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Ferroptosis has been implicated in tumor progression and immunoregulation.

Identification of ferroptosis-related prognostic gene is important for

immunotherapy and prognosis in ovarian cancer (OV). We assessed the

potential predictive power of a novel ferroptosis-related gene (FRG)

signature for prognosis and immunotherapy in Asian and Caucasian OV

populations. We collected gene expression profiles and clinicopathological

data from public databases. The least absolute shrinkage and selection

operator Cox regression algorithm was used to construct the FRG signature.

Receiver operating characteristic (ROC) curve, Kaplan-Meier method, Cox

regression model were used to evaluate the clinical benefits of FRG

signature. Gene functional and gene set enrichment analyses were used for

functional annotation and immune landscape analysis. A 15-FRG signature was

constructed and used to stratify patients into two risk groups. Patients in the

high-risk group had significantly worse survival. The risk score was a significant

independent risk factor for OS. The area under the ROC curve indicated the

good prediction performance of the FRG signature. Notably, the low-risk group

showed a significant enrichment in immune-related pathways and a “hot”

immune status. The risk score was found to be an efficient and robust

predictor of response to immunotherapy. In conclusion, our study identified

a novel 15-FRG prognostic signature that can be used for prognostic prediction

and precision immunotherapy in Asian and Caucasian OV populations.
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Introduction

Ovarian cancer (OV), the third most common gynecologic

malignancy and the second leading cause of cancer-related

deaths (Bray et al., 2018), is frequently diagnosed late due to

hidden and nonspecific symptoms in the early stage, resulting in

a 5-year survival rate of only 47% after diagnosis, which is low in

comparison with the 85% survival rate of breast cancer

(Lheureux et al., 2019). The standard therapy for OV relies

heavily on upfront surgical debulking followed by platinum-

based chemotherapy (Lheureux et al., 2019), with a favorable

early response observed in approximately 80% of patients.

However, unfortunately, the disease soon recurs in most of

these patients. Meanwhile, OV is a highly heterogeneous

disease that comprises multiple histological subtypes and

different microenvironmental features (Chen et al., 2018;

Geistlinger et al., 2020). Studies have shown that there are

huge differences in the treatment effect and prognosis of

individuals with OV (Morand et al., 2021), which make the

prediction of tumor treatment response and prognosis

challenging. Therefore, considering the high recurrence rate

and cellular heterogeneity of OV, the development of

innovative treatments and refinement of prognostic prediction

are urgently needed.

Ferroptosis is a novel iron-dependent form of non-apoptotic

regulated cell death, with distinct features of overaccumulation of

reactive oxygen species (ROS) and lipid peroxidation (Yu et al.,

2017; Tang et al., 2019). Recently, ferroptosis induction has been

demonstrated as a potential prevention or therapeutic modality

in various diseases (Tang et al., 2018; Qiu et al., 2020), especially

for anticancer treatments (Xu et al., 2019; Wang et al., 2020). In

addition to small-molecule inhibitors and agonists, various

ferroptosis-related genes (FRGs) have been identified as

drivers, suppressors, and markers in OV, including CYBB and

TAZ (Yang W. et al., 2020), which have been confirmed as

ferroptosis-driving factors that contribute to the sensitization of

OV cells to ferroptosis. In contrast, GPX4, GCH1, and FSP1 (Li

et al., 2021) mediate three distinct mechanisms of ferroptosis

protection to ensure tumor cellular homeostasis. And, a previous

study has indicated that inducing ferroptosis is correlated with

prolonged progression free survival in patients with platinum-

resistant ovarian cancer (Chekerov et al., 2018). Taken together,

these compelling findings demonstrate that OV may be highly

sensitive to ferroptosis, and targeting ferroptosis may be helpful

to improve the prognosis of OV. However, the underlying

ferroptosis-related prognostic biomarkers in OV remain

largely unknown. Hence, it is important to excavate more

ferroptosis-related biomarkers for treatment and prognosis in

OV. Up to now, several studies have extensively explored the

relationship between FRGs and tumor prognosis, and

constructed a prognostic signature for a variety of tumor

types, such as a novel 10-FRG prognostic signature in liver

cancer, a novel 9-FRG prognostic signature in breast cancer

(Liang et al., 2020; Wang D. et al., 2021). Regretfully, most

previous studies have failed to verify these relationships across

multiple regions and races, which may lead to weak

generalization ability of research results among different races.

Thus, in the present study, the prognostic capacity of FRGs in

patients with OV was comprehensively analyzed using publicly

available gene expression profiles obtained from the Asian and

Caucasian populations. Besides, a prognostic signature was

constructed and its potential associations with the immune

landscape and immunotherapy were explored. Notably, our

results revealed the prognostic value of a novel 15-FRG

signature and provided a promising predictor of response to

immunotherapy and chemotherapy.

Materials and methods

Public data collection

The GSE32062 microarray dataset, comprising the data and

clinical information of 260 OV patients, was obtained from the

Gene Expression Omnibus (GEO) website (http://www.ncbi.

nlm.nih.gov/geo) for use as a training cohort. The raw

expression data were background-corrected by applying the

“normexp” method (with an offset of 1) and were subjected to

quantile normalization using the “limma” R package. When

genes were mapped to more than one probe, the gene with

the mean fold-change value was selected.

International Cancer Genome Consortium (ICGC) (OV-

AU) RNA-sequencing (RNA-seq) data of 93 OV patients and

their clinical information were obtained from the ICGC data

portal (https://dcc.icgc.org/projects/OV-AU) for use as an

external validation cohort. RNA-seq datasets of 41 patients

treated with anti-PD-1 monotherapy (Gide et al., 2019) and

42 patients treated with anti-CTLA4 monotherapy (Van Allen

et al., 2015) were obtained from the Tumor Immune Dysfunction

and Exclusion (TIDE) website (http://tide.dfci.harvard.edu/

download/) for use as an external validation cohort. All the

datasets used for analysis are freely and publicly available, hence

local ethical approval was exempted.

