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Neuroimaging has been widely used as a diagnostic technique for brain

diseases. With the development of artificial intelligence, neuroimaging

analysis using intelligent algorithms can capture more image feature patterns

than artificial experience-based diagnosis. However, using only single

neuroimaging techniques, e.g., magnetic resonance imaging, may omit

some significant patterns that may have high relevance to the clinical target.

Therefore, so far, combining different types of neuroimaging techniques that

providemultimodal data for joint diagnosis has received extensive attention and

research in the area of personalized medicine. In this study, based on the

regularized label relaxation linear regression model, we propose a multikernel

version for multimodal data fusion. The proposed method inherits the merits of

the regularized label relaxation linear regression model and also has its own

superiority. It can explore complementary patterns across different modal data

and paymore attention to themodal data that havemore significant patterns. In

the experimental study, the proposed method is evaluated in the scenario of

Alzheimer’s disease diagnosis. The promising performance indicates that the

performance of multimodality fusion viamultikernel learning is better than that

of single modality. Moreover, the decreased square difference between training

and testing performance indicates that overfitting is reduced and hence the

generalization ability is improved.
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1 Introduction

Neuroimaging technologies are currently the most widely used methods to study

brain diseases, and they can directly or indirectly image the nervous system. Common

neuroimaging techniques include structural magnetic resonance imaging (sMRI), which

can provide rich morphological features of brain tissues; functional magnetic resonance

imaging (fMRI), which not only provides anatomical information but also shows the

response mechanism of the nervous system; positron emission tomography (PET), which

is the only novel imaging technique that can display biomolecular metabolism, receptors,
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and neuromediator activity in vivo; diffusion tensor imaging

(DTI), which can reflect the structure of white matter fibrin in the

brain, etc (Klöppel et al., 2012; Friston, 2009). Neuroimaging

technologies play a very important role in the research of

Alzheimer’s disease (AD) (Bao et al., 2021; Karikari et al.,

2021; Zhang et al., 2021). Previous studies on AD and mild

cognitive impairment (MCI) were often based on a single

neuroimaging technique (single modality data). However,

single modality data have obvious defects; they can only

provide information on local brain abnormalities, which will

affect the diagnostic accuracy of AD and MCI. In recent years,

many studies have found that multimodal data have the

advantage of realizing information complementation (Zhang

et al., 2022a). The features of multimodal data can be

combined to obtain more comprehensive disease information,

which is of great significance for the early diagnosis and

treatment of AD. In particular, with the development of

artificial intelligence (AI) technologies, multimodal fusion has

been developed rapidly for AD diagnosis studies. For example,

Kohannim et al. (2010) used support vector machines (SVMs) to

classify AD. When using MRI as single-modal data for

experiments, the classification accuracy of AD vs. normal

control (NC) and that of MCI vs. NC were 79.07% and

71.21%, respectively. When experiments were performed after

combining MRI, fluorodeoxyglucose-PET, and cerebrospinal

fluid (CSF), the classification accuracy of AD vs. NC and that

of MC vs. NC were 90.70% and 75.76%, respectively. Compared

to single modality, the classification accuracy is improved by

5–10%. Zhang et al. (2011) combinedMRI, PET, and CSF for AD

classification. A multikernel SVM was taken as the classifier. The

classification accuracy of AD vs. NC was 93.2%. Compared with

using single-modal data, the accuracy was improved by 7–10%.

The accuracy of MCI vs. NC was 76.4%, which was an

improvement of 4.4–5% compared to using single modality

data. Buvaneswari and Gayathri (2021) combined the features

extracted from DTI and fMRI into a multikernel SVM for AD

classification, and the accuracy of AD vs. NC was 98.4%;

however, when the two modalities were used alone for

classification, the highest achieved accuracy was only 90.9%.

The above research further verifies that in the classification of

AD, compared with single-modal data, the use of multimodal

data can obtain richer and more valuable features, and the

classifier can obtain higher classification accuracy.

