% power.
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Statistical analyses

To adjust for measured confounding and improve covariate

balance between comparison cohorts in a data-driven manner, we

built large-scale PS models and fit them via regularized

(ROSENBAUM and RUBIN, 1983; Tian et al., 2018). Our

large-scale PS models consist of a broad range of pre-defined

clinical covariates—including age, gender, race (US data), and

other demographics, prior conditions, drug exposures, procedures,

and health service utilization behaviors (Supplementary Table

S4)—to allow for the most accurate prediction of treatment and

balance cohorts across many characteristics. In particular,

including the broad range of covariates gives us an opportunity

to control for important confounders, such as baseline blood

pressure, that may not have been directly captured by health

databases but are associated with other surrogate variables

present in the data (Schuemie et al., 2020). For computational

efficiency, we excluded all features that occurred in fewer than

0.1% of patients within the target and comparator cohorts prior to

PS model fitting.

In separate analyses, we stratified into 5 PS quintiles or

variable-ratio matched patients by PS, and used Cox

proportional hazards models to estimate hazard ratios (HRs)

between alternative target and comparator treatments for the risk

of each outcome in each data source. The regression conditioned

on the PS strata/matching-unit with treatment allocation as the

sole explanatory variable. We aggregated HR estimates across

data sources to produce meta-analytic estimates using a random-

effects meta-analysis with inverse-variance weights

(DerSimonian and Laird, 1986). To study three outcomes in

six data sources (plus one meta-analysis) using two PS-

adjustment approaches, we generated 3 x (6 + 1) x 2 =

42 study effects.

Residual bias often remains in observational studies even

after controlling for measured confounding through PS-

adjustment (Schuemie et al., 2014; Schuemie et al., 2016).

For each study, therefore, we conducted negative control

outcome experiments, where the null hypothesis of no

effect is believed to be true, using up to 118 controls

identified through a data-rich algorithm (Voss et al., 2017)

and then reviewed by clinicians. We provide the list of these

negative control outcomes in Supplementary Table S3. The

empirical null distributions from these experiments help us

detect potential biases and under-conservative uncertainty

estimates, thereby allowing us to debias point estimates and

adjust confidence intervals (CI) as needed to achieve close to

nominal operating characteristics; a more detailed description

and demonstration of this calibration process (Schuemie et al.,

2014; Schuemie et al., 2018) is provided in the supplement (see

Supplementary Figure S2, for example). We calibrated each

study effect HR estimate, its 95% CI and the p-value to reject

the null hypothesis of no differential effect. We declared a HR

as significantly different from no effect when the calibrated

p-value is less than 0.05, without correcting for multiple

testing.

Blinded to the results, clinicians, and epidemiologists evaluated

study diagnostics for these treatment comparisons to assess if they

were likely to yield unbiased estimates. The suite of diagnostics

included 1) MDRR, 2) distributions of preference score, a

transformation of PS that accounts for difference in exposure

prevalences, (Walker et al., 2013) to evaluate empirical equipoise

and population generalizability, 3) extensive patient characteristics

to evaluate cohort balance before and after PS-adjustment, and 4)

negative control calibration plots to assess residual bias. We defined

target and comparator cohorts to stand in empirical equipoise if the

majority of patients in both carry preference scores between 0.3 and

0.7 and to achieve sufficient balance if all after-adjustment baseline

characteristics return absolute SMD < 0.1 (Austin, 2009).

Study execution

We conducted this study using the open-source OHDSI

CohortMethod R package (https://ohdsi.github.io/

CohortMethod/) with large-scale analytics made possible

through the Cyclops R package (Suchard et al., 2013). Start-

to-finish open and executable source code is available at: https://

github.com/ohdsi-studies/Covid19SusceptibilityAlphaBlockers.

To promote transparency and facilitate sharing and exploration

of the complete result set, an interactive web application (https://

data.ohdsi.org/Covid19SusceptibilityAlphaBlockers/) serves up

study diagnostics and results for all study effects.