FRGs were retrieved from a public ferroptosis database

(FerrDb; http://www.zhounan.org/ferrdb/) (Zhou and Bao,

2020) and were limited to published human studies. Immune-

related genes (IRGs) were retrieved from a public immunology

database (ImmPort; https://www.immport.org/shared/genelists)

(Bhattacharya et al., 2018). A comprehensive gene list is provided

in Supplementary Tables S1A, S1B.
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Ferroptosis-related gene signature
construction and validation

Univariate analyses for identifying overall survival (OS)-related

FRGs were performed using Cox regression analysis, with adjusted

(adj.) p < 0.05 considered significant. The STRING v11.0 database

(Szklarczyk et al., 2010) (https://string-db.org/) was used for protein-

protein interaction (PPI) analysis. The least absolute shrinkage and

selection operator (LASSO) algorithmwas used to penalize the risk of

overfitting and to construct a Cox regression model with an optimal

penalty parameter λ selected based on a 10-fold cross validation

(Simon et al., 2011). The FRG signature was constructed as follows:

the risk score =∑ (β×m), where β is the Cox coefficient andm is the

z-score standardized expression value of the corresponding gene.

According to the median risk score value, patients were categorized

into high- and low-risk groups. Kaplan–Meier (KM) survival curve

analysis was conducted in combination with a log-rank test, using the

“survival” and “survminer” packages. The predictive performance of

the risk score was determined with a time-dependent receiver

operating characteristic (ROC) curve, using the R package

“timeROC.” The prognostic value was validated in the external

Caucasian validation cohort.

Validation of independent prognostic role

The risk score and other available clinical variables were

included for univariate analyses using the Cox proportional

hazard model. Variables that were significant (p < 0.05) in

univariate analyses were considered for multivariate analyses.

Construction and validation of a predictive
nomogram

Nomograms are widely applied to simplify statistical

prediction models into an objective and operational graphical

tool (Iasonos et al., 2008). All available prognostic factors were

selected to build a nomogram to investigate the probability of 2-,

4-, and 6-year OS of patients with OV. Subsequently, the

nomogram was validated by discrimination and calibration.

Discrimination was measured with the concordance index

(C-index), using the R package “survcomp.” Calibration was

evaluated graphically by plotting the nomogram prediction

probabilities against the actual proportion. Overlap with the

slash diagonal indicates that the model is completely consistent.

Functional enrichment analysis

To investigate the underlying biological functions of the FRG

signature, 15 FRGs and differentially expressed genes (DEGs) with

adj. p < 0.05 and |log2FC| > 0.5 between the high- and low-risk

samples were selected separately for Gene Ontology (GO)

classification and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses, using the R packages “limma” and

“clusterProfiler.” Gene set enrichment analysis (GSEA) of the

high- and low-risk samples was conducted using the GSEA

software (Subramanian et al., 2005) (http://www.broadinstitute.

org/gsea).

Immune infiltration landscape analysis

The enrichment scores of various immune cells represented by

16 gene sets and immune-related functions represented by 13 gene

sets were quantified using single-sample gene (ss)GSEA in the

Bioconductor package “GSVA” (Barbie et al., 2009; Rooney et al.,

2015). The annotated immune-related gene sets are provided in

Supplementary Table S1C. Enrichment scores for seven steps of

the cancer-immunity cycle were calculated with the Tracking

Tumor Immunophenotype (TIP) meta-server tool (http://biocc.

hrbmu.edu.cn/TIP/) (Xu et al., 2018). The Estimation of STromal

and Immune cells in MAlignant Tumor tissues using Expression

data (ESTIMATE) immune score was computed to analyze the

infiltration levels of immune cells using the “ESTIMATE” R

package. The expression correlation between the key immune

checkpoint molecules and risk score were further analyzed.

Validation of the predictive power of the
risk score in immunotherapy and
chemotherapy

SubMap method from GeneParttern was applied to predict the

response to immunotherapy in OV patients with high- and low-risk

groups (Hoshida et al., 2007). Besides, the anti-PD-1 and anti-CTLA4

cohorts were used as the independent external validation cohorts,

which were also used on other predictors to compare with our

signature in terms of performance. Fourteen published predictors

of clinical response to immune checkpoint blockade (ICB), such as the

TIDE score, microsatellite instability score (MSI), and T-cell exclusion

score, were integrated into TIDE computational framework (Fu et al.,

2020) (http://tide.dfci.harvard.edu). Prediction scores were calculated

and downloaded for each patient in the anti-PD-1 and anti-CTLA4

cohorts after uploading the normalized gene expression profiles to

TIDE. Furthermore, the pRRophetic algorithm was utilized to

calculate the half-maximal inhibitory concentration (IC50) values

for monitoring the response of chemotherapy to the ovarian

cancer patients (Geeleher et al., 2014).

Statistical analysis

All statistical analyses were carried out using the R

programming software (version 3.6.3). Two-sided Pearson’s
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chi-squared test or Fisher’s exact test was used for categorical

data, and the non-parametric Wilcoxon test was applied for

quantitative data. KM analysis with the log-rank test for OS was

conducted using the auto-select best threshold or the median

value. Correlations between variables were determined using

Spearman or Pearson correlation. Significant differences

between two correlated ROC curves were analyzed using

DeLong’s test. Unless noted otherwise, p < 0.05 was

considered statistically significant.

Results

A methodology flow chart for the present study is shown in

Figure 1. In total, 260 Asian OV samples from the

GSE32062 cohort and 93 Caucasian OV samples from the

ICGC (OV-AU) cohort with complete clinical information

were included. Detailed clinical information for these samples

is provided in Supplementary Table S2A.

Identification of prognostic ferroptosis-
related genes in the GSE32062 cohort

We analyzed 213 well-defined FRGs in this study, namely

75 ferroptosis driver genes, 58 ferroptosis suppressor genes,

and 80 ferroptosis marker genes. Detailed information on

these FRGs is provided in Supplementary Table S1A. The

relationship between FRG expression levels and the OS of

patients in the GSE32062 cohort was evaluated using

univariate Cox proportional hazards regression analysis.

