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Ganoderma lucidum is a well-known medicinal mushroom that has been used

for the prevention and treatment of different ailments to enhance longevity and

health specifically in China, Japan, and Korea. It was known as “God’s herb” in

ancient China as it was believed to prolong life, enhance the youthful spirit and

sustain/preserve vitality. G. lucidum is seldom collected from nature and is

substantially cultivated on wood logs and sawdust in plastic bags or bottles to

meet the international market demand. Both in vitro and in vivo studies on the

copious metabolic activities of G. lucidum have been carried out. Varied groups

of chemical compounds including triterpenoids, polysaccharides, proteins,

amino acids, nucleosides, alkaloids, steroids, lactones, lectins, fatty acids,

and enzymes with potent pharmacological activities have been isolated from

themycelia and fruiting bodies ofG. lucidum. Several researchers have reported

the abundance and diversification of its biological actions triggered by these

chemical compounds. Triterpenoids and polysaccharides of G. lucidum have

been reported to possess cytotoxic, hepatoprotective, antihypertensive,

hypocholesterolemic, antihistaminic effects, antioxidant, antimicrobial, anti-

inflammatory, hypoglycemic antiallergic, neuroprotective, antitumor,

immunomodulatory and antiangiogenic activities. Various formulations have

been developed, patented, and utilized as nutraceuticals, cosmeceuticals, and

pharmaceuticals from G. lucidum extracts and active compounds. Thus, this

review presents current updates on emerging infectious diseases and highlights

the scope, dynamics, and advances in infectious disease management with a

particular focus on Ganoderma lucidum, an unutilized natural medicine as a

promising future solution to emerging diseases in Africa. However, details such

as the chemical compound and mode of action of each bioactive against

different emerging diseases were not discussed in this study.
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Introduction

Globally, the main cause of mortality and morbidity remains

emerging infectious diseases due to the frequency of occurrence

of new infections, re-occurrence of old infections, and the

endemic nature of intractable infections (Holmes et al., 2017).

This is a great challenge to Africa, achieving the goal of 2063 of a

healthy continent, and has been the key impediment to the rate of

development of countries in the continent (Holmes et al., 2017;

Nkengasong and Tessema, 2020). Africa has the peak occurrence

of communicable diseases in the world, while the majority of the

estimated (10million per-annual deaths) from infectious diseases

occur in the continent (Hill-Cawthorne and Sorrell, 2016;

Nkengasong and Tessema, 2020). Infectious diseases are

generally caused by micro-organisms which may be bacteria,

viruses, parasites, fungi etc. Seventy-five percent of these diseases

are zoonotic and have been sources of serious health threats to

the world dating back to ancient Egypt. A pathogenic microbial

agent including bacteria, viruses, parasites, or fungi of which

approximately 75% are zoonotic diseases that have jumped

taxonomic lines to infect humans, causing grievous health

challenges to the world since the days of ancient Egypt

(WHO, 2005; Weber et al., 2016).

Infectious diseases like malaria, diarrhea, and tuberculosis

have been reported among the top ten causes of death in

developing countries (WHO, 2008) while the Acute

Respiratory Syndrome (SARS) coronavirus 2 (COVID-19) has

been reported lately as one of the world’s deadliest pandemics

(Nueangnong et al., 2020; Di et al., 2021). It was reported on

4 January 2022 that COVID-19 has infected up to two hundred

and eighty-one million eight hundred and eight thousand two

hundred and seventy (281, 808, 270) persons globally with five

million, four hundred and eleven thousand seven hundred and

fifty-nine (5,411,759) deaths recorded. In Africa, seven million,

one hundred and sixty-four thousand four hundred and eighty-

five (7,164,485) infections were recorded while one hundred and

fifty-five thousand six hundred and seventy-five (155,675) deaths

mortalities were recorded (Makinde et al., 2022). Despite the

lowest number of COVID-19 confirmed cases in Africa, Africa

has a long history of severe and re-emerging infectious disease

upsurges such as malaria and ebola (Fenollar and Mediannikov,

2018).

It has been estimated that over 227 million lives have been

lost to infectious diseases and it is also documented to be

responsible for an annual productivity loss of over

US$800 billion yearly (WHO, 2019a). Economic, political,

climatic, and environmental changes coupled with many

more challenges already facing the continent have been

ascribed to the dreadful cases or impact of infectious disease

outbreaks in Africa (WHO, 2014). The ability to transmit

infectious diseases from one person or species to another

makes them more contagious, which may arise via one or

more different ways such as physical interaction with

affected individuals, airborne inhalation, vector-borne

spread, and contaminated objects (Dorland, 2004).

In combating these diseases, a multifaceted approach ranging

from drug/vaccine discovery and development, improved

sanitation, and improved healthcare delivery at primary,

secondary, and tertiary levels have been employed to varying

degrees of success. Despite these efforts some of the defeated or

successfully suppressed ones are resurfacing or have resurfaced in

the latter part of the 20th century (Gardner et al., 2002; Holt et al.,

2002; Fauci, 2006; Goel et al., 2006). Since the inception of the

21st century till date, a global increase in outbreaks of EIDs has

been experienced with significant public health alarms; these

include but are not limited to outbreaks of H1N1 swine flu in

2009, Ebola virus in 2013–2016, Severe Acute Respiratory

Syndrome-related coronavirus (SARS-CoV) outbreak between

2003 and 2004, Middle East respiratory syndrome coronavirus

(MERS-CoV) in 2012, and Zika virus from 2015 to 2016 (Kaner

and Schaack, 2016; Aleanizy et al., 2017; Pereira et al., 2018).

A lot of factors such as rapid population increase, intense

international travel, poor sanitation in congested cities, a

substantial increase in the international food trade, poor

practices of food preparation, continuous exposure to disease

vectors and reservoirs, and climate change affect the types and

proliferation of insect vectors and animal reservoirs. Other

factors include poor public health institutions and

infrastructures, natural species diversity, recombination and

adaptations, uncontrolled application of pesticides and

antimicrobial drugs and the use of virulent pathogens such as

Bacillus anthracis and smallpox virus as agents of bioterrorism

have been reported as contributing factors to disease emergence

and re-emergence (Woolhouse and Gowtage-Sequeria, 2005;

Vignier and Bouchaud, 2018). Hence, infectious diseases are

certainly an unending threat to the whole world irrespective of

race, colour, lifestyle, socioeconomic status, and ethnic

background. They pose misery, death and cause serious

financial burdens on humanity. However, the arduous process

of developing vaccines and drugs is time-consuming and

expensive. It has been estimated that about US$500 million to

US$1 billion of capital investment is needed for over 10 years to

make a drug or vaccine available to the populace. The problem of

winning the war against infectious diseases is complicated by the

ability of some the pathogens to mutate and alter their genetic

makeup, thereby rendering drugs and vaccines inefficacious

(Pronker et al., 2011).

The current situation is alarming and demands action,

especially in Africa where most of the countries fall under the

developing countries category where a small percentage of

annual budgets are earmarked for the healthcare of the

citizenry (Yadav and Rawal, 2015a; Yadav and Rawal, 2015b;

Yadav et al., 2016).

The present situation requires an aggressive alternative way

of combating these medical threats. This may require that Africa

look inwards and take advantage of some of her natural
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bioresources such as plants, mushrooms, and animal products to

combat these emerging diseases. The current study aimed at

identifying prevailing emerging diseases in Africa, their imposed

burden and challenges on the population, enhanced prevailing

factors, and the way forward. Ganoderma lucidum (Reishi

mushroom), a commonly encountered mushroom in Africa

was targeted in this review as a potential therapeutic solution

to the threats of emerging diseases in Africa by elucidating

produced bioactive components in G. lucidum and their

medical importance. This mushroom which is popularly

known as Reishi in Asia or Lingzhi is red-coloured and has

remained useful in traditional medicine in Asia, especially China

for centuries Chang at al., 1986. It is known as the mushroom of

immortality (Cao et al., 2012). In the Pharmacopoeia of the

People’s Republic of China, the mushroom is reported to have

been used for over two millennia (Wu et al., 2013; Luangharn

et al., 2021). Traditional Chinese books classify Ganoderma

species based on basidiocarp colouration (Szedlay, 2002).