Results

Baseline characteristics

We found in total 2,628,170 users of alpha-1 blockers and

464,525 users of alternative BPH therapy—5-alpha reductase

inhibitors and phosphodiesterase type 5 inhibitors (5ARI/

PDE5)—with diagnosis of BPH, all of whom were included

in our propensity score (PS) stratified analyses. For PS matched

analysis, 2,426,765 (92.3%) and 463,113 (99.7%) of the subjects

could be matched based on their baseline characteristics.

Table 1 summarizes key socio-demographics, medical history

and medicine use for alpha-1 blocker and active comparator

users before and after PS stratification and matching. Table 1

focuses on OpenClaims and a selected subset of clinical

covariates for an illustrative purpose, but Supplementary

Table S1 provides detailed baseline characteristics for all

participants in the six contributing data sources. On average,

users of alpha-1 blockers were younger and healthier than users

of active comparator medicines. For the most part, PS matching

and stratification successfully reduced the differences in

baseline characteristics to the negligible level of standardized
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TABLE 1 Baseline patient characteristics for alpha-1 blocker and 5ARI/PDE5 user cohorts in the OpenClaims data source. For each target (T) and
comparator (C) cohort, we report the proportion of initiators satisfying selected base-line characteristics and the standardized mean difference
(SMD) between the two cohorts before and after stratification. The smaller SMDs after propensity score adjustment demonstrates improved balance
between the two cohorts.

Open claims

Characterstics Before stratification After stratification

N = 1,995,594 (T) and 366,734 (C)

T (%) C (%) SMD T (%) C (%) SMD

Age group

<25 0.1 0.1 0.00 0.1 0.1 0.00

25–29 0.1 0.1 0.00 0.1 0.1 0.00

30–34 0.1 0.1 0.00 0.1 0.1 0.00

35–39 0.2 0.2 −0.01 0.2 0.2 0.00

40–44 0.4 0.4 0.01 0.4 0.4 0.01

45–49 1.2 0.8 0.04 1.2 1.0 0.01

50–54 3.1 1.8 0.08 2.9 2.7 0.01

55–59 7.0 4.1 0.13 6.6 6.2 0.02

60–64 12.2 8.1 0.14 11.6 11.3 0.01

65–69 17.4 13.9 0.10 16.8 16.9 0.00

70–74 19.2 19.2 0.00 19.2 19.1 0.00

75–79 16.7 19.2 −0.07 17.1 17.4 −0.01

80–84 17.1 24.1 −0.18 18.1 18.7 −0.02

85–89 5.3 7.8 −0.10 5.7 5.8 0.00

90–94

95+

Medical history: general

Chronic liver disease 0.7 0.4 0.05 0.7 0.6 0.01

Chronic obstructive lung disease 7.0 5.4 0.07 6.8 6.7 0.00

Dementia 1.8 2.3 −0.03 1.9 1.9 0.00

Diabetes mellitus 19.3 16.0 0.09 18.8 18.6 0.00

Hyperlipidemia 29.8 28.9 0.02 29.7 29.6 0.00

Hypertensive disorder 38.2 34.8 0.07 37.7 37.6 0.00

Obesity 3.9 2.7 0.07 3.7 3.5 0.01

Renal impairment 11.2 9.7 0.05 11.1 10.8 0.01

Medical history: cardiovascular disease

Cerebrovascular disease 3.3 3.2 0.05 11.1 10.8 0.01

Ischemic heart disease 4.0 3.6 0.03 4.0 4.0 0.00

Medical history: neoplasms

Malignant neoplastic disease 11.1 9.7 0.04 10.9 10.7 0.01

Primary malignant neoplasm of prostate 4.8 2.9 0.10 4.6 4.2 0.02

Medication use

Antiinflammatory and antirheumatic products 26.0 19.6 0.15 25.0 24.6 0.01

Antineoplastic agents 5.5 5.4 0.00 5.5 5.6 0.00

Antithrombotic agents 25.5 24.8 0.01 25.4 25.5 0.001

Drugs used in diabetes 26.1 21.5 0.11 25.5 25.4 0.00

Immunosuppressants 2.8 2.3 0.03 2.8 2.7 0.00
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mean differences (SMD) below 0.1 (Figure 2). Due to the

relatively small cohort size, PS matching and stratification

were less successful in CUIMC. A few covariates remained

imbalanced (SMD > 0.1) after PS stratification in SIDIAP and

Optum EHR. Except for these cases, no substantial differences

in baseline characteristics remained after PS matching and

stratification.