From existing studies regarding multimodality fusion, we

found that classifiers based on multikernel learning were

commonly used. This is because each modality can be

mapped into the kernel space by a kernel function. Therefore,

multikernel learning actually provides a natural framework for

multimodality fusion. However, when multikernel learning is

applied to practice, e.g., medical data analysis, overfitting often

exists. Therefore, to overcome overfitting and to obtain

promising prediction performance, in this study, according to

regularized label relaxation linear regression (Fang et al., 2017),

we integrate label relaxation and compactness graphmechanisms

into multikernel learning and propose a new multikernel

learning algorithm for AD diagnosis.

The main differences with the existing studies can be

summarized as follows.

(1) Unlike the modality-consistent regularization used in

previous studies (Jiang et al., 2016), the “all-single” fusion

strategy is introduced so that every single feature and the

possible combinations are all considered so that the

complementary information can be fully explored.

(2) We extend the compactness graph mechanism from the

linear space to the multikernel space so that the

overfitting problems can be reduced in the multikernel space.

The remaining article is organized into four sections. In

Section 2, we will state some related work regarding AI-

assisted AD diagnosis based on multimodality fusion. In

Section 3, we will present our new method and its

optimization. In Section 4, we will report our experimental

results and in the last, we will conclude our study and

indicate our future work.

2 Related work

Multimodality fusion strategies can be divided into three

levels: pixel-level fusion, feature-level fusion, and decision-level

fusion (Xia et al., 2020). Pixel-level fusion is to directly perform

pixel-related fusion based on strict registration. Feature-level

fusion refers to transforming different modal data into high-

dimensional feature spaces and then merging them before or

duringmodeling. Decision-level fusion is to use certain strategies,

such as voting, to fuse the decision result of each modal, to obtain

the globally optimal result. In Table 1, we summarize some

representative previous works belonging to these three

categories.

Strict registration plays a key role in pixel-level fusion. For

example, Daneshvar et al. proposed a fusion strategy based on

integrated intensity-hue-saturation and retina-inspired model to

improve the fusion performance. The strategy often used in

decision-level fusion is ensemble learning. In the early studies

of AD diagnosis, the most commonly used learning components

in ensemble learning were SVM (Shukla et al., 2020) and also

linear classifiers (Jiang et al., 2020), Bayesian networks (Zhang

et al., 2017), decision trees (Zhang et al., 2020), etc. For example,

Fan et al. (2008) took the two-modal data of the bilateral

hippocampus volume and the bilateral entorhinal cortex

volume as core features and used SVM as the learning

component. The accuracies of AD vs. MCI, AD vs. NC, and

MCI vs. NC are 58.30%, 82.00%, and 76.00% respectively.

Feature-level fusion has been widely used in AD studies. For

example, Suk et al. (2014) obtained high-level latent and shared
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feature representations from neuroimaging via deep network-

confined Boltzmann machines. In the binary classification of AD

vs. NC and MCI vs. NC, maximum accuracies of 95.35% and

85.67% were finally obtained, respectively. Madusanka et al.

(2019) used the fusion of texture and morphological features

as a biomarker to diagnose AD and used SVM as the classifier.

The classification accuracy reached 86.61%. Zhang et al. (2020)

proposed a deep multimodal fusion network based on an

attention mechanism, which was able to selectively extract

deep features from MRI and PET, while suppressing irrelevant

information. In the attention mechanism-based model, the

fusion ratio of each modality is automatically assigned

according to the importance of the modality. In addition, a

hierarchical fusion method was adopted to ensure the

effectiveness of multimodal data fusion. The final classification

accuracies of NC vs. AD and SMCI vs. PMCI were 95.21% and

89.79%, respectively.

In this study, we also focus on feature-level fusion. From

previous studies regarding feature-level fusion, we find that there

are still some issues that should be addressed in the future.

(1) Most of the previous studies only direct concatenate features

from different modalities and then input them into a model

for AD prediction. This strategy does not consider

complementary patterns across different modalities.