Twenty-five FRGs were significantly correlated with OS

(p < 0.05, Figure 2A). Among the 25 prognostic FRGs,

seven genes (IDH1, NRAS, STMN1, ELAVL1, VDAC2,

FIGURE 1
Flow chart for cohort collection and bioinformatics analysis.
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ACSL3, and HMGB1) were identified as risk factors, with

hazard ratios (HRs) > 1. The remaining 18 genes (SOCS1,

SLC3A2, STAT3, LINC00472, IFNG, SLC1A4, PCK2,

TNFAIP3, PTGS2, XBP1, CD44, CYBB, HMOX1, NCF2,

SLC2A3, ALOX5, SLC2A14, and MT1G) were identified as

protective factors, with HRs < 1. In a PPI network of the

prognostic FRGs, PTGS2, STAT3, HMOX1, IFNG, and CYBB

were hub genes (Figure 2B). Furthermore, most of the

protective factors were strongly positively correlated with

each other (p < 0.05, Figure 2C). GO enrichment analysis

revealed that the 25 FRGs were primarily involved in the

biological process of tumor progression, including “positive

regulation of angiogenesis,” “epithelial cell proliferation,”

“negative regulation of apoptotic signaling pathway,” and

other immune-specific processes, including “neutrophil

degranulation” and “neutrophil activation involved in

immune response” (adj. p < 0.05, Figure 2D). KEGG

analysis results suggested that these genes were correlated

with ferroptosis and necroptosis (adj. p < 0.05, Figure 2E).

Construction of a novel 15-ferroptosis-
related gene prognostic signature in the
GSE32062 cohort

Genes without prognostic significance were filtered out,

leaving 25 genes for further analysis. It is well known that the

more genes the signature included, the more complex it

became. Hence, the LASSO algorithm was employed to

shrink the variables and to optimize the signature. A 15-

FIGURE 2
Identification of prognostic FRGs in the GSE32062 cohort. (A) Forest plots of HRs and 95% CIs of the association between FRGs expression and
OS. (B) A PPI network showing the interactions among the prognostic FRGs. (C) FRGs correlation network. (D,E) The most significantly enriched GO
terms (D) and KEGG pathways (E) are displayed. FRG, ferroptosis-related gene; HR, hazard ratio; CI, confidence interval; OS, overall survival; PPI,
protein-protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FRG signature was constructed based on the optimal λ value

(Figures 3A,B). Based on the expression levels of the 15 FRGs

and the corresponding regression coefficients, the following

signature formula was built: risk score = −0.0291 × CYBB +

0.0548 × VDAC2 + 0.0836 × NRAS – 0.1457 ×

SOCS1 – 0.2943 × LINC00472 + 0.0101 ×

FIGURE 3
Construction and prognostic analysis of the 15-FRG prognostic signature based on the GSE32062 cohort data. (A) Penalty parameter λ
optimization using the LASSO algorithm, with 10-fold cross validation. The optimal values using minimum criteria (left) and the one standard error of
the minimum criteria (right) are indicated by dotted vertical lines. (B) LASSO coefficient profiles of the 25 candidate genes. (C) Distribution and
median values of the risk scores. (D) Distributions of survival time, survival status, and risk score. (E) Distributions of risk score, clinical
characteristics, and gene expression panels. *p < 0.05; **p < 0.01; ***p < 0.001. (F) Kaplan–Meier curves for OS in the different groups. (G) Time-
dependent ROC curves and their AUCs verifying the prediction efficacy of the risk score. FRG, ferroptosis-related gene; LASSO, least absolute
shrinkage and selection operator; OS, overall survival; ROC, receiver operating characteristic; AUC, area under the curve.
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ELAVL1 – 0.1289 × IFNG + 0.0873 × IDH1 – 0.0351 ×MT1G +

0.1742 × ACSL3 – 0.1379 × PTGS2 – 0.1599 ×

SLC1A4 – 0.0432 × PCK2 – 0.0044 × XBP1 − 0.1017 ×

SLC3A2. To evaluate the prognostic prediction performance

of the 15-FRG signature, the risk score of each sample was

calculated according to the signature formula above. The OV

patients were classified into a high-risk group (n = 130) and a

low-risk group (n = 130) based on median risk score

(Figure 3C). Patients with a high risk of the disease tended

to suffer from earlier disease progression and worse survival

status than their low-risk counterparts (p < 0.001, Figures

3D,E). Meanwhile, KM survival analysis revealed that the OS

rate was significantly worse in the high-risk group compared

with the low-risk group (p < 0.0001, Figure 3F). To exclude the

influence of confounding clinical characteristics on the risk

score, we further stratified patients by clinical variables to

evaluate the prognostic prediction performance of the risk

score on OS. The results reconfirmed that the risk score could

classify the patients into high- and low-risk groups with

significantly different OS rate (Supplementary Figures

S1A–C). The prognostic performances of the 15 ferroptosis-

related genes were also further confirmed by using Kaplan

Meier plotter online tool. The results revealed that, apart from

ELAVL1 and LINC00472, the other 13 FRGs were also

significantly associated with patient OS (Supplementary

Figure S2). Based on our findings above, time-dependent

ROC curves were constructed to further evaluate the

accuracy of the risk score for predicting prognosis. The area

under the ROC curve (AUC) of the risk score for OS reached

0.716, 0.729, 0.710 at 2, 4, 6 years respectively, which suggested

that the risk score had adequate prediction efficiency

(Figure 3G).

Validation of the 15-ferroptosis-related
gene prognostic signature in the
international cancer genome consortium
cohort

To validate the robustness and reproducibility of the

signature constructed using Asian cohort data for predicting

OS in Caucasian cohort data, we first calculated the risk score for

each Caucasian OV sample in the ICGC cohort with the formula

used in the GSE32062 cohort. Based on the median risk score of

the GSE32062 cohort, patients from the ICGC cohort were

divided into high- and low-risk groups (Figure 4A). As

expected, similar results were obtained in Caucasian OV

patients. In the high-risk group, patients were more likely to

die earlier (Figure 4B) and the risk of mortality was higher (p =

0.0019, Figures 4C,D). Comparison of OS stratified by age, tumor

stage, and disease status also further confirmed these results

(Supplementary Figures S1D–F). Further, the AUC of the risk

score for OS was 0.627 at 2 years, 0.726 at 4 years, and 0.801 at

6 years in the Caucasian cohort, suggesting that the risk score had

adequate generalization performance between different races

(Figure 4E).

To illustrate the advantages of established 15-FRG signature,

we further compared the performance of our prediction model

with that reported previously (Wang H. et al., 2021; Yu et al.,

2021) in the ICGC cohort. The results showed that our novel 15-

FRG model (Model3) outperformed the 3-gene model (Model1;

PMID: 35071242) and 6-gene model (Model2; PMID: 34075060)

in predicting overall survival of an individual patient (adj. p <
0.05, Figures 5A–C), especially in predicting the long-term

survival outcome (OS > 2 years) (Figure 5D).