Incidence rates of COVID-19-related
outcomes

We report in Table 2 patient cohort size for each data source,

in PS stratified and PS matched, and number of participants with

each of the three outcomes of interest. In the PS-matched cohorts

(excluding CUIMC, which did not achieve sufficient covariate

FIGURE 2
Cohort balance diagnostics comparing alpha-1 blocker and 5ARI/PDE5 prevalent users. We plot the absolute SMDof population proportions for
all available patient characteristics (13,950 in SIDIAP, 81,436 in VA, 24,807 in CUIMC, 73,113 in OpenClaims, 79,184, in Optum DOD, 40,621 in Optum
EHR) before and after propensity score stratification or matching across data sources. CUIMC fails study diagnostics under both stratification and
matching since the absolute SMDs are not consistently <0.1. SIDIAP and Optum EHR fail study diagnostics under stratification only.
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balance), in total 6,319 alpha-1 blocker users of (275 in SIDIAP,

1,485 in VA, 4,351 in OpenClaims, 175 in Optum DOD, and

33 in Optum EHR) and 1,105 5ARI/PDE5 users (51 in SIDIAP,

236 in VA, 764 in OpenClaims, 47 in Optum DOD, and 7 in

Optum EHR) were diagnosed with COVID-19. Incidence rates of

COVID-19 diagnosis were 85.63/1,000 person-years amongst

alpha-1 blockers, and 108.25/1,000 among 5ARI/PDE5 users

in SIDIAP; 8.96 vs. 7.97/1,000 in VA; 5.62 vs. 4.78/1,000 in

OpenClaims; 3.40 vs. 4.89/1,000 in Optum DOD; and 38.88 vs.

47.08/1,000 in Optum EHR. Similarly, a total of 3,108 alpha-1

blockers and 563 5ARI/PDE5 users were hospitalized with

COVID-19. Incidence rates of hospital admission ranged from

2.29/1,000 in alpha-1 blocker users and 3.64/1,000 in 5ARI/

PDE5 users in Optum DOD to 35.66 vs. 42.2/1,000 in SIDIAP.

Finally, 110 (92 in VA, 18 in Optum DOD) alpha-1 blocker users

and 18 (12 in VA, 6 in Optum DOD) 5ARI/PDE5 users received

intensive services, with incidence rates of 0.55 vs. 0.40/

1,000 respectively in VA, and 0.35 vs. 0.62/1,000 in Optum

DOD. The data sources behind OpenClaims and SIDIAP do

not contain information on intensive services, and Optum EHR

and CUIMC have insufficiant sample sizes for this outcome.

Hazard ratios of COVID-19-related
outcomes

Table 3 and Figure 3 present database-specific calibrated

HRs for the risk of COVID-19 diagnosis, hospitalization, and

intensive services under both PS stratified and matched

analyses. The negative control experiment finds little

evidence of residual confounding and thus calibrated and

uncalibrated HRs are close to each other (Supplementary

Table S2). Findings from both analyses are consistent with

each other, but here we focus on the PS matched cases that

passed the proposed diagnostics, which included all data

sources except CUIMC. The risk of COVID-19 diagnosis

did not differ between alpha-1 blocker and 5ARI/

PDE5 users in any of the data sources, with PS-matched

calibrated HR of 0.99 (95% CI 0.71–1.36) in SIDIAP, 1.03

(0.83–1.28) in VA, 1.04 (0.90–1.21) in OpenClaims, 0.75

(0.51–1.11) in Optum DOD, and 1.79 (0.46–6.92) in

Optum EHR. The meta-analysis yields calibrated HR of

1.02 (95%CI 0.92–1.13) for COVID-19 diagnosis.