(2) Some multikernel-based studies achieved promising

performance and also consider complementary patterns

across different modalities. However, with a sparse or

small training set, overfitting often occurs.

Therefore, to address the abovementioned issues, in this

study, we will propose a novel multimodality fusion model at

the feature-fusion level.

3 Data and methods

3.1 Data

The data (MRI and PET) used in this study were collected

from Alzheimer’s Disease Neuroimaging Initiative. There are

103 subjects in the dataset, where 51 subjects were organized

into the NC group and 52 subjects were organized into the

AD group. We used the following workflows (Zhang et al.,

2021), as shown in Figure 1, to perform data preprocessing.

As can be seen from Figure 1A, the tissue probability map

template was first used to segment the original MRI into white

matter (WM), gray matter (GM), and other tissues. In particular,

WM and GM tissues were mapped into the Montreal

Neurological Institute (MNI) space during preprocessing.

Second, diffeomorphic anatomical registration through

exponentiated lie algebra (DARTEL) was employed to create

average templates for the obtained WM and GM tissues. In the

last, GM was modulated to transform the density

information into volume information. In addition, GM was

smoothed (8 mm Gaussian) to avoid the influences caused by

noises.

As can be seen from Figure 1B, SPM-12 was employed to

fuse these PET images (one subject has 96 images) to

construct a 3-D image that provides brain spatial

information and the feature information between tissue

structures was also retained. Moreover, head motion was

corrected. After fusion alignment, MRI and PET of each

subject were registered and affinely aligned. In the last, the

average template data generated in Figure 1A were used to

spatially normalize all PET images to the standard MNI

space. PET images were also smoothed (8 mm Gaussian) to

avoid the influences caused by noises.

TABLE 1 Representative works of multimodality fusion.

Categories Authors Modalities Methodologies

Pixel-level Daneshvar and Hassan,
(2010)

MRI, PET A model based on integrated intensity-hue-saturation and retina-inspired model was proposed to
improve the fusion performance

Li and Wang, (2012) SPECT, MRI A method of multiscaled combination of MR and SPECT images based on variable-weight
Bhatnagar et al. (2015) MRI and PET A novel framework for spatially registered multimodal medical image fusion based on nonsubsampled

contourlet transform

Decision-
level

Dimitriadis et al. (2018) MRI A random forest feature selection, fusion, and ensemble strategy was applied to the classification and
prediction of AD

Fan et al. (2008) MRI and PET An SVM-based ensemble method was proposed and two modal data of the bilateral hippocampus
volume and the bilateral entorhinal cortex volume as core features were used for AD prediction

Zeng et al. (2018) sMRI, PET,
and CSF

An SVM-based ensemble method was proposed and the combined features of sMRI, PET, and CSF were
used to build an ensemble classification model for AD prediction

Feature-level Zhang et al. (2020) MRI and PET A deep multimodal fusion network based on an attention mechanism, which was able to selectively
extract deep features from MRI and PET was proposed to predict AD

Suk et al. (2014) MRI and PET High-level latent and shared feature representations were extracted and fused from neuroimaging via
deep network-confined Boltzmann machines

Madusanka et al. (2019) MRI and PET Texture and morphological features were fused as a biomarker to diagnose AD. SVM was taken as the
classifier
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3.2 Methods

3.2.1 Kernelized regularized label relaxation
A regularized label relaxation (RLR) linear regression

model was proposed to address the overfitting problem

(Fang et al., 2017). The objective function is defined as

follows:

min
A,M

‖XA − (Y + B ⊙ M)‖2F + λtr(ATXTLXA)
s.t M≥ 0

(1)

where {X,Y} represents the training set, B represents a luxury

matrix derived from Y, A represents the transformation matrix,

M represents a nonnegative label relaxation matrix, L represents

the Laplacian matrix, λ is a regularized parameter, tr() represents

FIGURE 1
Data preprocessing: (A) magnetic resonance imaging (MRI) and (B) positron emission tomography (PET).

