
Emerging pharmaceutical
therapeutics and delivery
technologies for osteoarthritis
therapy

Cheng-Yu Shentu1, Ge Yan1, Dong-Chen Xu1, Yong Chen1* and
Li-Hua Peng1,2*
1College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China, 2State Key Laboratory of
Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau
SAR, China

Osteoarthritis (OA) is one of the most common joint degenerative diseases in the

world. At present, the management of OA depends on the lifestyle modification

and joint replacement surgery, with the lifespan of prosthesis quite limited yet.

Effective drug treatment ofOA is essential. However, the current drugs, such as the

non-steroidal anti-inflammatory drugs and acetaminophen, as well as

glucosamine, chondroitin sulfate, hyaluronic acid, are accompanied by obvious

side effects, with the therapeutic efficacy to be enhanced. Recently, novel reagents

such as IL-1 antagonists and nerve growth factor inhibitors have entered clinical

trials. Moreover, increasing evidence demonstrated that active ingredients of

natural plants have great potential for treating OA. Meanwhile, the use of novel

drug delivery strategies may overcome the shortcomings of conventional

preparations and enhance the bioavailability of drugs, as well as decrease the

side effects significantly. This review therefore summarizes the pathological

mechanisms, management strategies, and research progress in the drug

molecules including the newly identified active ingredient derived from

medicinal plants for OA therapy, with the drug delivery technologies also

summarized, with the expectation to provide the summary and outlook for

developing the next generation of drugs and preparations for OA therapy.
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Introduction

There are more than 400 million patients affected by osteoarthritis (OA) worldwide, with

a global total prevalence of OA of 15%, causing significant economic burdens (Hiligsmann

et al., 2013). OA is resulted from a combination of risk factors such as age, obesity, knee

malalignment, biomechanical loading of joints, low-grade systemic inflammation, etc. At

present, non-pharmacological approaches and surgical therapies are themost commonly used

treatments for OA. Pharmaceutical treatments recommended by international guidelines to

treat OA can merely alleviate symptoms or have obvious side effects if long-term use
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(Robinson et al., 2018; Ferguson et al., 2018; van deGraaf et al., 2018;

Ferreira et al., 2019). Therefore, it is urgent to develop novel

therapeutics to treat OA. In the past years, more and more

therapeutic molecules, including many natural compounds

isolated from medicinal plants, as well as multiple new delivery

technologies to increase the absorption and decrease the side effects

of the therapeutic candidates have been investigated This review

summarized the progress of these emerging pharmaceutical

therapeutics and the delivery technologies, with the therapeutic

effects of active molecules extracted from traditional Chinese

medicine are highlighted, with the expectation to identify much

more alternatives and new options for the treatment of OA.

Pathophysiology of osteoarthritis

OA is a whole joint disease that affects the hyaline articular

cartilage, subchondral bone, ligaments, capsule, synovium and

periarticular muscles (Martel-Pelletier et al., 2016). The integrity

of cartilage structure is damaged during the OA process, making

cartilagemore vulnerable to external stimulation (Loeser et al., 2016;

Hunter and Bierma-Zeinstra, 2019). At the initial stage, articular

cartilage was degraded from the cartilage surface and cracks

emerged gradually, then enlarged into the cartilage calcification

area. The degradation products and pro-inflammatory mediators

released during this process induced synovial hyperplasia and

inflammatory response in the surrounding synovium, as well as

vascular infiltration in the subchondral bone. Although

hypertrophic chondrocytes began to proliferate in an attempt to

repair cartilage, the self-repair ability of articular cartilage is limited,

resulting in the development of OA, expressed as the changes in the

structure and properties of articular cartilage. The scheme of the

main pathophysiology of OA is shown in Figure 1.

Inflammation is thought to play an important role in the

formation and progression of OA. There is a clear link between

the progression of cartilage degeneration and the existence of

reactive or inflammatory synovium (Felson, 2006). For

example, inflammatory substances like proinflammatory

cytokines are important mediators of the altered metabolism

and increased catabolism of joint tissue in OA (Ayral et al.,

2005; Pozgan et al., 2010). Among them, IL-1β, TNF, and IL-6

are several main proinflammatory cytokines involved.

Particularly, IL-1 has been found to accelerate cartilage

degradation and nociceptive pathway stimulation by

activating the nuclear factor kappa-B (NF-ĸB) pathway

(Benito et al., 2005). IL-1 is produced by chondrocytes and

synovial nucleated cells in patients with OA, and IL-1

stimulated Matrix metalloproteinase (MMP)-1 and MMP-13

expression in chondrocytes (Mengshol et al., 2000). TNF-α has

been found to be elevated in the synovial fluid, synovial

membrane, subchondral bone, and cartilage of OA patients

in various studies (Stannus et al., 2010; Xue et al., 2013). In-

articular chondrocytes, TNF-α upregulates MMP-13 and

stimulates the production of iNOS, cyclooxygenase (COX)-2,

FIGURE 1
The pathophysiology of OA.
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IL-6, and PGE2 (Guerne et al., 1990, Séguin and Bernier, 2003;

El Mansouri et al., 2011), while suppressing the synthesis of type

II collagen, proteoglycans, and proteoglycan-binding proteins

(Xue et al., 2013). TNF-α blocks mesenchymal stem cells

(MSCs) differentiation into osteoblasts by Notch activation

(Zhao, 2017) and can regulate bone remodeling. IL-6 also

associates with joint tissue hyperalgesia and hypersensitivity,

as well as cartilage degeneration (Brenn et al., 2007) such as by

inhibiting type II collagen formation while increasing the

production of MMPs (Rowan et al., 2001; Porée et al., 2008).