For COVID-19 hospitalization, PS-matched analyses again

found no differential risks according to drug use in any of the

contributing data sources, with calibrated HRs of 1.04

(0.62–1.76) in SIDIAP, 0.89 (0.67–1.19) in VA, 1.05

(0.90–1.24) in OpenClaims, 0.77 (0.49–1.22) in Optum DOD,

1.36 (0.33–5.66) in Optum EHR, and 1.00 (0.89–1.13) in the

meta-analysis.

For COVID-19 hospitalization requiring intensive services,

only VA and Optum DOD passed diagnostics, with PS-matched

calibrated HRs 1.25 (0.65–2.41) and 0.70 (0.20–2.49)

respectively. Meta-analytic HR was 1.15 (0.71–1.88).

Out of the 118 pre-selected negative control outcomes, we

used from 22 to 101 of them within each data source as we did

not find sufficient numbers of events for the rest of negative

controls.

TABLE 2 Populations andCOVID-19 outcomes for alpha-1 blocker (T) and 5ARI/PDE5 (C) user cohorts. We report population size, total exposure time,
outcome events (Covid diagnosis, hospitalization, and intensive services) and minimally detectable rate ratio (MDRR). MDRR is provided only for
Covid diagnosis due to the space constraint. The database abbreviations are defined under the heading Data Sources in the Method section.

Patients Time (years) Diagnosis Hospital Intensive MDRR
(diagnosis)

T C T C T C T C T C

Stratified analysis

SIDIAP 11,793 1,318 4,162 471 334 51 132 20 0 0 1.61

VA 360,802 54,723 189,564 29,642 1,854 236 636 96 111 12 1.20

CUIMC 2,414 582 338 84 27 <5 16 <5 0 0 4.53

Openclaims 1,995,594 366,734 817,994 160,225 4,809 767 2,621 407 0 0 1.11

Optum DOD 241,842 39,032 56,438 9,613 193 47 131 35 18 6 1.69

Optum EHR 15,275 2,136 1,031 149 50 7 32 5 <5 0 3.10

Matched analysis

SIDIAP 8,994 1,315 3,211 471 275 51 115 20 0 0 1.59

VA 312,522 54,642 165,688 29,600 1,485 236 496 96 92 12 1.21

CUIMC 1,873 520 261 74 18 <5 11 <5 0 0 6.58

Openclaims 1,873,014 365,534 774,635 159,742 4,351 764 2,361 407 0 0 111

Optum DOD 218,032 38,988 51,451 9,602 175 47 118 35 18 6 1.69

Optum EHR 12,303 2,114 848 148 33 7 19 5 <5 0 3.50

Frontiers in Pharmacology frontiersin.org08

Nishimura et al. 10.3389/fphar.2022.945592

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.945592


Discussion

In this international cohort study following more than

3.1 million men with BPH, we observed no association

between alpha-1 blocker use and the risk of COVID-19

diagnosis, hospitalization, or hospitalization requiring

intensive services. These findings bear out from 6 large

real-world data sources, including out- and in-patient

electronic medical records and health claims data from the

US and Spain.

To our knowledge, Koenecke et al. (2021), along with their

companion papers Thomsen et al. (2021) and Rose et al. (2021),

are the only existing epidemiological studies exploring the

potential association between alpha-1 blockers use and

disease progression induced by lower respiratory tract

infection. In this retrospective analysis of patients with acute

respiratory distress or pneumonia, previous users of alpha-1

blockers—as compared to non-users—demonstrated lower

risks of progression to ventilation and/or death. Given the

very limited sets of covariates considered in their analyses,

however, there is serious concern for substantial residual

confounding. Moreover, healthy adherer bias (Hollestein

et al., 2015) could have been introduced by their choice to

include only patients who were prescribed alpha-1 blockers and

had a medication possession ratio ≥50% in the year before the

index date. Persistent alpha-1 blocker users likely have healthier

lifestyles, such as sensible diet and regular exercise, than people

who do not use or adhere to the medication. Such healthy

adherer bias may have distorted their estimates towards the

protective.