Many high and low molecular weight bioactive compounds

have been isolated from Ganoderma sp. (Ahmadi and

Riazipour, 2007; Chan et al., 2007; Chen et al., 2007). Some of

these bioactive constituents are; polysaccharides, protein, sterols,

and triterpenoids that possess considerable and highly significant

therapeutic properties. Others include antibacterial, antifungal,

antiviral, immune-boosting ingredients, anticancer, antitumor,

antioxidative agents, anti-inflammatory, and anti-hypotensive

making Ganoderma sp a well-known functional food (De

et al., 2012a; De et al., 2012b; Singh et al., 2013; Richter et al.,

2015; Hyde et al., 2019; Luangharn et al., 2021). Several studies

have revealed G. lucidum extract to contain components with an

extensive range of pharmacological and therapeutic properties

which include immunomodulation, hepatoprotective,

hypocholesterolemic, free radical scavenging, and anti-

inflammatory (Nahata, 2013; Richter et al., 2015; Luangharn

et al., 2021). G. lucidium extracts are given as supplements or

medicine for several ailments and diseases (Zheng, 2011).

Interestingly, the absenteeism of side effects and the huge

health aids associated with this mushroom make it ideal and

acceptable as herbal medicine (Sanodiya et al., 2009).

Emerging diseases

Emerging diseases in Africa

Diseases can be defined as any situation that causes harmful

deviation from the normal functional or structural state of the

body organ (system), the psyche, or an organism in total. Some of

these impairments or damages are generally accompanied by

specific signs and symptoms which are significantly different

from physical injury. The organs and/or systems’ functional

impairment brought by disease could be a result of the

intrinsic or extrinsic factors (Nii-Trebi, 2017). Those that

emerge from inside the host which might be about the

organism’s genetic features are referred to as the intrinsic

factors. This may as well be due to any dysfunction inside the

host that interferes with the natural processes in a body system.

Extrinsic factors refer to those that are external or foreign to

the host.

Emerging diseases can be described as an infection newly

being discovered inhabitants or are swiftly increasing in

occurrence in a geographical range (Morse, 2004). Emerging

diseases occur globally irrespective of continent or country and

their origin and nature are becoming increasingly difficult to

predict due to factors such as extensive international travel, wide

and borderless trade policies etc. However, reports on the

emerging diseases have revealed that they originate or emerge

chiefly from where there is a dense population of diverse animal

species, frequently in close interaction with humans (Brown,

2004). New diseases frequently emerge and come into existence

while those that have been earlier suppressed or eliminated at

times tend to re-emerge as human lifestyles change due to

advances in technology, population increase, and changes in

social behavior. Around 75% of the emerging diseases affecting

people in the past years were documented to originate from

animals and/or their products (WHO, 2007).

Out of this 75% documented emerging diseases, an estimated

60% are zoonotic. Some of the most recent are; ebola

haemorrhagic fever, severe acute respiratory syndrome

(SARS), H1N1, avian influenza, and probably human

immunodeficiency virus/acquired immune deficiency

syndrome (HIV/AIDS). Several factors have been recognized

to be responsible for the spike in the incidence of emerging

diseases. Some of these include; overpopulation, expansive

international trade, high movement of animal species, climate

change, civil unrest/wars, a mutation in microbes, and disruption

of the ecology of many animals and insects (Morse, 2004). It is

obvious from these factors that the occurrence of emerging

diseases will not abate but may likely be on the increase shortly.

Emerging infectious diseases

In 1987, Joshua Lederberg, Robert B. Shope, and Mary

Wilson officially delineated the word emerging and

reemerging diseases (E&RD). EIDs are infectious diseases

origin whose occurrence in human beings has either surged in

less than the last 2 decades or presently threatened to escalate

(Oaks et al., 1992). EIDs are those diseases that arise via the influx

or attack of a host by a foreign body whose actions mar the

normal functioning of the host’s systems (Tibayrenc, 2007; Nii-

Trebi, 2017; Burrows and Scarpelli, 2020). EID has chiefly been

referred to as those infectious diseases that have previously

existed or are currently emerging in a population but are

escalating very fast in incidence or geographic range (CPC,

2015; WHO, 2015; Fenollar and Mediannikov, 2018) while
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their origin had been generally linked to and catalyzed by social

status, economic state, environmental factors and ecological

factors (Fenollar and Mediannikov, 2018).

EIDs are majorly classified into emerging if they are observed

in an infected person for the first time and reemerging which

have been described as one that re-emerged, historically in a

more pathogenic way and swiftly spiral incidence after noticeable

control or eradication (Racaniello, 2004; Barber and Stark, 2015).

Emerging infections (EIs) appeared exponentially in the track of

human history and have engendered limitless damage to the

human race (Cohen and Larson, 1996).

Pre-emergence, localized emergence, and pandemic

emergence have been documented as the three (3) phases of

zoonotic disease emergence (ZDC) (Morse et al., 2012).

Additionally, Hughes et al. (2010) reported another five (5)

phases of ZDC including, restricted to animals, chiefly human

infections, limited human-to-human transmission, continuous

human-to-human transmission, and limited to humans.

The burden of EID in Africa

The costs of emerging infectious diseases (EIDs) are cosmic

both concerning lives lost and the economic burden (WHO, 2019a;

WHO, 2019b; Bernasconi et al., 2020; Callaway, 2020; Nkengasong

and Tessema, 2020; World Bank, 2020). Globally, the world has

seen a diverse upsurge of EIDs since the onset of the 21st century to

date with acclaimed public health concerns. These include but are

not limited to Middle East respiratory syndrome coronavirus

(MERS-CoV) for 10 years running, Zika virus (2015–2016),

acute respiratory syndrome-related coronavirus (SARS CoV) in

2003–2004, H1N1 swine flu in 2009, and Ebola virus between

TABLE 1 Emerging Infectious Diseases in Africa in the past decades.

Disease Origin Causative
agents/Host

Transmission Countries affected References

COVID-19 China SARS-CoV-2 and Bats Respiratory droplets and
contaminated surfaces and
hands

All countries and still Ongoing WHO (2021)

Zika Uganda Zika virus and
Mosquitoes spp.

Mosquito bite, sex, mother to
foetus and organ transplant

New Guinea, Cape Verde Nyaruaba et al. (2019);
Posen et al. (2016)

Chikungunya
fever

Tanzania CHIKV and Mosquitoes Infected mosquito bite Chad, Congo, Sudan, Kenya, Kenya,
Somalia, Senegal

Nyaruaba et al. (2019)

Rift Valley Fever Kenya RVF virus and
Mosquito spp.

Blood or organs of infected
animals, raw milk and
mosquitoes

Kenya, Gambia, Kenya, Angola, Niger,
Uganda, Senegal

Nyaruaba et al. (2019)

Yellow fever Not
determined

Virus and Mosquitoes Mosquito bite Senegal, Guinea, Nigeria, Ethiopia, South
Sudan, Uganda, Angola, Kenya, Cameroon,
Chad, Congo, Ghana, Sierra Leone, Cote d’
Ivoire

Nyaruaba et al. (2019)

Dengue Fever Not
determined

Dengue virus and
Mosquitos

Mosquito bite and mother-to-
child

Burkina Faso, Cote d’ Ivoire, Burkina Faso Nyaruaba et al. (2019)

Ebola Virus
Disease

DRC Ebola virus and Bats
or NHP

Infected animals, person-to
person and via semen

Guinea, Uganda), MAli, Liberia, Guinea,
Nigeria, Sierra Leone, DRC, Senegal,
Uganda, Uganda

Petersen et al. (2018);
Rohan and McKay
(2020)

Measles Not
determined

Measles virus and
Humans

Infected person coughing or
sneezing

Burundi, Tunisia Furuse et al. (2010)

Monkeypox DRC Monkeypox virus and
Unknown natural host

Human-to-human, wild animals DRC, Nigeria, Cameroon and Nigeria and
Central African Republic (CAR)

Beer and Rao, (2019)

cVDPV2 Not
determined

Reverted live attenuated
OPV and humans

Person-to-person Sudan, Somalia and Nigeria Jorba et al. (2016)

Poliomyelitis Not
determined

Poliovirus and Humans Person-to-person (fecal oral
route)

Madagascar, South Sudan, Madagascar,
Cameroon, Equatorial Guinea, Cameroon,
Chad and Nigeria