FIGURE 2
“All-single” fusion strategy.
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the trace of a matrix, and ⊙ is a Hadamard product operator. RLR

can classify linear data well and restrain overfitting. However, in

many real-world scenarios, especially in the medical field, many

data are not linear, which may limit the application of RLR.

Therefore, Fang et al. employed the kernel technique to further

extend RLR to its nonlinear version, that is, kernelized RLR

(KRLR). The objective function of KRLR is defined as follows:

min
Θ,M

‖KΘ − (Y + B ⊙ M)‖2F + λtr(ΘTKTLKΘ)
s.t M≥ 0

(2)

where Θ can be considered the transformation matrix and the

new K is a positive semidefinite kernel Gram matrix in which

each element can be calculated as follows:

Kij � [< ϕ(X), ϕ(X)T > ]
ij
� k(xTi , xTj ). (3)

In Eq. 3, ϕ(X) � [ϕ(x1)T, ϕ(x2)T, ..., ϕ(xN)T], ϕ: Rd → Γ is a

nonlinear function that maps the input data from the original

feature space to the Hilbert space Γ. k: Rd × Rd → R represents a

kernel function in which the polynomial kernel, Gaussian kernel,

and the hyperbolic tangle kernel are usually adopted.

3.2.2 Multikernel kernelized regularized label
relaxation

We know that multikernel learning provides us a natural

framework for multimodal data fusion (Wang et al., 2021).

Therefore, we can extend KRLR to its multikernel version by

adjusting the generation way of the kernel Gram matrix. In this

study, a linear combination is used to generate the new kernel

Gram matrix in the multikernel space, that is,

K � ∑M
m�1

αmKm. (4)

By substituting Eq. 4 into Eq. 2, we can obtain the objective

function of multikernel KRLR,

min
Θ,M,αm

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F

+λtr⎛⎝ΘT⎛⎝∑M
m�1

αmKm
⎞⎠T

L⎛⎝∑M
m�1

αmKm
⎞⎠Θ⎞⎠ s.t M≥ 0, ∑M

m�1
αm � 1 .

(5)
In Eq. 5, three components are required to be optimized; they are the

transformation matrix Θ, the relaxation matrix M, and the linear

kernel combination coefficient αm. Since the objective function in

Eq. 6 is convex, an iterative updating strategy is adopted for

optimization so that in each iteration a closed-form solution can

be guaranteed (Xiang et al., 2012).

To devise the updating rule regarding the transformation

matrixΘ, we suppose that the relaxation matrixM and the linear

kernel combination coefficient αm have been fixed; thus, the

optimization problem becomes

J(Θ) � min
Θ

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F

+ λtr⎛⎝ΘT⎛⎝∑M
m�1

αmKm
⎞⎠T

L⎛⎝∑M
m�1

αmKm
⎞⎠Θ⎞⎠ (6)

By setting the derivation of Eq. 6 with respect to the

transformation matrix Θ to 0, that is, zJ(Θ)/zΘ � 0, we have

Θ � ⎛⎝⎛⎝∑M
m�1

αmKm
⎞⎠T⎛⎝∑M

m�1
αmKm

⎞⎠ + λ⎛⎝∑M
m�1

αmKm
⎞⎠T

L⎛⎝∑M
m�1

αmKm
⎞⎠⎞⎠−1⎛⎝∑M

m�1
αmKm

⎞⎠T

(Y + B ⊙ M) (7)

FIGURE 3
Workflow of training.
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To devise the updating rule regarding the relaxation matrix M,

we suppose that the transformation matrix Θ and the linear

kernel combination coefficient αm have been fixed; thus, the

optimization problem becomes

min
Θ,M,αm

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F
s.t M≥ 0

. (8)

The solution of M can be finally obtained as follows:

M � max⎛⎝B, ∑M
m�1

αmKm Θ − Y⎞⎠. (9)

To devise the updating rule regarding the kernel combination

coefficient αm, we suppose that the transformation matrix Θ and

the relaxation matrix M have been fixed; thus, the optimization

problem becomes

J(Θ) � min
Θ

									∑
M

m�1
αmKmΘ − (Y + B ⊙ M)