In our study, we selected 5ARI and PDE5 inhibitors as active

comparators to minimize confounding by indication, which

often leads to informed presence biases, channeling biases, as

well as an array of other unexpected biases in observational

health data (Bosco et al., 2010; Brookhart et al., 2010; Goldstein

et al., 2016; Weinstein et al., 2017). We then confined our study

population to patients with prior diagnosis of BPH in order to

account for the fact that these drugs do not share all indications.

In addition to the active comparator selection, we applied large-

scale propensity score models involving tens of thousands of

clinical covariates, thereby balancing a broad range of baseline

patient characteristics. The conventional approach to adjust only

for a small number of pre-selected covariates would have left

many baseline characteristics imbalanced, which is particularly

problematic when clinicians’ knowledge regarding this novel

disease is limited.

The initial rationale that the disruption of catecholamine

loop reduces CRS resulting from bacterial and non-bacterial

causes was based on an animal study published in 2018

(Staedtke et al., 2018). After the pandemic began, the

authors from this study postulated that prophylactic use of

alpha-1 blockers might decrease the risk of progression to life-

threatening complication among COVID-19 patients (Konig

et al., 2020). This hypothesis was formed when three pieces of

information were stacked: first, severe COVID-19 patients

were often accompanied by a significant elevation of cytokines

such as interleukin-6, interleukin-10 and tumour necrosis

factor α. Second, catecholamines augmented the production

of those cytokines in vitro and mice. Last, blockade of the

alpha-1 adrenergic receptor (target of catecholamines)

suppresses hyperinflammatory state in the context of

bacterial infections.

However, we argue that preventing severe illness from the

SARS-CoV-2 by targeting catecholamine-cytokine axis with the

use of alpha-1 blockers is far more complicated and multifaceted.

For example, use of alpha-1 blockers might increase the release of

catecholamines through the negative feedback loop, (Zuber et al.,

2011) which in turn counteracts the benefit resulting from

inhibition of alpha-1 adrenergic receptors. One the other

hand, the surge of cytokines is more likely to be a

TABLE 3 Hazard ratios of COVID-19 diagnosis, hospitalization, and
intensive services for alpha-1 blocker and 5ARI/PDE5 prevalent-
use. We report calibrated hazard ratios (HRs) and their 95%
confidence intervals (CIs) and calibrated p-value (p), with PS
stratification or matching and across data sources. Grayed out
entries do not pass study diagnostics and are excluded from the
meta-analysis.

PS-stratified PS-matched

HR PI CI p HR PI CI p

Diagnosis

SIDIAP 1.13 (0.84–1.53) 0.54 0.99 (0.71–1.36) 0.64

VA 1.02 (0.83–1.26) 0.81 1.03 (0.83–1.28) 0.76

CUIMC 2.54 (0.80–8.01) 0.14 3.65 (0.67–19.9) 0.15

Openclaims 1.04 (0.90–1.22) 0.58 1.04 (0.90–1.21 0.56

Optum DOD 0.69 (0.49–0.97) 0.03 0.75 (0.51–1.11) 0.15

Optum EHR 1.46 (0.55–3.85) 0.43 1.79 (0.46–6.92) 0.39

Meta-analysis 1.03 (0.94–1.12) 0.54 1.02 (0.92–1.13) 0.68

+ Hospitalization

SIDIAP 1.26 (0.78–2.04) 0.43 1.04 (0.62–1.76) 0.74

VA 0.89 (0.68–1.16) 0.40 0.89 (0.67–1.19) 0.43

CUIMC 6.33 (0.62–64.3) 0.13 5.92 (0.51–68.2) 0.16

Openclaims 1.08 (0.91–1.28) 0.38 1.05 (0.90–1.24) 0.53

Optum DOD 0.64 (0.43–0.94) 0.02 0.77 (0.49–1.22) 0.26

Optum EHR 1.21 (0.40–3.69) 0.74 1.36 (0.33–5.66) 0.67

Meta-analysis 0.98 (0.85–1.14) 0.83 1.00 (0.89–1.13) 0.94

+ Intensive services

SIDIAP NA NA NA NA NA NA

VA 1.24 (0.66–2.33) 0.51 1.25 (0.65–2.41) 0.50

CUIMC NA NA NA NA NA NA

Openclaims NA NA NA NA NA NA

Optum DOD 0.56 (0.21–1.46) 0.23 0.70 (0.20–2.49) 0.59

Optum EHR NA NA NA NA NA NA

Meta-analysis 1.16 (0.74–1.80) 0.52 1.15 (0.71–1.88) 5.56
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consequence of patients responding aggressively to an infection

with SARS-CoV-2. The reduction of cytokines by deactivation of

alpha-1 adrenergic receptors thus may be insufficient to cut off,

once triggered, the cascade of CRS involving a series of white

blood cells and signaling molecules.