Mehndiratta et al.
(2014); Jorba et al.
(2016)

Lassa Fever Nigeria Lassa virus andMastomys
rats

Exposure infected Mastomys
rats’ urine or faeces and person-
to-person

Nigeria, Liberia, Benin), Togo and Ghana CDCP (2019)

Marburg
Hemorrhagic
Fever

Germany Marburg virus, African
fruit bat and Rousettus
aegyptiacus

Fruit bats and human to-human Uganda CDCP (2021b)

Bird flu China Influenza virus (H5N1)
and Birds

Contact with infected poultry South Africa and Egypt Kayali et al. (2014)
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2013 and 2016 are few examples (Kaner and Schaack, 2016;

Aleanizy et al., 2017; Pereira et al., 2018). Africa had been

described to be the home and origin for both emerging and re-

emerging infectious diseases with varying degrees of mortality

(Dye, 2014; Fenollar and Mediannikov, 2018). Africa’s primary

burden arising from endemic diseases is the biggest in the world

(Nkengasong and Tessema, 2020). Tuberculosis, Ebola, malaria,

measles, along with the lately emerged acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) and many others are the tenable

examples of emerging infectious diseases that ravaged public

health in Africa in recent times (Calvignac-Spencer et al., 2012;

Fenollar and Mediannikov, 2018; Nyaruaba et al., 2019; Kalk and

Schultz, 2020; Oyejobi et al., 2020). The detailed descriptions of the

majority of Africa’s emerging infectious diseases (EIDs) with their

origins, causative Agents/Host, countries affected, cases, and

transmission in the past decade is shown in Table 1

(Nkengasong and Tessema, 2020; WHO, 2021; Nyaruaba et al.,

2022; Phoobane et al., 2022).

In addition, factors such as massive international travel and

trade, demographic change, and climate change are drivers of

EIDs in Africa (Fenollar and Mediannikov, 2018; Nyaruaba et al.,

2019). Hence, when it comes to readiness to manage EIDs,

African countries can be said to be ill-prepared in comparison

with other continents (Braack et al., 2018; Fenollar and

Mediannikov, 2018; Petersen et al., 2018). Factors such as

political upheaval, economic quagmire, and massive rural-

urban migration are contributing factors to the breakdown of

many health systems that lack appropriate disease surveillance

that will assist in managing, predicting, and preventing the

impending EIDs in Africa (Shears, 2000). Furthermore,

poverty, poor healthcare, and total reliance on donor

countries to finance scientific studies related to EIDs aggravate

health problems and at the same time reduce the effectiveness of

Africa’s progress in combatting EIDs (Shears, 2000; Fenollar and

Mediannikov, 2018). African countries are grouped amongst the

least concerning budgetary provisions for health and accessibility

to health personnel. In addition, Africa is the leading continent

for infant mortality with five of the six worst countries in the

world being on the continent. Currently, the continent loses

100 of every 1,000 births as reported by World Health

Organization (Fenollar and Mediannikov, 2018). Fifty percent

(50%) of the deaths in Africa are caused by infectious diseases

compared to just two (2) percent in Europe, underlining the need

for Africa to take the lead in the war against infectious diseases.

Causes and transmission of infectious
diseases in Africa

Major causes

The key factors of infectious disease emergence include

microbial, human, and environment. However, the complex

interaction of these factors determines the potential virulence

of the pathogens (Marty et al., 2001). The emerging and re-

emerging diseases come about and reappear over and over again.

Infectious disease agents (bacterial, fungi, protozoa, helminths,

and viruses) undergo different phases of adaptation to build up or

gain diverse pathogenic features or potentials in a new host

before causing an epidemic (Carruthers et al., 2007). Microbial

agents are developed by processes such as natural, controlled, or

uncontrolled gene mutation and genetic recombination along

with other factors which make the infectious agents develop and

acclimatize to new vectors or hosts’ ecological niches and spread

quickly (Alcais et al., 2009). Several factors have been established

to give rise to this adaptation and subsequent emerging disease.

Howbeit, the multifaceted association sandwiched between the

infectious agents, the hosts, and the environment is vital.

The environment is affected by deforestation and expansive

agricultural development and upgrading which cause potential

alterations in the ecology of microbes and intensify their

adaptation to human host (Neiderud, 2015; Tong et al., 2015).

Furthermore, sociodemographic factors including a rise in

population density, drop in standards of living, dearth of

infrastructure, human traveling, dispute, and social

unpredictability as well as the killings of wild animals for

meat brought about the rise in host-microbe contact that

promotes infections in humans (Utzinger and Keiser, 2006;

Gayer et al., 2007; Defo, 2014). Also, certain conscious human

activities such as the use of biological weapons in warfare have

contributed to the incidences of infectious diseases. Moreover,

mutation or changes in the genetic makeup of a pathogen, which

can occur due to contact with chemical reagents and

antimicrobial agents (like an antibiotic), might result in gene

impairment and emanation of drug-resistant pathogen variants

or strains that may perhaps give rise to new disease (Lashley,

2004; Alcais et al., 2009).

Predominantly, EIDs caused by viral pathogens are

accountable for a large percentage of emerging infectious

diseases, two-thirds of the infectious diseases documented are

caused by viruses (e.g., Filoviruses, Ebola, and Marburg) (Dye,

2014; Brown et al., 2018; Lado et al., 2019). Few of these infectious

disease pathogen emergences and causes are discussed in Table 1.

Transmissions

Transmission of infectious diseases is mostly brought about

by contact with an infectious agent such as bacteria, viruses,

fungi, protozoa, helminths, etc., or sometimes with an infected

person (Barber and Stark, 2015; Pieterse, 2019). However, several

factors like global urbanization, population density increase,

social upheaval, traveling, agricultural practices, and climatic

change coupled with some other human actions and events

that decimate microbial environment have been acknowledged

as an avenue for infectious agents to gain entrance into human
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hosts (Pavia, 2007). The more they increase in human

engagement exposes them to reservoirs of disease-causing

organisms, the more the risk of contracting new diseases. It

has been affirmed that most of these pathogens are transmitted

through an intermediate animal host, mostly rodents which now

get in contact with humans due to environmental and behavioral

factors (Table 1) (WHO, 2001; Morse et al., 2012).

Nanyingi et al. (2015) attributed the large West African RVF

occurrence in humans and animals in 1987 to changes in the

environmental conditions and the actions between animals and

humans as the major factor behind the outbreak. Pathogens may

be contracted via urine and droppings of the animals which

might be aerosolized and infect vertebrates as well as man. For

instance, Hantavirus Pulmonary Syndrome, Lassa fever, and the

Nipah virus encephalitis (Table 1), in which pathogenic viruses

coexist with specific rodent species (Tadin et al., 2016). Few of

these infectious disease pathogen emergence and transmission in

humans are reported in Table 1.

Emerging diseases in Africa: The
challenges and the way forward

The challenges

Regardless of outstanding improvement in the past

(especially past 2 decades), the continuous mortality arising

from incidences of emerging infectious diseases are still been

reported (Nii-Trebi, 2017). The difficulty in dealing with these

diseases, especially for accurate time prediction, and location/

uniqueness of the causative pathogen is real and presents a major

challenge in combating them (Oyston and Robinson, 2012;

Mukherjee, 2017; Wong and Qiu, 2018).

Some basic concept in infectious disease emergence has been

described by Wilson, (1995). These include the complexity of the

infectious disease’s emergence, the dynamism of the infectious

diseases, agents involved in new and re-emerging infections cross

taxonomy (such as viruses, bacteria, fungi, protozoa, and

helminths), incorrect diagnosis of the pathogen, human

activities, disease patterns and emergence which are sharpened

and influenced by social, economic, political, climactic,

technologic and environmental features coupled with the

current global situation which favours disease emergence.

Genetic modification and changes that occur in pathogenic

microorganisms have remained one of the challenges associated

with emerging diseases. The propensity of some of the pathogens

to genetically modify on their own has presented researchers and

healthcare experts with serious headaches in dealing with them.