Independent prognostic value of the 15-
ferroptosis-related gene prognostic
signature

More importantly, we conducted univariate and multivariate

Cox regression analyses to explore the independence of the risk

score as a prognostic factor of OS. The risk score was found to be

obviously related to OS in both the GSE32062 and the ICGC

cohorts by univariate Cox regression analysis (HR = 3.634, 95%

CI = 2.547–5.185, p < 0.001; HR = 2.538, 95% CI = 1.593–4.044,

p < 0.001, respectively, Figures 6A,B). Furthermore, after the

adjustment of the potential confounding factors by multivariate

Cox regression analysis, the risk score was validated as an

independent prognostic factor of OS in both the

GSE32062 and ICGC cohorts (HR = 3.532, 95% CI =

2.451–5.091, p < 0.001; HR = 2.320, 95% CI = 1.455–3.699,

p < 0.001, respectively, Figures 6C,D).

Prognostic nomogram establishment for
predicting the overall survival of ovarian
cancer patients

We integrated the available clinical characteristics and risk

score into a prediction system to create a novel nomogram

system for predicting OS. Statistically significant variables

were residual tumor (p < 0.01) and risk score (p < 0.001) in

the GSE32062 cohort model (Figure 7A), and disease status (p <
0.01) and risk score (p < 0.001) in the ICGC cohort model

(Figure 7B). The nomogram demonstrated good predictive

accuracy with a C-index of 0.71 (95% CI = 0.66–0.75) in the

GSE32062 cohort and 0.65 (95% CI = 0.57–0.72) in the ICGC

cohort. Bootstrap validation was performed for calibration of 6-

year OS, and the calibration curve indicated excellent agreement

between actual and nomogram-predicted outcomes across the

spectrum of predictions (Figures 7C,D). Taken together, these

results revealed that the nomogram based on 15-FRG signature

could efficiently predict patient survival outcome and showed a

significant clinical practical value for OV patients.

Frontiers in Pharmacology frontiersin.org07

Liu et al. 10.3389/fphar.2022.949126

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.949126


Functional analysis of 15-ferroptosis-
related gene prognostic signature

To investigate the 15-FRG prognostic signature in terms of

underlying biological functions and pathways. GO and KEGG

pathway enrichment analyses were performed first for

15 ferroptosis-related genes. The GO and KEGG analysis

results indicated that the 15 ferroptosis-related genes were

enriched in ferroptosis pathway and lipid-related biologic

process, including “regulation of lipid metabolic process”

and “regulation of lipid biosynthetic process.” Interestingly,

those FRGs were also enriched for immune-related terms,

including “positive regulation of MHC class II biosynthetic

process,” “positive regulation of T cell differentiation” and

“IL−17 signaling pathway” (adj. p < 0.05, Supplementary

Figures S3A, S3B). In parallel, 560 DEGs were detected

between high- and low-risk samples (Figure 8A), and then

the GO and KEGG pathway enrichment analyses of 560 DEGs

were also performed. As expected, DEGs were also

significantly enriched in several iron-related molecular

functions, such as “cellular divalent inorganic cation

homeostasis,” “response to metal ion,” “divalent inorganic

cation transport” and “regulation of reactive oxygen species

biosynthetic process” (adj. p < 0.05, Supplementary Tables

S3A, S3B). Interestingly, among the top 30 GO terms, the

DEGs were also obviously enriched in various immune-related

GO terms, such as “T-cell activation,” “leukocyte migration,”

“regulation of lymphocyte activation,” “leukocyte cell–cell

adhesion,” “response to interferon-gamma (IFN-γ),” “major

histocompatibility complex (MHC) protein complex,”

“cytokine activity” and “antigen binding” (adj. p < 0.05,

Figure 8C). Meanwhile, some immune-related pathways

FIGURE 4
External validation of the prognostic performance of the 15-FRG signature in the ICGC cohort. (A) Distribution and median values of the risk
scores. (B) Distributions of survival status, survival time, and risk score. (C) Distributions of risk score, clinical characteristics, and gene expression
panels. (D) Kaplan–Meier curves for OS in the different groups based on the cut-off point determined for the GSE32062 cohort. (E) Time-dependent
ROCcurves and their AUCs. FRG, ferroptosis-related gene; ICGC, International CancerGenomeConsortium;OS, overall survival; ROC, receiver
operating characteristic; AUC, area under the curve.
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were also found in the KEGG pathway analysis, including

“Cytokine–cytokine receptor interaction,” “Phagosome,”

“Antigen processing and presentation,” “Th17 cell

differentiation,” “Natural killer cell-mediated cytotoxicity”

and “Th1 and Th2 cell differentiation” (adj. p < 0.05,

Figure 8D).

To further investigate the relationship between the DEGs and

immune status, an intersection analysis between the 560 DEGs and

FIGURE 5
ROC curves for three models of predicting 2- (A), 4- (B), and 6-year (C) OS. *p < 0.05 versus Model1, △ p < 0.001 versus Model1, #p <
0.05 versus Model2. (D) Time-dependent ROC curves for threemodels in the ICGC cohort. Dashed lines represent 95% CIs. ROC, receiver operating
characteristic; OS, overall survival; ICGC, International Cancer Genome Consortium; CI, confidence interval.

FIGURE 6
Forest plots of univariable (A,B) and multivariable (C,D) Cox regression analyses with HRs and 95% CIs in the GSE32062 cohort (A,C) and the
ICGC cohort (B,D). HR, hazard ratio; CI, confidence interval; ICGC, International Cancer Genome Consortium.
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1793 IRGs was performed, revealing 158 immune-related DEGs

(Figure 8B). Next, for the high- and low-risk samples, we further

conducted GSEA using the molecular signatures database

(MSigDB) to elucidate the association between the risk score

and immune regulation. GSEA revealed that highly similar

immune-related GO terms and KEGG pathways were enriched

in the low-risk group (adj. p < 0.05, FDR < 0.25, Figures 8E,F),

including antigen (“KEGG_ANTIGEN_PROCESSING_

AND_PRESENTATION”), cytokine (“KEGG_

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION”),

chemokines (“GO_CHEMOKINE_BINDING”), immune cells

(“KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY”),

damage-associatedmolecular patterns (“KEGG_NOD_

LIKE_RECEPTOR_SIGNALING_PATHWAY”; “KEGG_TOLL_

LIKE_RECEPTOR_SIGNALING_PATHWAY”), and other

immune-regulatory processes. Collectively, these findings

suggested that the 15 FRGs and ferroptosis-based risk score

were largely associated with immune-related biological

processes, and patients in the high- and low-risk group might

have different immune landscape.