The IL-6-activated JAK/STAT and mitogen-activated protein

kinase (MAPK) pathways have been found to upregulate the

level of MMP-1, MMP-3, and MMP-13 in human chondrocytes

(Aida et al., 2012). IL-6 also has been discovered to have a key

function in mediating effects on the subchondral bone layer

(Chenoufi et al., 2001; Kwan Tat et al., 2004; Sakao et al., 2009).

TGF-β was demonstrated to be able to suppress hypertrophy

in MSCs and articular chondrocytes (Yang et al., 2001; Zhang

et al., 2004). TGF-β binds to heterotypic TGF receptors in

chondrocytes, causing the phosphorylation of the heteromeric

SMAD2/3/4 complex. The active small molecules against

decapentaplegic (SMAD) complex subsequently translocates

to the nucleus, where it interacts with co-transcription factors

to control gene transcription, including chondrogenesis

stimulation and degeneration and mineralization

suppression (Harradine and Akhurst, 2006; Chen et al.,

2012; Shen et al., 2013). Leptin is primarily produced by

adipocytes, and it can help chondrocytes in the growth

plate proliferate and differentiate (Wang et al., 2012).

Through the JAK/STAT and MAPK pathways, it can

stimulate chondrocytes (Ben-Eliezer et al., 2007) and is

essential for chondrocyte hypertrophy (Kishida et al., 2005;

Simopoulou et al., 2007). During OA, leptin can also

upregulate the expression of MMPs, resulting in cartilage

degradation (Toussirot et al., 2007; Vuolteenaho et al.,

2009; Koskinen et al., 2011). Leptin binds to hypothalamic

receptors and activates osteoblasts via β2 adrenergic receptors
in the central route (Takeda et al., 2002). It can inhibit

osteoblast proliferation, and boost bone resorption of

osteoclasts (Fu et al., 2005). Within the peripheral pathway,

leptin binds to human MSCs, promoting proliferation and

differentiation into osteoblasts (Astudillo et al., 2008). In the

past several years, exosomes were shown to be able to facilitate

cell-to-cell communication and control a variety of biological

processes such as immune response and inflammation (Salvi

et al., 2018; Console et al., 2019). Because of its direct and close

contact with the synovial membrane, articular cartilage, and

other types of joint tissue, exosomes contained in the synovial

fluid is valuable for monitoring pathological changes in the

joint area (Kolhe et al., 2017). However, relevant research is

still in its early stages, and the molecular mechanism of

exosome-receptor cell contact remains further investigation.

Cytokines and mechanisms related to OA are shown in

Figure 2.

FIGURE 2
Cytokines and mechanism of OA.
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Treatment strategies

Currently, OA is likely to be treated with lifestyle

modification, pharmaceutical drugs, surgery, and also in

combination. In the early stage of OA, lifestyle modifications

such as swimming or Tai chi show to help patients with OA to

alleviate pain and recover functions (Vignon et al., 2006).

Orthotics have been shown to alleviate discomfort and

increase function (Hussain et al., 2016). Besides these physical

treatments, acetaminophen and non-steroidal anti-inflammatory

drugs are widely used to resist inflammatory reactions and relieve

pain, glucocorticoids, hyaluronic acid, chondroitin sulfate and

glucosamine are also frequently used. Oral NSAIDs are the

mainstay of the pharmacologic management of OA at present.

NSAIDs can exert anti-inflammatory effects (Liu et al., 2013;

Chen et al., 2017; Zhang et al., 2020a), and have been

demonstrated to improve central and peripheral sensory

thresholds and lessen pain. NSAIDs can diminish hyperalgesia

by reducing the inflammatory and cellular immunological

reactions generated by inflammatory mediators (Argoff, 2011).

Furthermore, researchers discovered that NSAIDs preserve

cartilage by efficiently inhibiting the damage caused by local

inflammatory reactions to chondrocytes and synovial cells

(Gunson et al., 2012). All of these drugs, however, have the

potential for gastrointestinal, hepatic, and cardiorenal side

effects, which increase with dose and treatment duration

(Bjarnason, 2013; Ghosh et al., 2015; García-Rayado et al.,

2018; Tai and McAlindon, 2018; Bindu et al., 2020).

Chondroitin sulfate (CS) is a natural glycosaminoglycan

present in cartilage and the ECM. In chondrocytes and

synovial membranes, CS inhibits NF-κB activation and

nuclear translocation (Uwe, 2008). To treat OA, CS is

frequently combined with glucosamine (Bishnoi et al., 2016).

Its capacity to relieve symptoms or reduce the structural

progression of OA has been studied in clinical trials. The

results have been contradictory, owing to variances in patient

demographics and CS purity (Uebelhart et al., 2004; Henrotin

et al., 2014; Singh et al., 2015; Simental-Mendía et al., 2018). The

safety of CS, on the other hand, is guaranteed. Researchers

discovered that giving glucosamine hydrochloride to OA mice

prevented not only the loss of GAGs and proteoglycans in

articular cartilage but also bone resorption by inhibiting

RANKL (Ivanovska and Dimitrova, 2011; Henrotin et al.,

2012). Glucosamine hydrochloride was also demonstrated to

block the production of IL-6 and to upregulate the production

of IL-10 by the synovial membrane in the same study. And

scholars have developed a controlled drug delivery system that

co-delivers diacerein and GS, for the treatment of osteoarthritic

knee. Based on the results, it can be concluded that this new

formulation could induce chondroprotection with a downturn

effect on inflammatory biomarkers. Despite that the effectiveness

of glucosamine is controversial (Towheed et al., 2005; Bruyère

et al., 2016; Roman-Blas et al., 2017; Runhaar et al., 2017; Ogata

et al., 2018), glucosamine is widely considered to be safe, and no

TABLE 1 The influence of chemical drugs in cytokine secretion and the underlying molecular mechanisms in OA.