This is due to the emergence of new phenotypic and genotypic

features which most of the time enhance the virulence or

resistance of the pathogen to vaccines and drugs. Sometimes,

they improve the ability of the pathogen to colonize a wider range

of hosts or reduce the time of their incubation. This, therefore,

encourages the emergence and re-emergence of infectious

diseases, triggering new epidemics repeatedly. Several

illustrations of emerging and re-emerging infectious agents

with the capacity to undertake manifold genetic modifications

and advance in retort to altering the host and environmental

conditions have been documented (Tibayrenc, 2007). The

emergence of EIDs menace thus persists since the pathogens

endure to undergo genetic modification while the

anthropological and environmental conditions that encourage

pathogen adaptation to infection in humans remain.

Nevertheless, findings had suggested the complex nature of

various factors other than the only genetic variation that may

lead to the virulence of pathogenic microorganisms resulting in

the occurrence of infectious diseases and the severity of such

infections (Fineberg and Wilson, 2010).

Another major challenge emanating from genomic

modification is the incidence of resistance to drugs, especially

antimicrobial resistance (De Clercq, 2009; Meyer et al., 2011;

Fauci and Morens, 2012; Klein, 2013). There has been much

concern about the increased cases of drug-resistant pathogens in

recent times. Some of the cases of resistance may not be due to

genetic modification but to drug abuse by the patients. In Africa,

some patients are in the habit of discontinuing their drugs

immediately after they feel better despite the presence of the

pathogen in their systems. This makes the pathogen in some

cases build resistance to some of the antibiotics so abused. Some

of the organisms found to have developed such resistance include

but are not limited to Staphylococcus aureus, Escherichia coli,

Neisseria gonorrhoeae, etc. (Lemon et al., 2007).

The way forward

Pathogens responsible for causing Infectious diseases have

somehow perfected their ability to appear and also escalate

speedily by any imaginable means, exhibiting a higher

pathogenic potential and mutation rate to resist drug attacks.

Sequel to the widespread of pathogens, some of which are not

yet recognized, and the wide range of animal species involved as

vectors or hosts, a lot still needs to be done in combating

infectious diseases and improving public health. Hence, to

address the global challenges of EIDs and associated social

and economic risk, there is a need for the development of an

effective strategy for the deployment of drugs and vaccines

when necessary. There is also a need for training and retraining

of skilled personnel for comprehensive research, prompt

diagnosis, management, and treatment of patients. The

building of infrastructures and capacity for state-of-the-art

equipment and technologies for diagnosis, screening, in vitro

trials, and treatment cannot be overemphasized. Attention

must also be given to international cooperation in research

and active national, continental and global networks for severe

infectious diseases along with improving the biological
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materials to boost antimicrobial product advancement and

vaccine trials.

There is a need for distinct observation on conditions that

encourage disease emergence, specifically those of human events

that destroy the environment and change ecological settings

thereby increasing animal interaction with humans. As long as

this is not stopped, there is, then, no evidence that advancement

in the detection and control of infectious disease plans will

adequately prevent novel diseases from appearing since each

novel disease comes with peculiar problems. Moreover, there

must be a breakthrough in predicting zoonotic emerging diseases

to further boost the rate of success in dealing with these

infections. To meet the unique challenges posed by EIDs, an

innovative and efficient formulation and utilization of the local

medicinal plants and macrofungi products could be a promising

alternative approach. The medicinal importance of copious local

medicinal plant products such as Ganoderma lucidum (GL) has

been documented by several researchers and the possibility of GL

bioactive compound being a novel solution to EIDs in Africa is

reported in this review.

Ganoderma lucidum

History and taxonomy of G. lucidum

GL was presented by Curtis in 1881 (Karsten, 1881) garrison

on material belonging to Peckham, London, United Kingdom,

and the identification was approved by Fries in 1821 (Chen,

1999). GL has formerly been treated as identified as Boletus

lucidus, Curtis (1777) (Fr.), Polyporus lucidus Curtis Fr (1821)

Polyporus polychromus Curtis (Fr.), G. polychromum Curtis (Fr.),

G. sessile Curtis (Fr.) and Fomes lucidus (Curtis) Sacc. (Siwulski

et al., 2015). GL was reported in China for the first time by Sydow

et al. (1907) while Teng (1934) delineate the assemblage of GL

from various regions in China (Wang et al., 2012). The

monograph of traditional Chinese medicinal fungi coupled

with the account of GL as Lingzhi was compiled by Liu

(1974) in his book (Hapuarachchi et al., 2015). Ever since, GL

has been scientifically acknowledged as the same as Lingzhi in

different research papers and reports on Chinese edible and

medicinal mushrooms (Ying, 1987; Mao 1998; Dai et al., 2017).

For about two thousand years, GL, a woody polypore

(Basidiomycota) has been generally utilized as a medicinal

mushroom or supplement in China (Sliva, 2006) and has

remained a significant part of the traditional medicine

ingredients in the far east, particularly in China and Japan.

GL has been broadly employed in the branding of

commercialized Lingzhi products in the global mushroom

industry due to its several medicinal benefits (Lai et al., 2004).

Taxonomically. GL belongs to the Kingdom fungi which include

heterotrophic nonvascular organisms that have a chitinous cell

wall. Spore production (sexual/asexual) is the means of their

reproduction and grows only through means of vegetative

hyphae. They belong to Basidiomycota Phylum,

Agaricomycetes class, Polyporales order, and

Ganodermataceae family.

They grow mainly on wood as decayers and can be as well as

be parasites or symbiotics, but they are terrestrial fungi. The

species of GL has a defining characteristic that separates it from

other species in the genus Ganoderma in that an association with

hardwood trees is necessary. In addition to this distinct

characteristic, the hyphal walls of the GL are thicker than

other species in the same genus (Figure 1).

GL is a commonly known therapeutic mushroom that has

remained useful for the prevention and treatment of different

disorders to enhance longevity and health mostly in China,

Japan, and Korea. It was known as God’s herb in ancient

China as it was affirmed to extend life, boost the youthful

spirit and sustain/preserve liveliness.

Ganoderma lucidum distribution and
cultivation

Distribution

GL has a global distribution but mainly grows and is found in

subtropical and moderate weather regions, particularly in the

Asia (China, Korea, and Japan), Europe (Sweden, Denmark, and

Poland), Africa (Kenya, Tanzania, and Ghana) and America

(North and South America) (Pilotti, 2005; Cao et al., 2012;

Wang et al., 2012; Cao and Yuan, 2013; Siwulski et al., 2015).

GL grows in the areas around Yangtze and Yellow rivers in China

and its range extends as far north as Canada and south into

Argentina (Tiqiang and Kaiben, 2004). The basidiomata of the

genus Ganoderma are bound and described as sessile to stipitate,

FIGURE 1
Image of Ganoderma lucidum.
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with double-walled basidiospores and internal pillars (Karsten,

1881; Moncalvo and Ryvarden, 1997). According to Kirk et al.

(2008), 80 species of Ganoderma are recognized globally, while

two global fungal databases viz. Index Fungorum (Index

Fungorum, 2021) and MycoBank (MycoBank, 2021) hold

459 and 503 records, respectively.

Cultivation

The high demand for GL due to its uses in several industries

like food, therapeutic, cosmetics, and other health-related uses

has increased the rate of cultivation of GL among other

mushrooms (Yang et al., 2019). Several approaches have been

used to cultivate the mushroom and they have all proven effective

(Renu and Brij, 2015). Three main methods utilized for the

cultivation of GL are the natural wood log cultivation method

(most popular to date), wood pulp cultivation (Bottle

cultivation), box cultivation, and cultivation of sawdust and

modern cultivation practices (Figure 2), which are still in use

to date. In the wood log cultivation method, hardwood logs/chips

are left in a warm, moist environment and are always used for

growth, then the moistened wood log is inoculated with spores

for germination/sprout. This can be carried out both in the lab

and in relaxed settings while the whole growth cycle can take up

to 1 year. Cilerdzic et al. (2018) reported the growth of the GL

fruiting bodies on hardwood logs, stumps, and sawdust.

Cultivation of GL can also be done using wood chips and

chemicals in vacuum packing. However, this yields a much

faster harvest in good time (around 2 months) but produces

an inferior quality product. The artificial cultivation of GL had

been documented to take some time and the quality is based on

the environmental conditions. However, mycelium production

has been observed in both liquid and solid-state fermentation

while GL secondary metabolites can be acquired rapidly by

fermentation technology (Zhou et al., 2014; Yang et al., 2019).