FIGURE 7
Nomogram establishment for predicting the 2-, 4-, and 6-year OS of OV patients in the GSE32062 (A) and ICGC (B) cohorts. An example
demonstrating the percentage of survival according to the nomogram score is marked in red. To use the nomogram, first find the position of a
variable on the variable axis, and then, draw a vertical line upward to find the point number of the variable. The sum of these point numbers is
presented on the total points axis, and a vertical line is drawn downward to determine the differential OS probabilities. **p < 0.01; ***p < 0.001.
Calibration curves of the nomogram predictive performance in the GSE32062 (C) and ICGC (D) cohorts. Distributions of the predicted probabilities
of 6-year OS are shown at the top of the graphs, the brownish red solid line indicates the performance of the nomogram; the closer the line to the
gray line, the better the consistency between predicted and actual outcomes. OS, overall survival; OV, ovarian cancer; ICGC, International Cancer
Genome Consortium.
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FIGURE 8
Functional enrichment and pathway analyses. (A) Volcano plot of 560 DEGs. Upregulated immune-related DEGs with p < 0.05 and |log2FC| >
1 in the low-risk group are presented (left). (B) Venn diagram of DEGs and IRGs. (C) The top 10 GO terms in molecular function (MF), cellular
component (CC), and biological process (BP). (D) The top 30 enriched KEGG pathways. (E) Most significant GSEA sets, from GO-related MSigDB,
associated with the low-risk group. (F) Most significant GSEA sets, from KEGG-related MSigDB, associated with the low-risk group. DEG,
differentially expressed gene; FC, fold change; IRG, immune-related gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GSEA, gene set enrichment analysis; MSigDB, The Molecular Signatures Database.
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Differences in the immune landscape
among risk groups

Given the high correlation between the ferroptosis-based

risk score and immune-related biological processes, the

relationships among the risk score, immune cell infiltration,

and immune-related functions were analyzed in more detail.

First, we used the ssGSEA algorithm to assess immune

infiltration and immune-related functions in each OV sample

in the GSE32062 cohort. The infiltration levels of 14 out of

16 immune cell subpopulations and 12 out of 13 immune-

related functions were higher in the low-risk group than in the

high-risk group (adj. p < 0.05, Figures 9A,B). And then, based on

ICGC cohort data, the significant enrichment of three immune

cell subpopulations were reconfirmed in the low-risk group,

namely antigen-processing and presenting cells subpopulations

(“aDCs”) and helper T-cell subpopulations (“Tfh”, “Th1_cells”)

(adj. p < 0.05, Figure 9C), which were also enriched in the above

KEGG analysis. In parallel, the significant enrichment of two

immune-related functions were reconfirmed in the low-risk

group, namely checkpoint molecules (“Check-point”) and

human leukocyte antigen (“HLA”) functions (adj. p < 0.05,

Figure 9D), corresponding to the GO term “MHC protein

complex.”

As the complex antitumor immune response comprises a

series of stepwise events (termed cancer-immunity cycle). We

determined enrichment scores for the seven-step cancer-

immunity cycle using the TIP meta-server tool in both

cohorts. The results revealed that antigen release and

presentation cycles (“Step 1” and “Step 2”) and immune cells

recruitment cycles (“Step 4. CD4 T-cell. recruiting, and

Macrophage. Recruiting”) were significantly enriched in the

low-risk group (adj. p < 0.05, Figures 10A,B). The same trend

was also observed for the overall immune activity score of cancer-

immunity cycle (by summating the normalized scores of all seven

steps) in both cohorts (adj. p < 0.05, Figures 10C,D).

FIGURE 9
Landscapes of immune cell infiltration and immune-related functions between risk groups in the GSE32062 (A,B) and ICGC (C,D) cohorts.
Boxplots of ssGSEA scores in 16 types of immune cells (A,C) and 13 immune-related functions (B,D) are presented. *adj. p < 0.05; **adj. p < 0.01;
***adj. p < 0.001; ns, not significant. ICGC, International Cancer Genome Consortium; GSEA, gene set enrichment analysis; CCR, cytokine-cytokine
receptor; HLA, human leukocyte antigen.
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A high degree of immune cell infiltration is usually

accompanied by high expression levels of immune

checkpoint molecules (Galon and Bruni, 2019). It is

generally recognized that patients with a high immune

score or immune checkpoint expression levels may achieve

a higher objective response rate to immunotherapy (Taube

et al., 2018). Therefore, the immune score and immune

checkpoint molecules have been shown to be predictors of

response to various tumor immunotherapies. In this study, we

observed a significant negative correlation between the risk

score and the immune score in the GSE32062 and ICGC

cohorts (Spearman correlation: r = −0.39, p < 0.001;

r = −0.28, p = 0.007, respectively, Figures 11A,B). In

addition, we also conducted a correlation analysis between

mRNA levels of seven checkpoint molecules and the risk score.

The results indicated that most checkpoint molecules were

strongly positively correlated with each other, while the

mRNA expression levels of CTLA4, PD-1, PD-L1, LAG3,

TIGIT, and VISTA were significantly negatively correlated

with the risk score in both cohorts (Pearson correlation:

r < −0.2, p < 0.05, Figures 11C,D). Taken together, the

results indicated that patients in the low-risk group had an

immune “hot” status, which was characterized by a high

degree of immune cell infiltration and multiple checkpoint

activation (Galon and Bruni, 2019), and might be more likely

to benefit from immunotherapy.