									
2

F

+λtr⎛⎝ΘT⎛⎝∑M
m�1

αmKm
⎞⎠T

L⎛⎝∑M
m�1

αmKm
⎞⎠Θ⎞⎠ s.t ∑M

m�1
αm � 1 . (10)

From Eq. 10, it can be seen that the analytical solution of αm
cannot be directly obtained. In this study, the reduced

gradient method is used to obtain the optimal αm
(Rakotomamonjy et al., 2008). To be specific, when the

gradient of Eq. 10 with respect to αm is obtained, αm can

be updated along its decent direction Dm to ensure that the

equality constraint and the nonnegativity constraints on αm
are satisfied. Let αg be a nonzero entry of α, then ∇regJ, which

represents the reduced gradient of Eq. 10, has components

[∇regJ]m and [∇regJ]g that are defined as

[∇regJ]m � zJ

zαm
− zJ

αg
,∀m ≠ g (11)

[∇regJ]g � ∑
m≠g

( zJ

zαg
− zJ

αm
) (12)

where g is the index of the largest element in α. The positivity

constraints have also to be taken into account in the descent

direction. However, if there is an index m such that αm � 0 and

[∇regJ]m> 0, using this direction would violate the positivity

constraint for αm. Hence, the descent direction for that

component is set to 0. This gives the descent direction for

update Dm as

Dm �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if αm > 0 and zJ

zαm
− zJ

αg
> 0

− zJ

zαm
+ zJ

αg
if αm > 0 andm ≠ g

∑
m≠g

( zJ

zαg
− zJ

αm
) if m ≠ g

(13)

3.3 Algorithm

Based on the solutions to the transformation matrix Θ, the

relaxation matrix M, and the kernel combination coefficient αm,

detailed algorithm steps were deduced as follows.

Algorithm 1.
Input: Multi-modal training data {x(m)

i , yi} and the regularized

parameter λ.

Output: Transformation matrix Θ, relaxation matrix M and

kernel combination coefficient αm Procedures:

Use “All-single” fusion strategy to obtain input data from

{x(m)
i , yi}. Initialize α by setting αm � 1/M.

Randomize M.

Repeat

Update Θ by equation (7).

Update M by equation (9).

Update zJ/zαm and Dm by equation (13).

Update g � argmax
m

αm.

Set J† � 0, α† � α, D† � D.

Repeat

Update α � α†, D � D†.

Update v � argmin
{m|Dm < 0}

−αm/Dm.

Update βmax � −αv/Dv.

Update α† � α + βmaxD.

Update D†
m � Dm −Dv,D†

v � 0.

Update J† by ∑M
m�1α

†
mKm

Until (J† ≥ J)

Until (convergence)

The time complexity of Algorithm 1 consists of 3 parts: the

computation of Θ, the computation of M, and the computation

of α. From Eq. 7, it is easy to find that the time complexity of the

computation of Θ is O(N3), and from Eqs. 9 and 13, we see that

the computation ofM and α isO(N2). Therefore, the asymptotic

time complexity of Algorithm 1 is O(N3).

4 Experimental results

4.1 Settings

The original features extracted from sMRI and PET images

were represented in a very high-dimensional feature space.

Therefore, the direct use of high-dimensional features for

modeling will lead to the curse of dimensionality

(Chandrashekar and Sahin, 2014). That is to say, samples

become very sparse in the high-dimensional space, so the

discriminability between samples will be significantly reduced.

Therefore, before modeling, feature selection was performed to

reduce the dimension of feature spaces. In this study, the Fish

score was employed as the supervised method to reduce the
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irrelevant features to the outcome. In Fish score, we select the first

30 features with the highest-ranking values for the next

unsupervised feature selection. Person score was employed as

the unsupervised method to reduce the redundancy between

features. In Person score, the threshold is set to 0.4.