Classification Compound Molecular
formula

Cytokines Pathway Administration

NSAIDs Celecoxib C17H14F3N3O2S PGs, NO↓ IL-1↓ IL-6, TNF-α↓
MMPs↓

COX, NF-κB Oral

Diclofenac C14H11Cl2NO2 Oral

Etofenamate C18H18F3NO4 Topical

Etoricoxib C18H15ClN2O2S Oral

Indomethacin C19H16ClNO4 Oral/Rectal

Licofelone C23H22ClNO2 Oral

Naproxen C14H14O3 Oral

Nimesulide C13H12N2O5S Oral

Rofecoxib C17H14O4S Oral

Tiaprofenic acid C14H12O3S Oral

Glucocorticoids Betamethasone C22H29FO5 IL-1, IL-6↓ TNF-α↓ MMPs↓ NF-κB AP-1 Intra-articular inject

Methylprednisolone C22H30O5

Triamcinolone C21H27FO6

Symptomatic Slow-Acting Drugs in
Osteoarthritis

Chondroitin sulfate C13H21NO15S IL-1, IL-6↓ TNF-α↓ MMPs↓ Col Ⅱ
↑ IL-6↓

NF-κB iNOS
Bcl-2

Oral/i.m.

Glucosamine sulfate 2C6H13NO5 H2O4S TGF-β3↓ BMP-2↓ IL-10↓ Col Ⅱ
↑ PGs↓

RANKL NF-κB Oral

Analgesics Acetaminophen C8H9NO2 IL-8, IL-6↓ PGE2↓ COX-1, COX-2 Oral

Intra-Articular Injection Medications Hyaluronic acid C14H22NNaO11 TNF-α↓ MMPs↓ HA-CD44
NF-κB

Intra-articular inject
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serious or fatal adverse events have ever been reported.

Glucocorticoids (GCs) also alter whole-body homeostasis,

modulate immunological responses and brain functions,

change tissue integrity, and affect the skeletal system

(Hartmann et al., 2016). The glucocorticoid receptor can

interact with NF-κB and AP-1 to limit the transcription of

these genes, according to researchers (Mihailidou et al., 2016).

In addition, GC inhibited the expression of proinflammatory

mediators TNF-α, IL-6, and MMP-9, indicating that it has anti-

inflammatory properties (Zimmermann et al., 2009).

Furthermore, GC can inhibit IL-1-induced collagen

breakdown and suppress MMP-1 and MMP-3 production. As

a result, it has the ability to protect articular cartilage, prevent

ECM breakdown, enhance ECM production, and stimulate

chondrocyte proliferation (Lu et al., 2011; Li et al., 2015).

Long-term use of GCs, as well as disrupted negative feedback

loops or persistent stress, can lead to serious consequences

(McDonough et al., 2008). Insulin resistance, muscular and

skin atrophies, depression, and severe skeletal consequences

are among them. As a result, the use of GCs should be closely

regulated. Many tissues and fluids contain hyaluronic acid (HA).

The amount of HA in different joints and species varies greatly

(Gupta et al., 2019). By binding to CD44, HA can preserve

cartilage, because HA-CD44 inhibits IL-1β, MMP-1, MMP-2,

MMP-3, MMP-9, and MMP-13 expression is reduced (Brun

et al., 2012; Pohlig et al., 2016). HA has been shown in numerous

studies to have anti-inflammatory properties (Litwiniuk et al.,

2016; Pontes-Quero et al., 2019; How et al., 2020). IL-1 was

suppressed after HA binding to CD44. Furthermore, MMPs were

downregulated after IL-1β suppression, which contributed to the

anti-inflammatory action of HA. The binding of HA to CD44 can

block inflammatory factors such as IL-8, IL-6, and TNF-α, as well
as upregulate the anti-inflammatory impact (Chang et al., 2012).

Table 1 is a summary of properties of the above pharmaceutical

reagents.

Up to now, some of the above drugs have been carried out

for clinical trials (Table 2). These drugs have the potential to

treat OA. Margreet found that Lutikizumab (an IL-1

inhibitor) treatment compared with placebo was associated

with significant reductions in serum IL-1α and IL-1β levels

(Kloppenburg et al., 2019). What’s more, Lutikizumab can

significantly decrease the levels of neutrophils, high-

sensitivity C reactive protein and serum collagen type I

compared with placebo and Serum collagen type were also

reduced. However, despite the adequate blockade of IL-1,

lutikizumab did not improve pain or imaging outcomes in

erosive Hand OA compared with placebo. In another phase II

multicenter double-blind study, knee OA patients received a

single intra-articular injection of placebo or CNTX-4975 (an

injectable form of highly purified trans-capsaicin). The

results show that a single intra-articular injection of

CNTX-4975 was effective in providing a significant and

TABLE 2 Clinical trials of some chemical drugs for OA.

Classification Drug Therapeutic influence Administration Clinical trial
number

Anti-IL-1 Lutikizumab
(ABt-981)

Downregulate IL-1α and IL-1β levels, decreased the levels of
neutrophils, hsCRP and serum C1M

Subcutaneous
injection

NCT02384538

Phase IIa

Trans-Capsaicin CNTX- 4975 Alleviate pain Intra-articular
injection

NCT02558439

Phase II

Cathepsin K Inhibitor MIV-710 Reductions in bone and cartilage osteoarthritis manifestations Oral NCT03037489

Phase IIa

Selective iNOS Inhibitor Cindunistat (SD-
6010)

Inhibition of iNOS and its downstream products Oral NCT00565812

Phase III

Recombinant human fibroblast
growth factor 18

Sprifermin Increases cartilage thickness, and reduces cartilage loss Intra-articular
injection

NCT01919164

Phase II

Antiosteoporotic agent Strontium ranelate
(SrRan)

Downregulate MMPs and NF-κB, activate osteoprotegerin Oral NCT03937518

Phase III

Nerve growth factor inhibition Tanezumab Downregulate Nerve growth factor level Intravenous injection NCT00864097

Phase III

Fasinumab Subcutaneous
injection

NCT02447276

Phase IIb/III

Fulranumab Subcutaneous
injection

NCT00973141

Phase II

Wnt pathway modulator Lorecivivint
(SM04690)

Inhibit CDC-like kinase 2 and dual-specificity tyrosine
phosphorylation-regulated kinase 1A, affect Wnt pathway

Intra-articular
injection

NCT02536833

Phase IIa
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clinically meaningful reduction in pain that occurs while

walking on a flat surface in patients with chronic

moderate-to-severe OA knee pain (Stevens et al., 2019).