FIGURE 10
Landscapes of the seven-step cancer-immunity cycle between different risk groups in the GSE32062 (A,C) and ICGC (B,D) cohorts. Enrichment
scores in the seven-step cancer-immunity cycle (A,B) and an overall immune activity score (C,D) are shown in violin plots. *adj. p < 0.05; ** adj. p <
0.01; ***adj. p < 0.001; ns, not significant. ICGC, International Cancer Genome Consortium.
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Prediction performance of the risk score in
immunotherapy and chemotherapy

In spite of the fact that immune checkpoint inhibitors have

not yet been approved as routine drugs for patients with OV. We

therefore utilized the SubMap algorithm to predict the likelihood

of response to immunotherapy in patients with OV. We were

very delighted to see that patients with low risk showed a greater

likelihood of responding to anti-PD-1 treatment in both OV

cohorts (Bonferroni corrected p = 0 0.008, Supplementary

Figures S3C, S3D). In addition, RNA-seq data and the related

clinical information from previous studies, including 42 samples

following anti-CTLA4 immunotherapy and 41 samples following

anti-PD-1 immunotherapy, were used for external validation.

Detailed clinical information for these samples is provided in

Supplementary Table S2B. The risk score was calculated for each

patients using the 15-FRG risk score formula. First, we observed

that the non-responders had a significantly higher risk score than

the responders in both external cohorts (p = 0.012; p = 0.024,

respectively, Figures 12A,B). A Kaplan–Meier curve

demonstrated that high-risk patients had a significantly lower

survival rate than their low-risk counterparts in immunotherapy

(Figures 12C,D, p < 0.01). Consistently, after adjustment for

available confounding factors by multivariate Cox regression, the

risk score was still an independent prognostic factor for OS in the

anti-CTLA4 cohort and for progression-free survival (PFS) in the

anti-PD-1 cohort (HR = 3.842, 95% CI = 1.495–9.877, p = 0.005;

HR = 4.023, 95% CI = 1.061–15.247, p = 0.041, respectively)

(Figures 12E,F). Then, we compared the prediction efficiency of

the risk score to that of 15 published predictors in both

immunotherapy cohorts. Based on sibling comparison

between 15 published predictors (Figures 12G,H), we found

FIGURE 11
Correlation analysis between the immune score and the risk score (A,B), and between the risk score and the expression levels of immune
checkpoint molecules (C,D) in the GSE32062 (A,C) and ICGC (B,D) cohorts. *p < 0.05; **p < 0.01; ***p < 0.001. ICGC, International Cancer Genome
Consortium.
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FIGURE 12
Validation and comparison of the predictive performance of the risk score in the anti-CTLA4 (A,C,E,G) and anti-PD-1 (B,D,F,H) cohorts.
Distributions of the risk scores in the non-responder and responder groups are displayed in violin plots (A,B). Kaplan–Meier curves for OS (C) and PFS
(D) in the different groups. Forest plots of the multivariable Cox regression analysis with HR and 95% CIs (E,F). AUC values and 95% CIs for the
15 predictors are shown in the forest plots (G,H). OS, overall survival; PFS, progression-free survival; HR, hazard ratio; CI, confidence interval;
AUC, area under the curve; TIDE: tumor immune dysfunction and exclusion score; IFNG: normalized average expression of IFN-γ response
biomarkers, including HLA-DRA, CXCL10, IDO1, STAT1, and IFNG; MSI: microsatellite instability score predicted from gene expression through ridge
regression; Merck18: T cell-inflamed signature (PMID: 28650338); PD-L1, PD-1, CTLA4: gene expression values of CD274, PDCD1 and CTLA4; CD8:
average expression value of CD8A and CD8B; CTL flag: flag indicator for whether gene expression values are all positive for five cytotoxic T
lymphocyte markers, including PRF1, GZMB, GZMA, CD8B, and CD8A; Dysfunction, Exclusion: enrichment scores based on the gene expression
signatures of T-cell dysfunction and T-cell exclusion; TAM M2, MDSC, CAF: Pearson correlation coefficients between expression profile and
M2 tumor-associated macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts.
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no significant differences in AUC values among these predictors

(p > 0.05), the risk score had an AUC value > 0.7 in both

immunotherapy cohorts and correlated well with the prediction

scores of most predictors (Supplementary Figures S4A, S4B). In

contrast, several recently published predictors, such as the TIDE

score and MSI, showed significantly performance variations in

different immunotherapy regimens (anti-CTLA4 vs. anti-PD-1:

0.80 vs. 0.60; 0.74 vs. 0.57; respectively). In general, these results

indicated that the 15-FRG risk score has excellent robustness and

generalization ability in predicting the response to different

immunotherapy.

In addition to immunotherapy, we also aimed to further

understand the chemotherapy comprehensively, the

pRRophetic algorithm was used to predict the IC50 of

common chemotherapeutic agents in high- and low-risk

groups. According to our findings, the estimated IC50 of

45 chemotherapy drugs varied significantly between the

high- and low-risk groups, and patients in the low-risk

group were more sensitive to the commonly used

chemotherapeutic agents, including camptothecin,

cytarabine, dasatinib, erlotinib, mitomycin.C and

vinblastine (p < 0.05, Supplementary Figures S5A–F), which

demonstrated that the risk score might serve as a potential

predicter of response to chemosensitivity in OV.

Discussion

In recent years, ferroptosis has attracted much attention,

particularly in the area of oncology. Several studies aimed to

elucidate the relationship between the ferroptosis-related

signature and tumor prognosis, and some progress has been

made (Liang et al., 2020; Wang H. et al., 2021). Regretfully, the

vast majority of studies have failed to verify these relationships

across multiple regions and races, which may lead to weak

generalization ability of research results among different races.

Therefore, we specifically selected both Asian and Caucasian

population datasets as study subjects since the beginning, and

then constructed a novel 15-FRG prognostic signature based

on the Asian population dataset, which was externally

validated for accuracy and robustness based on the

Caucasian population. We confirmed that the risk score

calculated by the 15-FRG signature was significantly

associated with patient overall survival, and could be an

independent risk factor for OV prognosis, and showed good

prognostic predictive performance in both races. Moreover,

the 15-FRG signature was superior to the other two models.

Functional analyses indicated that the risk score was closely

related to the tumor immunity, and that patients in the high-

and low-risk groups exhibited opposite immune landscape.

Notably, the risk score might serve as a good predictor of

response to immunotherapy and chemotherapy. We supposed

that this 15-FRG signature can better assess prognosis and

facilitates patient stratification and precision drug treatment

in OV.