The existence of G. lucidum in different parts of Africa has

been reported. Different methods of cultivating G lucidum have

been successfully established via several studies in different

locations within Africa. Diverse substrate formulations have

been reported and employed for the large-scale production of

this mushroom tomeet its demand. In Lagos Nigeria, Adongbede

and Atoyebi, (2021) cultivated G. lucidum (Curtis) P. Karst. on

the sawdust (substrate) of six indigenous hardwoods

supplemented with rice and wheat bran. A higher yield of G.

lucidum was obtained with these local materials compared to the

report of Thakur and Sharma (2015) when cultivated on sawdust

supplemented with wheat bran in India. Also, Ihayere et al.

(2017) reported impressive results on the cultivation of ten (10)

strains of G. lucidum from different locations in the tropical

rainforest zone of southern Nigeria with isolates from

Iguikhinwin (Edo State) and Oghara (Delta State) showed

better mycelium biomass production.

Bioactive component of G. lucidum

GL bioactive constituents have recently gained remarkable

recognition. Countless bioactive components have been reportedly

isolated from the fruiting body, mycelia, and spores of GL

(Table 2). About 400 different bioactive compounds from GL

have been documented. The major identified active compounds

possessing biological activities include polysaccharides,

triterpenoids, nucleotides, sterols, amino and fatty acids,

meroterpenoids, sesquiterpenoids, steroids, alkaloids,

polysaccharides, volatile oils, proteins, and many more (Yang

et al., 2019; Vo et al., 2021). Some of these key bioactive

constituents are shown in Table 2. Nevertheless, GL bioactive

constituents are dependent on different conditions including the

origin, classifications, cultivation process, method of extraction, etc

(Vo et al., 2021). GL polysaccharides and triterpenoids are

considered the most bioactive compounds with various health

advantages and have increased request in the market (Vo et al.,

2021). The report from the Chinese Pharmacopoeia (2015 edition),

showed a minimum of 0.90% polysaccharides and 0.50%

triterpenoids are contained in the Ganoderma dry fruiting body

(CPC, 2015; Vo et al., 2021). Nevertheless, triterpenoids and

polysaccharides have attracted significant and worthwhile

attention due to their diverse importance and high content in

fungus. Some of these bioactive compounds are reviewed below:

Triterpenoids

More than two hundred (200) triterpenoids were confirmed in

G. lucidum’s fruiting bodies, spores, and mycelia (Xia et al., 2014;

Baby et al., 2015). Generally, these obtained triterpenoids had been

FIGURE 2
Different methods of G. lucidum cultivation.
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classified into two groups, the carboxylic side chain (Ganoderma

acids) group and the other group with no carboxylic side chain

(Ganoderma alcohols). A huge chunk of them is lanostane type

triterpenes while some are regarded as lucidenic acids (Weng et al.,

2007; Xia et al., 2014). Ganoderma Triterpenes are further grouped

as ganoderic acid, ganoderiol, ganoderone, ganolactone, and

ganoderal, according to their functional groups and side chains

(Xia et al., 2014; Baby et al., 2015). The existence of these

triterpenoids, particularly ganoderic acid, the major triterpenoid

in this mushroom is responsible for the bitter taste in G. lucidum

(Sudheer et al., 2019). Ganoderic acids are of different types which

include, GA-A, B, C, and F. Research has shown a higher

significant presence of triterpenoids in the spores in

comparison to other parts of the mushroom (Yu et al., 2016;

Sudheer et al., 2019). Furthermore, the production of bioactive

compounds in Ganoderma is influenced by the zone and under

which conditions they are cultivated while the structure of

lanosterol determines the basic structure of triterpenoid (Min

et al., 2001). However, according to the number of carbon

atoms and functional groups, triterpenes are grouped into three

groups of whichmany of which have been documented to be useful

as chemotherapeutic agents (Luo and Lin, 2002).

Polysaccharides and peptidoglycans

Reports have shown the presence of polysaccharides in GL.

Over 100 different kinds of polysaccharides observed in GL have

been documented (Sudheer et al., 2019). Several studies have

revealed GL as a very good source of polysaccharides and

glycopeptides (Nie et al., 2013). Polysaccharide is a compound

formed from many monosaccharides, connected by glycosidic

bonds while most polysaccharide belongs to a group of β-glucan
which involves a linear backbone of β- (1,3) and connected by

D-glucopyranosyl groups with various degree of branching from

the C-6 position (Sudheer et al., 2019). Several components,

structures, molecular weights, and effects of GL polysaccharides

are noticeable at different growth phases of GL. The highest

content of polysaccharides was contained in the mycelium while

the lowest content was reported in the fruiting body.

Furthermore, glucose and galactose are the major sugars in

the fruiting bodies while glucose was reported as the main

monosaccharides from the mycelium and spores (Khanna

et al., 2012). Countless types of polysaccharides having a

range of molecular weights from 4 × 105 to 1 × 106 Da

present in the fruiting body and mycelia of GL have been

documented (Khanna et al., 2012; Bishop et al., 2015; Ferreira

et al., 2015). However, the rudimentary framework of GL

polysaccharides (GLPs) is made up of a high-molecular-mass

β-(1→3)-d-glucan coupled with (1→6)-β-d-glucosyl branches,
and the key sugar components remain mannose, rhamnose,

glucose, and galactose (Liu et al., 2014). β- Glucans of higher

molecular weights have been revealed to be more efficacious than

glucans that have low molecular mass (Gao et al., 2002; Chang

and Lu, 2004; Huie and Di, 2004). The presence of chitosan in GL

has worthwhile features in specialized sectors including

TABLE 2 Common pharmacological effects of G. lucidum main bioactive compounds.

Pharmacological
effects

Main bioactive compounds References

Anticancer Polysaccharides (1→3, 1→4, and 1→6-linked β and α-D (or L)-glucans) Wachtel-Galor et al (2011); Ferreira et al. (2015)

Glycopeptides and peptidoglycans Ferreira et al. (2015); Cör et al. (2018); Hapuarachchi et al.
(2015); Sudheer et al. (2019)

Triterpenoids (Ganoderic acids, ganodermic, ganolucidic acids, ganoderals,
ganoderiols, lucidumol, lucialdehyde, lucidenic acids)

Boh (2013); Duru and Çayan (2015)

Immunomodulatory Protein Ling Zhi-8 (LZ-8), lectin, ribosome inactivating proteins, glycopeptides/
glycoproteins, peptidoglycans/proteoglycans, ganodermin A, ribonucleases,
proteinases, metalloproteases, laccases

Cao et al. (2012); Sudheer et al. (2019)

Antidiabetic Polysaccharides, proteoglycans, proteins (LZ-8) and triterpenoids Ma et al. (2015); Ahmad, (2020); Ma et al. (2015)

Anti-inflammatory Ganoderic acids T-Q and lucideinic acids A, D2, E2, and P Sliva et al (2003); El Mansy, (2019)

Antioxidant Triterpenes, polysaccharides, polysaccharide peptide complex and phenolic
component; Methanolic extracts; Phenolic and polysaccharide extracts

Kan et al (2015); Yildiz et al (2015); Kumari et al. (2016);
El Mansy, (2019)

Cardiovascular problems Polysaccharides (Ganopoly) Gao et al. (2004)

Antiviral Triterpenoids against Enterovirus 71; Ganoderic acid derivatives against
H5N1 and H1N1 influenza; Ganoderiol F, ganodermanontriol against HIV-1

Zhu et al. (2015); Bishop et al. (2015); Zhang et al. (2014);
Zhu et al. (2015)

Antimicrobial Polysaccharides; Triterpenoids (ganoderic acids, ganodermin, ganoderic acid A,
ganodermadiol, ganodermanondiol, lucidumol B, ganodermanontriol, ganoderic
acid B, ganolucidic acid B)

Cör et al. (2018); Hapuarachchi et al. (2017); Cör et al.
(2018); Sudheer et al. (2019)

Aqueous and methanolic extracts; Triterpenes, ganomycein, and other aqueous
extracts

Sudheer et al. (2019); Stojkovicć et al (2014); Hleba et al
(2014)

Sterols Provitamin D2 Wachtel-Galor et al (2011)
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medicine, pharmacy, and cosmetics (Mesa et al., 2015). GL has

been shown to contain proteoglycan which has antiviral activity

as a result of peptidoglycan’s presence (Ji et al., 2007).