The improvement in pain was associated with a reduction

in knee stiffness and an improvement in function compared

to placebo. To evaluate the efficacy, safety, and tolerability of

MIV-711 in participants with symptomatic, radiographic

knee osteoarthritis. Philip designed a 26-week randomized,

double-blind, placebo-controlled phase 2a study (Conaghan

et al., 2020). Progression of medial femoral bone area was

significantly reduced in both MIV-711 treatment groups

compared with placebo, and medial femoral cartilage

thinning was reduced in the group receiving 100 mg/d.

Significant reductions in bone resorption and cartilage

degradation biomarkers were also observed. In conclusion,

MIV-711 showed no beneficial effects on osteoarthritic knee

pain in this study. However, statistically significant

reductions in bone and cartilage osteoarthritis

manifestations were observed, along with a reassuring

safety profile. Marie-Pierre’s group want to explore if

inhibition of inducible nitric oxide synthase (iNOS) with

cindunistat hydrochloride maleate will slow the

progression of osteoarthritis (Hellio le Graverand et al.,

2013). Their statistics show that irreversible iNOS

inhibitor Cindunistat did not reduce the rate of joint space

narrowing in patients with knee OA in comparison with

placebo and iNOS inhibition did not slow OA progression.

What’s more, the loss of efficacy over time and lack of effect in

patients suggest that alternative biochemical catabolic

pathways overcame the effects of NO inhibition and/or

that the consequences of the increased intra-articular

stress may not have been amenable to iNOS inhibition

alone. In Felix Eckstein’s clinic trial, they applied the

recombinant human fibroblast growth factor 18

(sprifermin) to patients, compared with placebo (Eckstein

et al., 2020). The current results support the concept that

sprifermin increases cartilage thickness, and reduces cartilage

loss. They showed structural modification of cartilage

thickness with sprifermin. Sprifermin should be evaluated

further in clinical trials as a potential DMOAD for knee OA.

To explore the disease modifying effect of strontium ranelate

(SrRan) treatment on cartilage volume loss and bone marrow

lesions in a subset of OA patients, Pelletier conducted a phase

III clinical trial (Pelletier et al., 2015). They find that

treatment with SrRan 2 g/day can reduce knee OA

cartilage volume loss predominantly in the plateau and

that in patients with bone marrow lesions, a protective

effect of SrRan was found to substantially reduce the

cartilage volume loss in the medial plateau. Taken

together, these findings showed that SrRan has a DMOAD

effect in knee OA patients. Tanezumab, a monoclonal

antibody, inhibits nerve growth factors and reduces

chronic pain. Balanescu conducted a study to evaluate the

efficacy and safety of tanezumab added to oral diclofenac

sustained release in patients with hip or knee OA pain

(Balanescu et al., 2014). The study reported that the

addition of tanezumab to diclofenac sustained release

resulted in significant improvements in pain, function and

global assessments in patients with OA. Although no new

safety signals were observed, the higher incidence of adverse

events in the tanezumab + diclofenac group suggests that

combination therapy is unfavorable. Further investigations of

tanezumab monotherapy for OA pain treatment are required.

Yazici conducted a phase II clinical trial to assess the safety

and efficacy of the novel Wnt/β pathway modulator

lorecivivint (SM04690) for treating pain and inhibiting

structural progression in moderate-to-severe symptomatic

knee OA. The results data indicated that lorecivivint have

improvements in pain and function compared with placebo.

This study identified a target group of subjects with unilateral

symptomatic knee OA and a potentially optimal dose of LOR

(0.07 mg). The clinical and radiographic outcomes warrant

additional studies of the potential of LOR for both analgesia

and disease-modifying activity in knee OA. Paula’s study

assessed the efficacy, general safety, and joint safety of

fasinumab, an anti-nerve growth factor monoclonal

antibody, in OA pain (Dakin et al., 2019). In this phase

IIb/III study, fasinumab demonstrated a substantial degree

of analgesia in patients with moderate-to-severe pain from

OA, without clear evidence of dependence on dose level for

efficacy. This represents an important, previously

unaddressed patient population. Fasinumab was well

tolerated by most patients, with a clear dose-dependent

increase in joint-related abnormalities. The observation

that the efficacy of lower doses was similar to that of

higher doses but was associated with lower rates of

arthropathy demands that future studies explore the

benefit versus risk at these lower doses of fasinumab.

When lifestyle modification and drug treatment do not

work, surgery is needed. Arthroscopy is a minimally

invasive surgery for eliminating meniscal tears and

debridement of loose articular cartilage and it is one of the

most prevalent surgeries (Chang et al., 2012; Kloppenburg

et al., 2019). Nonspecific treatment for OA is not suggested

because of the multiple factors that influence success rates

(Hellio le Graverand et al., 2013; Stevens et al., 2019;

Conaghan et al., 2020; Eckstein et al., 2020). Knee

replacement surgery has been performed consistently for

more than four decades. Because severe arthritis of the

knee usually affects only one compartment, it can be

treated with either unicompartmental (UKA) or complete

knee arthroplasty (TKA). UKA has a speedier recovery, fewer

problems, and better function (Balanescu et al., 2014;

Pelletier et al., 2015; Dakin et al., 2019). While TKA is

only used as a last resort for patients with OA. TKA is

typically advised for older patients who have terrible knee
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pain, unacceptable activity limitations that result in the loss

of important activities, and severe end-stage OA of the joint

(Song et al., 2018).