Regarding multikernel learning, the “all-single” strategy, as

shown in Figure 2, was adopted to fuse sMRI features and PET

features. In Figure 3, “A” represents the combined features of

sMRI and PET, “S” represents each sMRI or PET feature, and

“KM” denotes the kernel matrix. Suppose we had a dataset χ �
[x(m)

i1 , x(m)
i2 , x(m)

i3 ]i�1,2,3,4,m�1,2 having 3 subjects, each subject has

two modalities (m = 1 and 2), and each modality has 4 features

(i = 1, 2, 3, and 4), then “A” in Figure 2 can be expressed as

[x(1)
i1 , x(1)

i2 , x(1)
id , x(2)

i1 , x(2)
i2 , x(2)

id ]i�1,2,3,4, and “S” can be expressed as
[x(m)

i1 , x(m)
i2 , x(m)

i3 ]i�1,2,3,4,m�1,2. According to Rakotomamonjy

et al., (2008), {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} is taken as a

Gaussian kernel parameter candidate set and {1, 3, 5} is taken as a

polynomial kernel parameter candidate set. Therefore, with such

settings, 91 KMs were finally generated, and the goal of

multikernel learning is to learn the coefficient of each KM.

The workflow chart of training is shown in Figure 3. The AD

cohort is first partitioned into K (K = 5 in our study) folds, one is

taken as the testing set and the remaining are taken as the

validation set (50%) and training set (50%). At the stage of

validation, the Fish score is employed as the supervised method to

reduce the irrelevant features to the outcome. Person score is

employed as the unsupervised method to reduce the redundancy

between features. Then the cross-validation (5-CV) strategy is

used to determine the optimal feature set and hyper parameters

(the regularized parameter λ is searched from 0.0001 to 1) with

respect to the proposed model. At the stage of training, with the

optimal feature set and hyper parameters, the best model can be

obtained. At the stage of testing, with the best model, we can

obtain the corresponding testing results. The workflow shown in

Figure 3 is repeated K times so that each fold has the opportunity

to become the testing set.

To highlight the performance of our multimodality fusion

method, a single modality model ridge regression (RR) and

4 multimodality fusion models, i.e., MV-TSK-FS (Jiang et al.,

2016), simpleMKL (Rakotomamonjy et al., 2008), RFF-MKL (Liu

et al., 2013), and MV-L2-SVM (Wang et al., 2015), are

introduced for comparison study. Table 2 shows the

parameter settings of RR and our method.

4.2 Result analysis

The experimental results were reported from three aspects,

i.e., feature selection of every single modality, comparison

TABLE 2 Parameter settings.

Methods Parameter settings

RR The regularized parameter was searched from 0.0001 to 1

Our method The regularized parameter λ was searched from 0.0001 to 1

MV-TSK-FS We use the parameter settings recommended by the original
references

simpleMKL We use the parameter settings recommended by the original
references

RFF-MKL We use the parameter settings recommended by the original
references

MV-
L2-SVM

FIGURE 4
Model selection of every single modality: (A) sMRI and (B) PET.
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between single modality andmultimodality in terms of AUC, and

overfitting analysis in terms of the discrepancy between training

and testing.

4.2.1 Feature selection of every single modality
In this study, before modality fusion, we have to select the

best model for every single modality. That is to say, we should

find an optimal feature subset for each modality. As we stated

before, the Fish score was employed as the supervised method to

reduce the irrelevant features to the outcome. Person score was

employed as the unsupervised method to reduce the redundancy

between features. After the two-step feature selection, we select

the optimal feature set that deduces the best training AUC. As

shown in Figure 4, for sMRI, it can be found that the first

6 features were selected for the following modality fusion, and for

PET, the first 7 features were selected for the following modality

fusion.

4.2.2 Comparison between single modality and
multimodality

When the optimal feature sets of sMRI and PET were

combined, feature redundancy between different modalities

may also exist. Therefore, Person score was also employed as

the unsupervised method to reduce the redundancy

across different modalities. After this procedure, the best

model can be obtained by finding the best training AUC. As

shown in Figure 5, the first 12 features can generate the best

model.