Steroids and ergosterol

Steroids of over 20 kinds have been reportedly obtained in GL

and their structures can be classified into ergosterols and cholesterols

(Baby et al., 2015). Sterols are derivatives of triterpenoids, however,

the presence of ergosterol and 24-methylcholesta-7,22-trien-3-ol

coupled with 8,9-epoxyergosta-5,22-dien-3,15-diol has been

reported in GL as the first isolated free sterol (Huie and Di,

2004). Hajjaj et al. (2005) reported the isolation, purification, and

identification of 26-oxygenosterols. Zhang et al. (2008) documented

a new, highly oxygenated sterol, 22E, 24R-ergosta-7,22-diene-3beta,

5alpha, 6beta, 9alpha and 14alpha-pentol. Ergosterol compound is a

vitamin D precursor and remains essential and pharmaceutically

relevant. The integrity of the fungal cell membrane is said to be

preserved by ergosterol which also produces cellular energy and its

measurement remains the key parameter in biomass production. Lv

et al. (2012) documented higher ergosterol in GL compared to other

species of Ganoderma.

Proteins and polypeptide

Biologically active proteins of various types fromGL have been

identified. G. lucidum has been documented as a natural source of

proteins and peptides with biological properties (Xu et al., 2011).

Lin et al. (2011) reported Lin Zhi-8 (LZ-8) which is a polypeptide

that consists of 110 amino acid residues with a molecular mass of

12 kDa coupled with an acetylated amino terminus. The sequence

and projected secondary structure of LZ-8 are homogenous to the

variable region of the heavy chain of immunoglobulins (Yang et al.,

2019). LZ-8 remains the primarily first immunomodulatory

protein isolated from the mycelial extract of GL by employing

chromatographic and electrophoretic techniques in 1989 (Ahmad,

2018; Hsu and Cheng, 2018). However, their mode of action is

almost identical to lectins which have the mitogenic capacity

(Kawagishi et al., 1997) towards mouse spleen cells and human

peripheral lymphocytes in vitro. Ribosome inactivating proteins

(RIP), antimicrobial proteins, ribonucleases, and laccases are some

of the other proteins, and all play a vital function in regulating the

human body’s immune system directly or indirectly. Furthermore,

ganodermin with 15 kDa molecular mass is another protein

isolated from the GL fruiting bodies and has antifungal activity.

Lipids and fatty acids

Phosphatidic acids are one of the lipids reported in GL.

However, phosphatidic acids do not have a significant presence

(quantity-wise) in living organisms, but are very important in the

transportation of materials across the membrane and protecting the

body against damage and infection during inflammation (Hsu and

Cheng, 2018). Sequel to these lipids, GL is considered important

amongmedicinal mushroom species (Gao et al., 2003). On the other

hand, palmitic acid, linoleic acid, oleic acid, and stearic acid are

already identified as the main fatty acids present in GL. Fatty acids

obtained from the spores inhibit tumor cell proliferation (Lv et al.,

2012). Another fatty acid is nonadecanoic acid with the highest

inhibitory property followed by heptadecanoic acid, while palmitic

acid and stearic acid remain the strong apoptotic agents (Hardy

et al., 2003; Fukuzawa et al., 2008).

Enzymes

Enzymes such as β-N-Acetylhexosaminidase, α-1,2-
mannosidase, endo-β- 1,3-glucanase, β-1,3-glucanase and

glutamic protease have been obtained from GL while glutamic

protease remains the main protein in the GL extracts (Kumakura

et al., 2019; Yang et al., 2019).

Nucleosides and Nucleotides

Nucleosides and Nucleotides are nitrogenous compounds that

perform vital roles in metabolism and stimulate hemopoiesis. The

presence of nucleosides such as uridine, adenosine, cytidine,

inosine, guanosine, and thymidine, along with nucleotides like

uracil, adenine, hypoxanthine, guanine, and thymine has been

reported in GL (Gao et al., 2007). Nucleosides include adenosine

and 5-deoxy-50 methyl sulfinyl adenosine however, adenosine

from GL has been revealed to suppress platelet aggregation and

prevent cardiac arrests and thrombosis (Shimizu et al., 1985).

Amino acids

Only two of the twenty known amino acids are not present in

GL, while themost copious amino acid was found to be leucine with

a robust antidiabetic and antioxidant activity (Zhang H. et al., 2018;

Zhang K. et al., 2018). In addition, the presence of 16 amino acids

had been revealed according to the nutritional analysis of GL

(Table 3), where glutamic acid (Huang and Ning, 2010), aspartic

acid (Liu et al., 2011), glycine, and alanine convey the highest relative

abundance of 120, 117, 108 and 100 respectively while methionine

displays the least relative abundance of 6 (Wang et al., 2002).

Vitamins and minerals

Vitamins of different types from GL have been documented.

Some of these vitamins are C, D, E, B1, B2, B6, and β-carotene. In
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addition, minerals elements such as iron, sodium, carbon, zinc,

magnesium, arsenic, calcium, potassium, phosphorus,

chromium, and many others have been identified in GL

(Ahmad 2018; Yang et al., 2019).

Phenolic compounds

Phenolic compounds remain one of the bioactive

components contained in GL and are classified as phenolic

acids and polyphenols. The phenolic acids include benzoic

acid, gallic acid, chlorogenic acid, and syringic acid while

polyphenols include stilbenes, flavonoids, and tannins.

Researchers have confirmed the presence of these compounds

in GL along with their medicinal importance (Mau et al., 2002;

Heleno et al., 2012; Kumari et al., 2016; Sudheer et al., 2019).

Alkaloids and other compounds

In general, the relatively low content of alkaloids in GL had

been reported (Sudheer et al., 2019). Huie and Di, (2004)

isolated choline and betaine from GL spores (Huie and Di,

2004). Some researchers have identified the existence of

alkaloids and their chemical Allies’ derivatives in GL

(Ihayere et al., 2010). Mizuno, 1995 reported that GLextracts

(% dry weight) comprises folic (68.9%), protein (7.3%), glucose

(11.1%), and metals (Chen, 1999; Stamets, 2000). Other

compounds like oleic acid, soluble proteins, and cyclo-

octasulfur which is an ergosterol peroxide and cerebrosides

have been detailed in GL (Gao et al., 2004; Mckenna et al., 2012;

Sudheer et al., 2019). Liu, (1999) revealed the presence of stearic

acid, choline, palmitic acid, tetracosane, ergosta-22-dien-3-ol,

nonadecanoic acid, behenic acid, hentriacontane, ergosterol,

betaine, tetracosanoic acid, and β-sitosterol isolated from the

spores of GL. Chiu et al. (2000) discovered germanium, with a

concentration of 489 μg/g, the fifth-highest among the minerals

identified in GL fruiting bodies obtained from the wild (Chiu

et al., 2000). Although germanium is not a vital element at low

doses, however, it has been established to possess antitumor,

antioxidant, antimutagenic, and immunopotentiating, activities

(Kolesnikova et al., 1997).

Nutritional profile of Ganoderma lucidum

Globally, for decades, mushrooms have been esteemed as

food and medicine (El Sheikha and Hu, 2018). Kaul (2002)

reported medicines and food with a common origin/source.

Nonetheless, mushrooms remain a substantial unexploited

resource in producing efficacious pharmaceutical products,

nutrients, and cosmetics. As a matter of fact, according to

Fungorum and species, (2020), out of the estimated two to

four million fungal species globally, about 150,224 species

have been reported to be mushrooms and about 3,000 of

those are edible (Hawksworth, 2017). Based on the

nutritionist’s perspective, the fresh mushrooms were rich in

soluble fibers mainly β-glucan polysaccharides and chitosans,

and insoluble fibers (Sadler, 2003). Roy et al. (2015) documented

the nutritive value and mineral contents of GL, and this is

presented in Table 4. An appreciable amount of crude protein

and carbohydrates found in GL was reported by Zhou et al.

(2007).

Concerning the nutritional profile of GL, it can be inferred

that GL possesses a considerable nutritional potential that should

stimulate the interest of researchers in different fields of study

like pharmaceuticals, nutraceuticals, nutrition, and cosmetics

(Chang and Wasser, 2017).