Table 2 is a summary of properties of the above

pharmaceutical reagents.

Active ingredients of medicinal plants
for osteoarthritis

In clinic, antipyretic analgesics, NSAIDs, opioids, and GCs

are frequently used to treat OA. However, these medications are

just symptomatic and have several negative effects. An increased

risk of gastrointestinal bleeding and a slight rise in systolic blood

pressure are two adverse effects for which there is solid evidence

(Evans et al., 2014; Maudens et al., 2018; Zhang et al., 2020b).

Insulin resistance, muscular and skin atrophies, depression, and

severe skeletal consequences are all examples of GCs. As a result,

developing a new drug candidate and/or improving the drug

delivery safety and efficacy is critical for the treatment of OA.

Traditional Chinese medicine has long been used to treat a

variety of ailments, and it has the benefits of being affordable,

widely available, and have fewer adverse effects (Song et al.,

2018). Scholars looked into the treatment potential of traditional

Chinese medications for OA, and the findings revealed that they

are both effective and safe (Liu et al., 2013; Chen et al., 2017).

Matrine is an alkaloid obtained from the traditional Chinese

medicine Sophora flavescens Aiton. Basic research on matrine’s

anti-inflammatory properties is currently in substantial volume,

indicating that matrine possesses pharmacological activity and

therapeutic application potential (Zhang et al., 2020a). Matrine

inhibits MAPK and NF-κB activation in human chondrocytes

in vitro and reduces IL-1β-induced MMP synthesis, protecting

chondrocytes against extracellular matrix degradation by MMPs

(Lu et al., 2015).

Sinomenine is a bioactive alkaloid produced from the

Chinese medicinal plant Sabia japonica Maxim. Sinomenine

reduces the number of CD11bF4/80CD64 synovial

macrophages and CD11bLy6CCD43 monocytes/macrophages

in CIA mice. In CIA mice, a decrease in the quantity of these

macrophages suppresses the release of inflammatory cytokines.

Sinomenine can thereby control the inflammatory response by

inhibiting the activities of IL-1α, IL-1β, TNF-α, and IL-6 (Liu

et al., 2018; Gao et al., 2019).

Osthole is a natural coumarin derived from the Cnidium

monnieri (L.) Cuss that is extensively used in Traditional Chinese

Medicine clinical practice. Recent research has discovered that

osthole possesses antioxidant, anticancer, anti-inflammatory,

and immunomodulatory properties (Wang et al., 2007; You

et al., 2009; Zhang et al., 2015). Excessive stimulation of the

PI3K/Akt pathway has been demonstrated to increase MMP

expression in previous investigations (Katsara et al., 2017).

Inflammation, immunological response, and apoptosis are all

regulated by the NF-κB pathway. Researchers have discovered

that osthole can drastically lower critical proteins in the PI3K/

Akt/NF-κB pathway, hence alleviating OA. Toll-like receptor 4

(TLR4) activation is linked to chondrocyte inflammation and

catabolism, according to researchers (Yan et al., 2019). TLR4 and

its downstream NF-κB are inhibited by curcumin, which reduces

synovial inflammation.

Curcumin, extract from Curcuma longa L. can also protect

chondrocytes and maintain cartilage homeostasis by activating

the ERK1/2 pathway and inhibiting the Akt/mTOR pathway

(Zhang et al., 2018). Curcumin’s anti-OA properties can possibly

be attributed to other factors. Curcumin, for example, can

decrease chondrocyte death and enhance chondrocyte

proliferation by mediating the Wnt/β-Catenin pathway (Wang

et al., 2017). Inhibiting NF-κB signal transduction can also

diminish chondrocyte extracellular matrix breakdown.

Loganin is a prominent iridoid glycoside and one of

Strychnos nux-vomica L.’ quality control indicators. Loganin

can boost Col2a1 expression while lowering MMP-3, MMP-

13, Col10, cryopyrin, and caspase-1 expression in cartilage (Hu

et al., 2020). In subchondral bone, loganin reduced the expression

of CD31 and endomucin. Furthermore, loganin inhibited

p65 protein nuclear translocation and decreased the quantity

of p-IκB in chondrocytes (Yang et al., 2019). According to these

findings, Loganin suppresses NF-κB signaling and reduces

cartilage matrix degradation and chondrocyte pyroptosis in

articular cartilage.

Morroniside is a significant iridoid glycoside and one of

Cornus officinalis Sieb.et Zucc.’ quality control criteria.

Morroniside promotes cartilage matrix formation by

increasing collagen type II expression and reducing

chondrocyte pyroptosis. Morroniside decreased the synthesis

of MMP-13, caspase-1, and nod-like receptor protein-3

(NLRP3) in IL-1β-stimulated chondrocytes (Park et al., 2021).

Morroniside also slowed the course of OA by increasing

chondrocyte proliferation and decreasing chondrocyte death.

Morroniside has been shown to block NF-κB signaling,

slowing the development of OA (Yu et al., 2021).