Previous studies showed that tumor was provoked by

multiple genetic mechanisms and key genes. Therefore,

using the signature comprised by multiple genes to predict

treatment response and prognosis of cancer showed a good

clinical application prospect. In our study, we set up a 15-gene

prognostic signature with genes screened from ferroptosis in

OV. Previous studies regarding other diseases have indicated

that these FRGs could be roughly classified into three

categories: ferroptosis drivers (CYBB, VDAC2, SOCS1,

LINC00472, ELAVL1, IFNG, IDH1), ferroptosis suppressors

(NRAS, MT1G, ACSL3, SLC3A2), and ferroptosis markers

(PTGS2, SLC1A4, PCK2, XBP1). It has been reported that

these 15 genes involve tumorigenesis and tumor development

in a variety of cancers. A recent study found that CYBB

knockdown decreases ferroptosis and induces

chemoresistance via the TAZ-ANGPTL4-NOX2 signaling

axis in OV (Yang W. et al., 2020). Conversely, CYBB

overexpression led to poor prognosis of osteosarcoma (Lin

et al., 2021). VDAC2 as a voltage-dependent anion channel

was widely explored in multiple FRG prognostic models (Ren

et al., 2021; Yi et al., 2021) and bound directly with the

ferroptosis activator erastin for increasing the sensitivity of

cancer cells to ferroptosis via a FOXM1-Nedd4-VDAC2/

3 negative feedback loop in melanoma, (Yang Y. et al.,

2020). It was well known that the tumor suppressor protein

p53 (TP53) was the guardian of the genome that regulated cell

survival and death by apoptosis, autophagy, or ferroptosis

(Gnanapradeepan et al., 2018). Some FRGs played a

p53 context-dependent role in the regulation of ferroptosis.

On the one hand, there are FRGs functioning upstream of

p53 in ferroptosis, such as SOCS1, which has been found to be

sufficient for p53 activation and to reduce

SLC7A11 expression and glutathione levels, explaining in

part its ability to sensitize cells to a ferroptosis inducer

(Saint-Germain et al., 2017). Interestingly, SOCS1 could

reduce PD-L1 expression and restore the activation of

tumor-infiltrating CD8+ T cells, which highlighted its

potential as an immune checkpoint inhibitor in OV

(Nakagawa et al., 2018). Another p53 upstream molecule

was LINC00472, which was significantly correlated with

better survival in patients with breast and ovarian cancers

(Fu et al., 2016). It mediated apoptosis and ferroptosis in a

p53-dependent manner to suppress cancer progression by

interacting with Ras GTPase-activating protein-binding

protein 1 (Mao et al., 2018). On the other hand, there are

FRGs functioning downstream of p53 in ferroptosis. For

example, ELAVL1, which was negatively regulated by miR-

139-3p (Xue et al., 2019), was associated with poor prognosis

and contributes to invasion, migration, and cell proliferation

in OV (Huang et al., 2016). PTGS2, which encoded

cyclooxygenase-2 (COX-2), was upregulated by the
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ferroptosis agonist erastin only in p53 wild-type cells,

suggesting that its regulation was p53-dependent.

Meanwhile, prognostic analysis suggested that higher

PTGS2 expression may be associated with poor OS in OV,

but the results of different studies were somewhat conflicting

(Steffensen et al., 2007). Moreover, SLC1A4, PCK2 and

XBP1 were upregulated by 2-fold in erastin-treated HT-

1080 cells (Dixon et al., 2014) and could be used as

powerful prognostic markers in hepatobiliary cancer (Liu

et al., 2020; Peng et al., 2021; Wang et al., 2022). As the

key genes of ferroptosis, SLC3A2, MT1G and ACSL3 have also

been widely explored in multiple FRG prognostic models.

SLC3A2 was suppressed by IFN-γ that produced by

activated CD8+ T cells, which resulted in a restriction of

cystine uptake and then enhanced tumor lipid peroxidation

and ferroptosis, and improved tumor control (Lang et al.,

2019; Wang W. et al., 2019). MT1G as a critical regulator of

sorafenib resistance could inhibit sorafenib-induced

ferroptosis in hepatocellular carcinoma through decreased

glutathione depletion and lipid peroxidation (Sun et al.,

2016). ACSL3, which was required for exogenous

monounsaturated fatty acid activation, promoted a

ferroptosis-resistant cell state (Magtanong et al., 2019). It is

well known that gene mutation may cause splicing changes,

resulting in altered gene function or altered pathways.

Therefore, mutant FRGs may play a dual role in ferroptosis.

Oncogenic mutant NRAS protected cells from oxidative

stress-induced ferroptosis in primary rhabdomyosarcoma

(Schott et al., 2015), whereas wild-type NRAS appeared to

do the opposite. Wild-type IDH1 was an NADP + -dependent

protein that catalyzed the production of NADPH from

NADP+, which in turn sustained lipid biosynthesis and

redox homeostasis in the TCA cycle (Sonego and

Baldassarre, 2020). Conversely, mutant IDH1 could break

the homeostasis and promote ROS accumulation, and

sensitize cells to ferroptosis through a reduction in

glutathione peroxidase 4 (GPX4), a core enzyme in lipid

ROS scavenging and ferroptosis (Wang T. et al., 2019). In

addition, through the literature review, we found that except

CYBB, VDAC2, IDH1, MT1G, SLC1A4, PCK2, SLC3A2, the

prognostic value of other FRGs in ovarian cancer has been

reported, which provided a possibility for constructing a

prognostic model. Meanwhile, our study reconfirmed that

these genes were closely related to OS in OV, and used

these 15 FRGs to construct a novel prognostic signature.

The predictive power of the risk score calculated by the

signature was proved to be reliable in different ethnic

groups, and the performance was even superior to some of

the reported prognostic risk models. Moreover, the risk score

was an independent risk factor for OV patients, and patients in

the low-risk group showed longer OS and better prognosis. We

believed that these results could help to implement stratified

management of ovarian cancer patients.