Therapeutical importance of Ganoderm
lucidum

GL is recognized for its medicinal properties rather than its

nutritional value. It is not an edible mushroom because it is a

polyphore. It is seen as a mushroom that has a good effect on

health and therefore gained the interest of many researchers by

studying its bioactive constituents. Several documented works

have attested to its antimicrobial, antiviral, and anti-

inflammatory effects against many microbial, viral and

inflammatory agents. Ganoderma is rich in different bioactive

compounds with therapeutic effects and they include

polysaccharides, triterpenoids lipids, lysosomes, proteins, and

nucleotides. It contains certain elements such as germanium,

TABLE 3 Amino acid composition in G. lucidum (Sudheer et al., 2019).

Amino acid Relative abundance

Glutamic acid 120

Aspartic acid 117

Glycine 108

Alanine 100

Threonine 66

Valine 61

Proline 60

Leucine 55

Serine 54

Isoleucine 36

Phenylalanine 28

Arginine 22

Lysine 21

Tyrosine 16

Histidine 12

Methionine 6
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TABLE 4 Nutritional profile, mineral and vitamin constituents of Ganoderma lucidum (El Sheikha, 2022).

Constituents (%) Content Dietary recommended
intakes
for adults (DRIs)

Value in 100 g
Mushroom/DRIs
× 100g/100 g Mushroom (wet

weight
basis)

g/100 g Mushroom (dry
weight
basis)

Moisture 47

Total Solids 53

pH value

Energy (kcal) Men (2,215) Men (10.79)

Women (2025) Women (11.80)

Water-soluble proteins 19.5 36.80 Men (56) Men (34.82)

Women (46) Women (42.39)

Total lipids 3.00 5.66 44–77 3.90–6.82

Total ash 6.3

Reducing sugars 4.39 8.28

Nonreducing sugars 1.02 1.92

Total sugars 5.41 10.21 130 4.16

Crude fibers 3.5 Men (38) Men (9.21)

Women (25) Women (14.00)

Polyphenols (as gallic
acid)

0.04 0.08 1 7.5

Minerals Mineral
content (mg/100 g mushroom)

DRIs (mg/day) Value in 100 g
Mushroom/DRIs × 100

Potassium 432 4,700 9.19

Phosphorus 225 700 32.14

Sulfur 129 200–1,500 8.60–64.50

Magnesium 7.95 Men (400) 2.00

Women (310) 2.60

Sodium 2.82 1,500 0.20

Calcium 1.88 1,000 0.20

Copper 26 0.9 2,889

Manganese 22 Men (2.3) 956.52

Women (1.8) 1,222.22

Iron 2.22 Men (8) 27.75

Women (1.8) 12.33

Zinc 0.7 Men (11) 6.40

Women (8) 8.75

Vitamin

Thiamine (B1) 3.49 Men (1.2) 290.83

Women (1.1) 317.27

Riboflavin (B20 17.10 Men (1.3) 1,315.38

Women (1.1) 1,554.54

Niacin (B3) 61.9 Men (16) 386.87

Women (14) 442.14

Pyriodoxine (B6) 0.71 Men (1.4) 50.71

Women (1.2) 59.16

Ascorbic acid 32.2 Men (90) 35.77

Women (73) 42.93
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calcium, potassium, calcium, and compounds like alkaloids,

flavonoids, and coumarins (Ko et al., 2008).

Diverse medicinal benefits of GL have been established, and

they include anti-tumor (Kao et al., 2016), anti-malaria (Kao

et al., 2013; Chen, 2020), anti-microbial (Batra et al., 2013; Cör

et al., 2018), anti-inflammatory (Hasnat et al., 2015), and anti-

viral effects (Zhu et al., 2015) (Figure 3). Given the commercial

and pharmacological potential of GA, biosynthesis of GA by cell

factories received serious attention some few years ago (Shi et al.,

2013).

Immunomodulators/immune booster

Immunomodulatory activity remains one of the essential

features of any drug formulation that makes it effective against

any target pathogenic organisms including viral and bacterial

diseases. Immunomodulators are substances furnished with the

clinical efficacy for altering host responses in the therapy of viral

and bacterial infections and have become indispensable agents in

relieving the pathology that accompanies viral infections (Kak et al.,

2012; Labro, 2012; Zapater et al., 2015; Malemud, 2018). Different

bioactive agents from G. lucidum are immunomodulators that play

significant roles in boosting the immune system, which is the first

barrier against infectious diseases (El et al., 2013). Many of these G.

lucidum bioactive components have been studied for many years for

their effects on boosting immune responses and treating infectious

(Guggenheim et al., 2014; Mallard et al., 2019; Shao et al., 2019). A

typical example is B-D-Glucans, a principal component of

Polysaccharide that binds to serum-specific proteins such as

Dectin-1, Complement receptor 3 (CR3), Lactosylceramide

receptor, Toll-like receptor (TLR), and Scanvenger receptor

(Rasjidi and Susanto, 2015). The binding stimulates immune

effector cells (T cells, cytotoxic T lymphocytes, dendritic cells,

lymphocytes, macrophages, natural killer cells, and others)

Figure 4. The immune effector cells’ activation stimulate

increasedcytokines production andexpression of interleukins (IL),

tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), interferons
(IFN), and antibodies (Figure 4) (Kozarski et al., 2011; Li et al., 2014;

Xu et al., 2016). The immunomodulating activities like the

stimulation of phagocytic activity, acting as inflammatory

mediators, and cytokine production has been ascribed to the

presence of polysaccharides, especially beta-glucan (Wasser, 2002;

Brown et al., 2003; Vetvicka et al., 2008). Furthermore, the potential

immunomodulatory and anti-infective activity of terpenes and

terpenoids and many more have been established (Jeong et al.,

2008; Ma et al., 2011; Su et al., 2020).

Anti-HIV activity

Acquired immunodeficiency syndrome (AIDS), caused by

the Human immunodeficiency virus is highly contagious and

affects a great number of people all over the world. The inhibition

of HIV progression by ganoderic acids such as ganoderic acid

beta, GA-A, and GA-B has been documented (Paydary et al.,

2013). In addition, a significant anti-human immunodeficiency

virus protease activity with half-maximal inhibitory

concentration values of 20–90 Millimole per milliliter

exhibited by these ganoderic acids has been reported (Singh

et al., 2005; Piraino, 2006). Recently, Kang et al. (2015) also

confirmed that ganoderic acid B possesses outrageous inhibiting

activity against HIV protease. Furthermore, Zhang et al. (2011),

established the inhibition of HIV-1 reverse transcriptase by G.

lucidum extracts. All these suggested high ganoderic acid activity

for HIV management or treatment.

Antimicrobial activity

Antimicrobial activities of GL against different viral,

bacterial, and fungal pathogens have been widely reported with

some outstanding results (Gao et al., 2003; Keypour et al., 2008;

Jonathan and Awotona, 2010; Hernández-Márquez et al., 2014;

Mehta, 2014; Shah et al., 2014; Zhang et al., 2014; Basnet et al.,

2017).

Anti-malaria

Malaria is a disease caused by some species of Plasmodium

and can be successfully treated with artemisinin. Artemisinin

resistance in Plasmodium falciparum has been reported by

Dondorp et al. (2009). Lakornwong et al. (2014) evaluated the

anti-malaria properties of triterpene isolated from the mycelium

of Ganoderma against P. falciparum. The in vitro P. falciparum

examination showed that GA-F and schisanlactone B caused half

of P. falciparum death with the dose ranging from 6.0 to

10.0 μmol/L.

Antitumor activity

Ganoderic acids (GAs), a subset of triterpenes have been

reported in vitro to have antitumor activity, which triggered the

apoptosis in cervical carcinoma cells (Toth et al., 1983; Jiang et

al., 2008). Human immune system function has been greatly

enhanced by GAs (Paterson, 2006). Yuen and Cao (2008) found

that GAs prevents the continued division of human cervical

carcinoma cells by keeping the cell cycle at the G2 phase. Hsu

et al. (2008) discovered the growth inhibition of some tumour cell

lines and activation of apoptosis in human leukemia HL-60 cells

by GA-B. Jedinak et al. (2011) also expressed the blockage of the

cell cycle regulatory protein CDC20 by GA-Y, thus division and

growth of invasive and metastatic human breast cancer cells were

also prevented.
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Generally, cancer remains the foremost clinical challenge

despite the advancement in the early diagnosis and

chemotherapy of cancer (WHO, 2008). GL is a general

supplement taken by healthy persons and cancer patients to

boost their immunity along with conventional therapies.