Figure 6 shows the comparison results in terms of the ROC

curve of sMRI, PET, and their combination. It can be found that

the testing AUC of multimodality fusion is 0.9188, which is

better than that of every single modality. This is because each

modality is mapped into the kernel space and multikernel

learning can explore the complementary information

FIGURE 5
Model selection of combined features.

FIGURE 6
Performance comparison of sMRI, PET, and their combination.
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between the two modalities. In addition, from Eq. 10, we can see

that the coefficient of the kernel matrix is sparse so that the

modality which contains more patterns is endowed with more

attention.

4.2.3 Comparison with state-of-art
multimodality methods

To highlight the promising performance of the proposed

method, we introduce 4 state-of-art multimodality fusion

methods for comparison studies. In addition to AUC,

accuracy is also introduced to measure the classification

performance. Table 3 shows the comparison results in terms

of both accuracy and AUC, where the best results are marked in

bold, and “*” means that the difference between state-of-art

methods and the proposed method is significant.

From Table 3, we can find that our method achieves the best

performance. In particular, simpleMKL and RFF-MKL are also

multikernel-based methods, but both of them perform worse

than our method. This phenomenon indicates that label

relaxation and compactness graph mechanisms are useful to

improve the classification performance. In addition, we see that

MV-TSK-FS and MV-L2-SVM perform worse than

multikernel-based methods. This is because MV-TSK-FS and

MV-L2-SVM both used modality-consistent regularization to

achieve multimodality fusion, which did not consider the

complementary information across different modalities. With

the “all-single” fusion strategy used in multikernel-based

methods, every single feature and the possible combinations

are all considered so that the complementary information can

be fully explored.

4.2.4 Overfitting analysis
From Eq. 10, we can see that λ was used to control the

contribution of the manifold regularization term.We know that

the manifold regularization term can reduce overfitting;

therefore, to quantificationally observe the overfitting, the

square difference between training AUC and testing AUC

was used. Figure 7 shows the square difference against the

regularized parameter λ. From Figure 7, it can be found that

from λ � 0.001 to λ � 0.05, the square difference between

training AUC and testing AUC decreased gradually, which

means that overfitting was reduced and the generalization

ability was improved. This is because the manifold

regularization term in the objective function assumes that

when the training samples were transformed from the

feature space to the label space, if two samples are in the

same manifold in the feature space, they are also in the same

class the label space (Fang et al., 2017). With this assumption,

sparse samples, noisy samples, or outlies will be compressed

into a compact class so that the hyperplane will not excessively

fit these samples.

5 Conclusion

In the area of personalized medicine, multimodal

neuroimage data fusion plays a significant role in brain

disease diagnosis. Multikernel learning actually provides a

natural framework for multimodality fusion. However, when

multikernel learning is applied to practice, e.g., medical data

analysis, overfitting often exists. Therefore, in this study,

according to RLR linear regression, we integrate label

relaxation and compactness graph mechanisms into

multikernel learning and propose a new multikernel learning

algorithm for AD diagnosis. In the experimental study, the

proposed method is evaluated in the scenario of AD diagnosis.

The promising performance indicates the advantages of our

method. However, from Figure 2, we can find that there are

many kernel matrices generated during model training, which

TABLE 3 Comparison with state-of-art multimodality methods in
terms of accuracy and AUC.

Methods Accuracy AUC

MV-TSK-FS 0.9236 ± 0.0058* 0.8897 ± 0.0032*

simpleMKL 0.9454 ± 0.0047* 0.9059 ± 0.0063*

RFF-MKL 0.9402 ± 0.0025* 0.8987 ± 0.0036*

MV-L2-SVM 0.9489 ± 0.0046* 0.9021 ± 0.0047*

Our method 0.9586 ± 0.0032 0.9188 ± 0.0028

The bold means the best performance.

FIGURE 7
Square difference against the regularized parameter λ.
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may consume a lot of CPU seconds and storage memory.

Therefore, how to speed up the training and reduce storage

memory is a hot topic in our future work.
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