Madecassoside is a triterpenoid component obtained from

the Gotu kola plant [Centella asiatica (L.) Urban] that has

antioxidative and anti-inflammatory activities. Madecassoside

has been demonstrated to successfully suppress IL-1β-induced
overexpression of MMP-3, MMP-13, inducible nitric oxide

synthase (iNOS), and COX-2, as well as type II collagen and

sox9 degradation (Moqbel et al., 2020). Madecassoside was also

able to inhibit IL-1β-induced phosphorylation of p65 in

osteoarthritic chondrocytes. Furthermore, as compared to

the OA group, madecassoside reduced the OARSI score and

avoided cartilage deterioration in a rat OA model. These

findings demonstrated that madecassoside inhibits the NF-

κB signaling pathway, lowering IL-1β-induced chondrocyte

inflammation, implying that MA might be used to treat OA

patients.
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Quercitrin is a yellow-colored flavonoid that is a substantial

component of Taxillus sutchuenensis (Lecomte) Danser’ total

flavonoids. By stimulating the p110/AKT/mTOR signaling

pathway, quercitrin can decrease MMP-13 production and

enhance collagen II accumulation, promoting cell proliferation

and delaying ECM breakdown (Guo et al., 2021). According to

the research, quercitrin targets p110 to produce its anti-OA

properties. Grape seed extract contains resveratrol, which is a

polyphenol phytoalexin (Xu et al., 2019). Resveratrol can block

the degradation of IκB-α and the activation of NF-κB caused by

IL-1β.
Resveratrol can significantly reduce the inflammatory

response induced by IL-1β in OA chondrocytes, including

MMP-13, MMP-3, and MMP-1. Resveratrol can also boost

collagen-II and aggrecan levels. As a result, Resveratrol holds a

lot of promise in the treatment of OA. Anti-inflammatory and

antioxidant effects have been discovered in fraxetin. It is a

coumarin chemical isolated from Fraxini Cortex that is

frequently utilized and investigated. According to the

findings, fraxetin suppressed inflammatory mediator release

and prevented chondrocyte death produced by IL-1β through

modulating the TLR4/myeloid differentiation primary

response 88/NF-κB pathway in chondrocytes (Wang et al.,

2020). In addition, fraxetin inhibited MMP-13 overexpression

and collagen II breakdown in the ECM. The findings revealed

that fraxetin might prevent cartilage from deterioration.

TABLE 3 The therapeutic influence of natural products in OA.

Compound Molecular formula Cytokines Pathway

Matrine C15H24N2O IL-1, IL-6, TNF-α, MMPs↓ Col Ⅱ↑ NF-κB, MAPK

Sinomenine C19H23NO4 MMPs, IL-1α, IL-1β↓ TNF-α, IL-6↓ NF-κB
Osthole C15H16O3 IL-1, IL-6, TNF-α, MMPs↓ PI3K/Akt/NF-κB
Puerarin C21H20O9 IL-1, IL-6, TNF-α, MMPs↓ Col Ⅱ↑ NF-κB
Ginsenoside Rg1 C42H72O14 MMP-3, IL-1, TNF-α↓ Col Ⅱ↑ NF-κB
Curcumin C21H20O6 IL-1, IL-6, TNF-α↓ JAK2/STAT3, NF-κB, Akt/mTOR

Loganin C17H26O10 MMPs↓ Col Ⅱ↑ NF/κB, PI3K/Akt
Morroniside C17H26O11 MMP-1, MMP-13↓ Col Ⅱ↑ NF-κB
Madecassoside C30H48O6 MMP-13, COX-2↓ Col Ⅱ↑ p65/NF-κB
Quercitrin C21H20O11 MMP-13↓ Col Ⅱ↑ p110α/AKT/mTOR

Resveratrol C14H12O3 IL-1, IL-6, TNF-α, MMPs↓ COX-2↓ NF-κB
Andrographolide C20H30O5 IL-1, IL-6, TNF-α↓ NF-κB
Fraxetin C10H8O5 IL-1, IL-6, TNF-α, MMP-13↓ Col Ⅱ↑ TLR4/My D88/NF-κB
Ligustilide C12H14O2 PGE2, iNOS, COX-2↓ MMP-13, ADAMTS-5↓ PI3K/Akt/NF-κB
Icariin C33H40O15 NLRP3, IL-1β, IL-18↓ MMP-1, MMP-13↓ Col Ⅱ↑ p38, ERK, JNK, Wnt/β-Catenin

Baicalein C15H10O5 MMPs↓ MAPK

Emodin C15H10O5 MMP-3, MMP-13↓ ADAMTS-4↓ NF-κB, Wnt/β-Catenin

TABLE 4 Advantages and disadvantages between different delivery systems.

Administration Delivery vehicles Delivered
drug

Disadvantages Advantages

Oral Microcapsules/Yeast IL-1β shRNA Gastrointestinal reaction, high
manufacturing cost

Enhance medication absorption, lessen
gastrointestinal side effects, lower toxicity,
increase bioavailability, good patient
compliance

Liposomes/DOPC, HA Diclofenac

Intra-articular
injection

Microspheres/PEA Triamcinolone
acetonide

Risk of infection, cause patient pain, poor
patient compliance, instability, safety of
biomaterials

Enhance bioavailability and effectiveness,
reducing the injury rate of intra-articular
glucocorticoid delivery and the side effects of
glucocorticoid drugs. Delay drug release

Nanospheres/Sodium
hyaluronate

HA

Transdermal delivery Liposomes/Microneedles
Liposomes/Ultrasound
Liposomes/Thermos therapy

Triptolide Risk of infection, low drug loading
content, allergic responses

Delay drug release, minimize administration
frequency, improved drug penetration, reduce
joint damage, improve patient compliance

Diclofenac

Fentanyl
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Ligustilide, a key ingredient in the plant Angelicae Sinensis

Radix, has anti-inflammatory properties. Ligustilide inhibits NF-

κB activation via the PI3K/AKT pathway, reducing IL-1β-
induced chondrocyte inflammation and ECM breakdown (Li

et al., 2018). In human OA chondrocytes, Ligustilide inhibits the

production of PGE2, iNOS, COX-2, MMP-3, MMP-13, and

ADAMTS-5, as well as the breakdown of aggrecan and

collagen II. Ligustilide has the potential to be an effective OA

treatment.

Icariin, an Epimedium extract, has been shown to have anti-

osteoporotic and anti-inflammatory properties in OA patients.