Strengths and limitations

This open science study comes with certain limitations, but also

with unique strengths by virtue of our access to an international

network of standardized databases. Below, we discuss potential

FIGURE 3
Hazard ratios of COVID-19 outcomes between alpha-1 blocker and 5ARI/PDE5 prevalent-use across data sources. The outcomes are COVID-
19 diagnosis (Diagnosis), COVID-19 hospitalization (+Hospitalization), and COVID-19 hospitalization requiring intensive services (+Intensive
services). We plot calibrated hazard ratios with black (PS-stratified) and white (PS-matched) circles along with their 95% confidence intervals. Grayed
out entries do not pass study diagnostics.
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limitations one by one, as well as ways through which our study

addresses them to the extent practically possible.

First, the study only partially addresses the question of whether

alpha-1 blockers alleviate the disease progression of COVID-19 as

postulated by Konig et al. (2020).With COVID-19 being an emergent

disease, the number of in-patient COVID-19 cases was rather small

during the studied period even in the extensive network of databases

we have access to. We thus determined the number to be insufficient

for us to directly estimate the effectiveness against the disease

progression in a scientifically meaningful manner. Instead, we

attempted to investigate the question under the hypothesis that, if

alpha-1 blockers were indeed protective against severe COVID-19

symptoms, we should see a negative association between the prevalent

use of alpha-1 blockers and COVID-19 related outcomes such as

hospitalization. Even COVID-19 diagnosis alone could be indicative

of relatively severe symptoms since patients are otherwise unlikely to

seek interactions with healthcare systems.

Second, we used a prevalent-user cohort design since there

are so few patients initiating BPH therapies during and

immediately preceding the pandemic that a new-user design is

infeasible. A prevalent-user design is susceptible to potential bias

due to time-varying hazards and/or inclusion of treatment effect

mediators in the adjustment. In particular, our finding does not

eliminate the possibility that the incident use—but not prevalent

use—of alpha-1 blockers protects against COVID-19.

Third, while we have taken great care in identifying

prescriptions of the study drugs, patients’ adherence to prescribed

drugs cannot be determined from secondary observational health

data. Presence (or absence) of prescription records in EHR or claims

databases does not guarantee that the patient was in fact taking (or

not taking) the prescribed drug. Wemitigate this problem, however,

by applying an active comparator for which we expect the

misclassification rate to be similar to the target drug. This way,

uncertainty in the drug usages would affect the magnitude of hazard

ratios, but not its direction. By a similar mechanism, the use of active

comparators also mitigates the issue of potential under-diagnosis/

reporting of COVID-19; as long as its rate is similar in both cohorts,

under-diagnosis/reporting is likely to only affect the magnitude of

the hazard ratio, but not its direction.

Fourth, another important limitation is under-diagnosis or

under-reporting of COVID-19. The limited test availability

during the early months of the pandemic further contributes

to this issue. We alleviated this issue by using a definition of

COVID-19 based on broad data sources, including clinical

diagnosis and/or PCR test data. However, this strategy still

cannot account for many infected patients who likely remain

asymptomatic or do not seek health care services. The issue is

further exacerbated by the fact that the diagnosis and reporting of

COVID-19 related data vary significantly over different sites and

at different time points in the pandemic. For example, the data

sources behind OpenClaims and SIDIAP do not contain

information on intensive services. While no observational

study of a potential COVID-19 treatment is immune to these

caveats, we believe that our approach—with consistent

applications of the same design and analysis over an

international network of observational databases—provides

some of the most reliable real-world evidence. We found

some variation in the estimates across our databases but not

at a statistically significant level, giving us confidence in our study

design choice and overall conclusion. Single-center observational

studies, on the other hand, have no ways to assess whether their

findings would hold under different data sources.