Notably, functional analysis revealed a broad immune-

related functional spectrum based on DEGs between the high-

and low- risk groups. It was reasonable to assume that there

was a close correlation between the risk score and tumor

immunity. Therefore, we used various immune profile-

relevant analytical methods to gain additional insights into

the immune landscape. The results indicated that patients with

a high-risk score were in an immune “cold” phenotypic state,

with low levels of immune cell infiltration (e.g., CD4+) and

cancer-immunity cycle steps as well as reduced antigen-

presenting capacity (e.g., aDCs). One possible hypothesis

was that activated immune infiltrating cells enhanced

ferroptosis-specific lipid peroxidation in OV cells, and that,

in turn, the increased numbers of ferroptotic cells released

distinct tumor-associated antigens to further attract immune

cell infiltration. This interaction network between ferroptosis

and immune infiltrating cells, analogous to damage-associated

molecular patterns (DAMPs) (Garg and Agostinis, 2017), may

ultimately contribute to the antitumor efficacy of ferroptosis

(Wang W. et al., 2019). Therefore, the immune “cold” state in

patients with a high-risk score may explain their poor

prognosis. Based on this assumption, it can be envisaged

that strategies that combine immunotherapies with classical

chemotherapies promoting ferroptosis may turn immune

“cold” (high-risk) tumors into “hot” (low-risk) tumors,

which will help to improve patient prognosis.

Up to this point, treatment options remain limited in OV

with high rates of recurrence and chemoresistance.

Immunotherapy, as one of the frontiers of tumor therapy, has

been receiving increasing attention from gynecologists. Despite

this, clinical research on anti-PD-1 and PD-L1 immune

checkpoint blockade has shown that only a limited percentage

of patients exhibit a durable clinical benefit (Matulonis et al.,

2019). Therefore, early identification of patients with potential

response to the immunotherapy was crucial to improving their

prognosis. Regrettably, predictors of the response to

immunotherapy were scarce. It was reported that immune

checkpoint molecules and immune score might be potential

predictive biomarkers for the efficacy of immunotherapy (Fu

et al., 2020). Interestingly, we found that the ferroptosis-based

risk score was negatively related with various immune

checkpoint biomarkers and the immune score, highlighting

that risk score could be a predictor and low-risk patients

might more specifically benefit from immune checkpoint

blockade-based immunotherapies. The submap results also

suggested that patients with low risk might have a high

likelihood of responding to anti-PD1 immunotherapy.

Meanwhile, multiple immune checkpoint biomarkers were

positively correlated with each other, suggesting that multi-

target immunotherapy may overcome the resistance to single-

target immunotherapy. Moreover, by comparing with 14 well-

validated predictors (Fu et al., 2020), including the classical

biomarkers PD1, PDL-1, TIDE, and MSI, we validated that
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the prediction accuracy and robustness of the risk score

performed well. However, these findings were made in

melanoma datasets and further clinical verification is required

in patients with OV. Ovarian cancer is usually treated with

platinum-based chemotherapy. Using the pRRophetic

algorithm, we imputed that patients with low risk could be

more sensitive to some commonly used chemotherapeutic

agents. These results indicated that the risk score might

improve our understanding of immunotherapy and facilitate a

precise application of immunotherapy and chemotherapy in

cancer patients.

There are several key limitations of our analyses. First, the

signature was built and validated using retrospective samples,

validation using prospective real-world samples was also

required. In addition, the hallmark genes evaluated in our

study were restricted to FRGs. Hence, the intrinsic weakness

of predictive power was inevitable. Further, the associations

between the risk score and the immune landscape were

estimated by bioinformatics analysis, and we did not conduct

further experimental verification.

Conclusion

In conclusion, our study constructed a novel 15-FRG

prognostic signature that performed well in Asian and

Caucasian populations, and might serve as an effective

predictor of response to immunotherapy. Our findings may

provide a better insight into OV prognostic management and

may serve as a basis to facilitate a precise application of

immunotherapy in OV. The underlying mechanisms between

FRGs and the immune microenvironment in OV remained to be

investigated.
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(D), tumor stage (E), and disease status (F) in the ICGC cohort.

SUPPLEMENTARY FIGURE S2
Kaplan–Meier survival curves of 15 FRGs constructed using a
Kaplan–Meier plotter tool (http://www.kmplot.com). Auto select best
cutoff was chosen in the analysis. FRG, ferroptosis-related gene.

SUPPLEMENTARY FIGURE S3
The top 10 enriched GO terms related to 15-FRGs in molecular function
(MF), cellular component (CC), and biological process (BP) (A). The top
14 enriched KEGG pathways related to 15-FRGs (B).
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Immunotherapeutic responses to anti-CTLA-4 and anti-PD-1 treatments
in the GSE32062 (C) and ICGC (D) cohorts. GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes. FRG, ferroptosis-related
gene.

SUPPLEMENTARY FIGURE S4
Correlations between the risk score and other predictor scores in the
anti-CTLA4 (A) and anti-PD-1 (B) cohorts. *p < 0.05; **p < 0.01; ***p <
0.001. TIDE: tumor immune dysfunction and exclusion score; IFNG:
normalized average expression of IFN-γ response biomarkers, including
HLA-DRA, CXCL10, IDO1, STAT1, and IFNG; MSI: microsatellite instability
score predicted from gene expression through ridge regression;
Merck18: T cell-inflamed signature (PMID: 28650338); PD-L1, PD-1,
CTLA4: gene expression values of CD274, PDCD1 and CTLA4; CD8:
average expression value of CD8A and CD8B; CTL flag: flag indicator
for whether gene expression values are all positive for five cytotoxic T
lymphocyte markers, including PRF1, GZMB, GZMA, CD8B, and CD8A;
Dysfunction, Exclusion: enrichment scores based on the gene
expression signatures of T-cell dysfunction and T-cell exclusion; TAM

M2, MDSC, CAF: Pearson correlation coefficients between expression
profile and M2 tumor-associated macrophages, myeloid-derived
suppressor cells, and cancer-associated fibroblasts.

SUPPLEMENTARY FIGURE S5
Estimated IC50 values of six commonly used chemotherapeutic agents
for high- and low-risk groups in the GSE32062 cohort (A–F).

SUPPLEMENTARY TABLE S1
List of the ferroptosis-related genes (A) immune-related genes (B)
immune infiltration annotated gene sets (C).

SUPPLEMENTARY TABLE S2
Characteristics of patients in theGSE32062 and ICGC-OV-AU cohorts (A)
and the anti-CTLA4 and anti-PD-1 cohorts (B).

SUPPLEMENTARY TABLE S3
Table of GO terms (A) and KEGG pathways (B) significantly enriched in 15
ferroptosis-related genes.
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