Icariin might reduce pyroptosis by suppressing the

NLRP3 signaling-mediated caspase-1 pathway, which is

important in the pathogenesis of OA, to reduce chondrocyte

damage and the incidence of OA. Icariin may be a promising

target drug for the treatment of OA. Icariin appears to be a viable

target drug for treating OA.

Baicalein, which is derived from the Scutellaria baicalensis

Georgi, is commonly used in anti-inflammatory treatments.

Baicalein might successfully relieve OA by improving

chondrocyte apoptotic and catabolic phenotypes and

subchondral bone remodeling (Chen et al., 2015). Baicalein

was discovered to limit preosteoblast differentiation and

proliferation while triggering preosteoblast death, hence

controlling subchondral bone remodeling (Li et al., 2021).

Baicalein can also reduce vascularisation and synovial cell

proliferation, helping to regulate synovitis and ease

subchondral bone sclerosis. Baicalein may be an effective

treatment for OA since it regulates many targets.

modin is a natural anthraquinone isolated from the root

and rhizome of Rheum palmatum L. that has previously been

demonstrated to have antibacterial (Kim et al., 2005), anti-

cancer (Kaneshiro et al., 2006; Lin et al., 2010) and anti-

inflammatory (Alisi et al., 2012) activities. Emodin may have

anti-osteoarthritic actions via suppressing the NF-κB and

Wnt/β-catenin pathways, which reduce the production of

MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5 (161). Cell

proliferation, migration, and differentiation, as well as

cartilage homeostasis and joint remodeling, are all

influenced by the Wnt/β-Catenin pathway. Emodin has the

potential to cure OA, according to the findings.

The active chemical found in medicinal plants holds a lot of

promise for treating OA. However, further clinical trials are

needed to validate their usefulness and safety.

Table 3 shows the therapeutic influence of the above natural

products for OA.

Delivery strategies

As a topical disease, innovative delivery options such as intra-

articular injection or transdermal delivery have been extensively

researched in addition to the traditional oral and systemic

administration routes. Many biomaterials have been

investigated for the design of novel drug delivery systems for

the treatment of OA to improve the efficacy of the delivery

vehicles.

Oral delivery is still the most common approach in drug

administration for OA (Sastry et al., 2000; Sant et al., 2012).

However, oral distribution is hampered by physiological hurdles

such as the harsh gastrointestinal environment, as well as

enzymatic degradation and tolerance, which make it difficult

to use oral delivery methods in clinical settings (Homayun et al.,

2019). For example, the most popular and traditional therapy for

OA pain relief is NSAIDs. However, NSAIDs have a number of

serious adverse effects, including toxicity and a severe

gastrointestinal response (Meng and Li, 2017; Polderman

et al., 2019). Improved oral administration such as by the

nano or micro formulations can enhance medication

absorption with long effects and lessen gastrointestinal side

effects and frequent administrations. For example, HA-

Liposomal (Lipo)-DIC has been shown to achieve an effective

working concentration in 4 h and maintain it for at least 168 h

(Chang et al., 2021).

Intra-articular injection

As a localized disease, OA may be treated through intra-

articular (IA) injections (Gerwin et al., 2006). Intra-articular drug

delivery offers a variety of advantages, including higher local

bioavailability, less systemic exposure, fewer side effect, and

lower cost (Evans et al., 2014; Emami et al., 2018). However,

because of the dense avascular cartilage matrix made up of

negatively charged glycosaminoglycans (GAGs), medicines

injected locally will quickly leave the joint region and disperse

and travel slowly. The need for biomaterial-based drug delivery

vehicles that can increase medication bioavailability in target

tissues notwithstanding the challenges (Maudens et al., 2018). IA

injectable formulations of glucocorticoids and hyaluronic acid

are available (Zhang et al., 2020b). And the majority of them are

in the form of solutions or suspensions. Due to the fast

disappearance of classic injectable formulations in joints, new

drug delivery methods are expected to be developed yet.

Microspheres can not only protect pharmaceuticals in vivo

from numerous causes but also slow down their release. It

reduces delivery durations and doses while avoiding the

harmful side effects of systemic absorption, providing essential

theoretical support for OA research and therapy. Triamcinolone

acetonide (TAA), a traditional corticosteroid, relieves synovitis

and discomfort, but only temporarily. Local release of TAA based

on biomaterials may extend pain relief without the need for

numerous injections (Burt et al., 2009).

Scholars discovered that hyaluronic acid nanoparticle/

hydrogel (HA-NP) exhibited resistance to hyaluronidase

digestion in vitro and long-term retention ability in the knee
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joint in vivo. The injectable hydrogel-based drug delivery system-

dexamethasone hydrogels have a consistent release profile from

the start, with a content of 22 percent of the original medication

released in 5 days. Furthermore, these drug delivery methods are

less cytotoxic and support good cell viability in chondrocytes and

osteoblast cells. Intra-articular injection can reduce

gastrointestinal reactions, avoid the first-pass effect, and

ensure that drugs can be delivered to the articular cavity.

However, intra-articular injection needs to puncture the skin,

which is invasive and may cause inflammation and bring

secondary damage to OA patients. What’s more, 50% of the

clinical intra-articular injections will be injected outside the joint

cavity. Therefore, it is still necessary to develop new delivery

systems to prolong the drug retention time in the joint and

reduce the frequency of drug delivery. Above all, Figure 3 have

shown oral and intra-articular delivery systems for OA.

Transdermal delivery

OA is a localized disease that often occurs in the knee, hand

and hip joints. Therefore, skin penetration-based topical

administration may commonly meet the needs of OA

treatment. Transdermal drug administration can allow the

medication to enter circulation at a steady pace and

continuously via the skin. Compared to the oral route or

intra-articular injection, transdermal administration offers a

number of benefits (Prausnitz and Langer, 2008). Transdermal

administration can minimize administration frequency, improve

slow-release effectiveness, and improve patient compliance (Yin

and Smith, 2016; Brown and Williams, 2019). However, the

stratum corneum, which functions as the first protective layer of

the skin and limits medication absorption, poses the biggest

obstacle in drug administration via the transdermal method

(Hadgraft and Lane, 2005). To enhance the skin penetration

of drugs, various physical and chemical means of promoting

permeation have been attempted for transdermal delivery of OA

drugs.