Fifth, the use of 5ARI/PDE5 as active comparators—a necessity

for properly dealing with confounding by indication (Schneeweiss

et al., 2007; Bosco et al., 2010; Lund et al., 2015; Schuemie et al.,

2019)—means that, technically, our result only shows a lack of

therapeutic effects from alpha-1 blockers relative to 5ARI/PDE5. In

other words, there remains an arguably small possibility that alpha-1

blockers are actually beneficial (or harmful) in treating COVID-19;

just no more or less so than 5ARI/PDE5.

Finally, we conducted this study among adult men with BPH

to guard against confounding by indication. Thus, these findings

may not generalize to wider populations. However, older male

patients constitute a particularly relevant high-risk

subpopulation, accounting for a substantial portion of the

severe cases of COVID-19. Also, there is currently no

evidence that the pathophysiology of BPH modifies the effect

of alpha-1 blockers on COVID-19.

Conclusion

Our findings do not support prophylactic use of alpha-1

blockers to decrease the risk of COVID-19 infection and

progression among, e.g., people with suspected exposure to

the virus. Further research is needed to determine the

potential therapeutic effect of alpha-1 blocker initiation on

people who are recently infected with SARS-CoV-2.

Data availability statement

All data sources had been previously mapped to the

Observational Medical Outcomes Partnership (OMOP)

Common Data Model (CDMv5) (Hripcsak et al. 2015). This

enabled distributed network analyses without sharing patient-

level data, whilst ensuring data provenance, by applying common

analytical programmes across data partner centers. We

conducted this study using the open-source OHDSI

CohortMethod R package (https://ohdsi.github.io/

CohortMethod/) with large-scale analytics made possible

through the Cyclops R package (Suchard et al. 2013). Start-to-

finish open and executable source code is available at: https://

tgithub.com/ohdsi-studies/Covid19SusceptibilityAlphaBlockers.

To promote transparency and facilitate sharing and exploration

of the complete result set, an interactive web application (https://
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data.ohdsi.org/Covid19SusceptibilityAlphaBlockers/) serves up

study diagnostics and results for all study effects.
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VA-OMOP data source was reviewed by the Department of

Veterans Affairs Central Institutional Review Board (IRB) and
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Exemption Category 4 (3) and approved the request for Waiver

of HIPAA Authorization. Use of the CUIMC data source was

approved by the Columbia University IRB as an OHDSI network

study (IRB# AAAO7805). IQVIA Open Claims, Optum EHR, and

OptumDOD are commercially available, syndicated data assets that

are licensed by contributing authors for observational research.

These assets are de-identified commercially available data

products that could be purchased and licensed by any researcher.

The collection and de-identification of these data assets is a process

that is commercial intellectual property and not privileged to the

data licensees and the co-authors on this study. Licensees of these

data have signed Data Use Agreements with the data vendors which

detail the usage protocols for running retrospective research on these

databases. All analyses performed in this study were in accordance

with Data Use Agreement terms as specified by the data owners. As

these data are deemed commercial assets, there is no Institutional

Review Board applicable to the usage and dissemination of these

result sets or required registration of the protocol with additional

ethics oversight. Compliance with Data Use Agreement terms,

which stipulate how these data can be used and for what

purpose, is sufficient for the licensing commercial entities.

Further inquiry related to the governance oversight of these

assets can be made with the respective commercial entities:

IQVIA (iqvia.com) and Optum (optum.com). At no point in the

course of this study were the authors of this study exposed to

identified patient-level data. All result sets represent aggregate, de-

identified data that are represented at a minimum cell size of >5 to
reduce potential for re-identification. Furthermore, the New

England Institutional Review Board of Janssen Research &

Development (Raritan, NJ) has determined that studies

conducted on licensed copies of Optum databases are exempt

from study-specific IRB review, as these studies do not qualify as

human subjects research.
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