Numerous chemical enhancers are capable of disrupting

the highly ordered bilayer structures of intracellular lipids

found in the stratum corneum by inserting amphiphilic

molecules into these bilayers to disrupt molecular packing

or by extracting lipids using solvents and surfactants to create

nanometer-scale lipid packing defects (Prausnitz and Langer,

2008). However, the most significant limitation of this

technique is that skin irritation may induce allergic

responses in individuals. Iontophoresis is another technique

for improving transdermal penetration by supplying an

electrical driving force. Due to the fact that iontophoresis

does not affect the epidermal barrier directly, it is often applied

to tiny charged molecules and certain macromolecules up to a

few thousand Daltons (Kalia et al., 2004).

FIGURE 3
Oral delivery and intra-articular injection systems for OA.
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Cavitational ultrasound that uses the bubbles to oscillate and

collapse at the skin surface to generate localized shock waves and

liquid microjets directed at the stratum corneum induces the

disruption in the lipid structure of the stratum corneum and can

increase skin permeability for many hours. Additionally, thermal

effects from ultrasound have been suggested to impact

sonophoretic skin contact favorably by increasing the drug

diffusion and the skin permeability coefficients (Canavese

et al., 2018; Park et al., 2016).

Articular thermotherapy induces vasodilation and

increases blood flow around the joints, thereby reducing

pain and joint stiffness (Choi et al., 2015). Besides this,

heaters can also help drugs cross the skin. When the

thermos therapy is applied, solubility and diffusivity of

inorganic and organic drugs increase from the drug-

containing layer (Bagherifard et al., 2016). Transdermal

drug permeation is increased by the application of heat,

which enhances the circulation of bodily fluid, the

permeability of blood vessel walls, and the rate-limiting

membrane permeability (Lee et al., 2018).

Microneedles are tiny and cheap needles that can carry

medications through the skin in the least invasive way (HS et al.,

2014; Kennedy et al., 2017). Furthermore, microneedles allow for the

regulated and sustained release of medications based on the demands

of the patients. Microneedles, in general, could increase skin

permeability by creating micron-scale pathways into the skin, and

actively drive drugs into the skin either as coated or encapsulated

cargo introduced duringmicroneedle insertion or via convective flow

through hollow microneedles. Skin penetration enhancement

strategies are shown in Figure 4. And we have summarized the

advantages and disadvantages between different delivery systems in

Table 4.

Prospect

OA is a chronic joint disease characterized by degeneration of

articular cartilage and hyperosteogeny around the joint. At

present, the molecular mechanism of OA is still not clear. The

process of modern science and medicine will help us to know

better about the pathogenesis of OA and thus more therapeutic

targets can be excavated in follow-up work (Rahmati et al., 2017).

Lifestyle modification is still the most effective way in the

treatment of OA. Doing more exercise to lose weight and

keep fit’s not only economical but also can control or slow

down the course of OA and reduce the mortality rate of OA.

FIGURE 4
Skin penetration enhancement strategies.
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Acetaminophen and NSAIDs are often used in the clinical

treatment of OA, but long-term use of these drugs will lead to

nephrotoxicity and gastrointestinal reactions. For this reason, it is

urgent to develop new drugs for treating OA. Traditional Chinese

medicine accumulated a wealth of experience in the treatment of

osteoarthritis. At present, many studies that have been focused

on the therapeutic effects of active ingredients from medicinal

plants, such as ginsenoside, matrine and sinomenine. They were

shown to inhibit the expression of pro-inflammatory factors such

as IL-1 and TNF-α in diseased tissues, and the downregulation of

IL-6 can alleviate the local inflammatory response. Meanwhile,

they can also reduce the expression of matrix metalloproteinases

to inhibit the interpretation of extracellular matrix of

chondrocytes and protect cartilage and according to the

current studies, these active ingredients did not show strong

cytotoxicity. There is an extensive prospect to explore the

application of traditional Chinese medicine in OA.

Another challenge for pharmaceutical treatment in OA

lies in the design of cartilage-targeting drug delivery systems.

Oral administration frequently leads to fierce gastrointestinal

reactions and low bioavailability because of the first-pass

effect. Intra-articular injection is an invasive method to the

joints. Therefore, various DDSs such as nanoparticles,

liposomes and hydrogels based on transdermal/topical

delivery systems have caused increasing attention to

reducing the frequency of intra-articular injections,

increasing patient compliance, and reducing the risks

along with the conventional preparations.

Furthermore, as a big challenge to deliver drugs into

chondrocytes, we can use physical technologies such as

ultrasound and iontophoresis to assist the process of drug

delivery and build intelligent local drug delivery systems

which help researchers to provide new strategies for the

treatment of OA. Besides, new approaches that

simultaneously deliver chemical drugs and biological drugs

aiming to enhance drug efficacy and reduce the side effects

might be also combined to develop the next generation

therapeutic system for OA treatment. Because the

combination of several different types of drugs may work

synergistically, the advanced vehicles that can co-deliver

multiple drugs or release them in a responsive manner are

highly proposed. However, it presents several new challenges

that must be dealt with and a thorough biological assessment

is needed for determining the drug combination. Another

important aspect is the determination of the best mass ratio of

each agent within a co-deliver drugs system which needs a

systematic study to investigate the effects of different drug

ratios on biological efficacy (Karsdal et al., 2016; Lotz and

Caramés, 2011; Hunter, 2011; Vos et al., 2012).
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