Ganoderma species are rich sources of countless bioactive

components, including antitumoral agents (Zaidman et al.,

2005; Borchers et al., 2008). Many polysaccharides and

triterpenes components of mushrooms exhibit

chemopreventive and/or tumoricidal effects as demonstrated

by several studies from in situ experiments, laboratory animal

and human studies (Tomasi et al., 2004; Zaidman et al., 2005;

Yuen and Gohel, 2008; Harhaji et al., 2009; Calviño et al., 2010;

Calviño et al., 2010; Wachtel-Galor et al., 2011; Deepalakshmi

and Mirunalini, 2011; Wu et al., 2016; Bryant et al., 2017; Zhao

and He, 2018). GL polysaccharides (GLPs), Ganoderma

Triterpenes (GTs), and GL extract possess therapeutic effects

on cancers such as prostate cancer (Kao et al., 2016), Lung

cancer (Chen et al., 2016), glioma (Wang et al., 2018), cancer of

the breast (Smina et al., 2017).

Several studies have described the antitumor activity

expressed by G. lucidum being accomplished through the

induction of programmed cell death (Harhaji et al., 2009;

Calviño et al., 2010; Ferreira et al., 2015). Furthermore, the

isolated constituents from the G. lucidum were earlier

described as controllers of autophagy in several human cancer

cell lines (Thyagarajan et al., 2010; Hossain et al., 2012; Liang

et al., 2012; Oliveira et al., 2014). Similarly, Oliveira et al. (2014)

documented the inhibition of human gastric tumor cell line

growth by the methanolic extract of G. lucidum fruiting

bodies through a process that involves cellular autophagy. In

addition, Reis et al. (2015) confirmed that a methanolic extract of

GL induces autophagy instead of reducing the autophagic flux in

AGS cells.

Anti-inflammatory effect

Inflammation is a natural biological reaction to infection as

part of the host’s guard and tissue therapy (Lee and Choi, 2018).

Wei et al. (2018) reported that G. lucidum polysaccharides

(GLPs) can check to swell, sustain intestinal homeostasis and

normalize the intestinal immunologic barrier activity in mice.

GLPs S58, a sulfated form of a polysaccharide from G. lucidium

can impede the binding of L-selection with the receptor to trigger

the complement systems and block the binding of TNF- and

INF-Y to their antibodies. GLPsS58 could inhibit all the

L-selection, complement, and cytokine-mediated inflammation

pathways (Zhang H. et al., 2018; Zhang K. et al., 2018). However,

the anti-inflammatory result of G. lucidum polysaccharides plays

a significant part in the repair of sensitive skin (Yang et al., 2019).

Antidiabetic components

G. lucidum has been confirmed to possess antidiabetic

components, hypoglycemic mechanisms and compounds

account for hypoglycemic properties. These compounds include

polysaccharides, proteoglycans, proteins, and triterpenoids (Gao

et al., 2004; Ma et al., 2015). Wang et al. (2015) reported the spore

powder of G. lucidum potential to reduce hyperglycemia by

fostering the synthesis of glycogen and safeguarding

FIGURE 3
Therapeutic importance of G. lucidum bioactive compounds.
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gluconeogenesis. According to Tian et al. (2019), protein tyrosine

phosphatase 1B (PTP1B) was reported as the main

pharmacological target in diabetes. Proteoglycan (Fudan-

Yueyang-G. lucidum) extracted from G. lucidum shown with

dermic effects, causing an increase in the blood overexpression

of PTP1B, improvement of insulin-dependent glycogen synthesis,

and a decline in the blood glucose of a mouse.Gonoderma lucidum

has been documented to have a hypoglycemic effect coupled with

the potential to dysregulate the activity of hepatic glucose-

regulated enzymes and epididymal. The antidiabetic properties

are also due to its high content of leucine (Zhang H. et al., 2018).

Antiviral potential

Few studies had reported the antiviral potentials of the GL

most especially in animals. The anti-influenza activity of GL

aqueous extracts using hot water was investigated against the

infected mice when administered intranasally and orally, a finite

activity in fighting influenza was confirmed in this study (Zhu

et al., 2017). The ability of the triterpenoid compounds obtained

from G. lucidum to interfere with the viral particle and limit its

adsorption to the host cells was revealed, thereby preventing the

EV71 infection (Zhang et al., 2014).

Triterpenoids compounds obtained from G. lucidum have

been investigated as antiviral substances against several viral

pathogens including the human immunodeficiency virus and

dengue virus (DENV) which are fatal microbes spread to humans

viamosquitoes (Martins et al., 2012; Simmons et al., 2012; Akiner

et al., 2016) causing both hemorrhagic fever (Taguchi, 2017;

Tang et al., 2017) and shock syndrome (Duyen et al., 2017;

Oliveira et al., 2018). An in vitro study on the ganodermanontriol

(one of the potent triterpenoids) has shown that it can inhibit the

DENV NS3pro protein, hence, ganodermanontriol could

function as a therapy against DENV disease.

Viral protease inhibitors have been confirmed and

considered to offer a defensive and therapeutic potential for

the treatment of different kinds of emerging diseases of viral

origin and others. Inhibition of the specific target/activities in

different pathogenic organisms remains one of the significant

ways in the discovery, development, and formulation of drugs. G.

lucidum, a natural bioresources material had been revealed to be

endowed with potential bioactive components that has inhibitory

ability against different targets in viral infections and other

emerging diseases which could serve as a key source of an

alternative compound in the formulation/development of

drugs. One of the targets is viral protease activity. G. lucidum

bioactive components with inhibitory effects against HIV-1

protease activity have been reported. Some of these bioactive

agents include Ganomycin B with the efficacy of IC50 = 7.5 μg/ml

(El-Mekkawy et al., 1998), Ganoderic acid A with the efficacy of

IC50 = 430 µM/CC50 > 62.5 µM on normal human fibroblast BJ

cells (El-Mekkawy et al., 1998; Min et al., 2001), Ganoderic acid B

with the efficacy of IC50 = 140 µM, Ganoderic acid C1 with

IC50 = 240 µM efficacy, Ganoderic acid β with IC50 = 20 µM

efficacy (Martinez-Montemayor et al., 2019), Ganodermanondiol

FIGURE 4
Activation induction of immune system by β-glucans (Rasjidi and Susanto, 2015).
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with IC50 = 90 µM efficacy, Ganodermanontriol with IC50 =

70 µM efficacy (Martinez-Montemayor et al., 2019), Lucidumol B

with IC50 = 50 µM efficacy, 3 β-5 α-dihydroxy-6 β-
methoxyergosta-7,22-diene with IC50 = 7.8 μg/ml efficacy

(Martinez-Montemayor et al., 2019) coupled with ganolucidic

acid A, 3 β-5 α-dihydroxy-6 β-methoxyergosta-7,22-diene (El-

Mekkawy et al., 1998; Min et al., 2001; Martinez-Montemayor

et al., 2019), isolated from G. lucidum has been revealed with

potential anti-HIV-1 protease inhibitory activity.

An in vitro assay revealed a wide range of antiviral activities

of triterpenoids obtained from the G. lucidum against pathogenic

viruses. Some of these viruses include herpes simplex virus types

1 (HSV-1 and HSV-2), influenza A virus (Flu A), vesicular

stomatitis virus (VSV), and human immunodeficiency virus

(HIV) (El-Mekkawy et al., 1998; Eo et al., 1999) and dengue

virus (DENV) NS2B-NS3 protease. The viral protease was

inhibited by Ganoderic acid C2 and Ganosporeric acid, a

form of triterpenoids obtained from the G. lucidum compared

to the reference inhibitor 1,8- Dihydroxy-4,5-

dinitroanthraquinone (Bharadwaj et al., 2019).

The two bound polysaccharides namely the neutral protein

and acidic protein obtained fromG. lucidum showed a significant

antiviral potential against herpes simplex virus types 1 (HSV- 1)

and 2 (HSV-2). However, the acidic protein-based bound

polysaccharides revealed more activities by blocking both the

HSV-1 and HSV-2, binding to Vero cells at doses of 100 and

90 μg/ml respectively, than the neutral protein-based bound

polysaccharides at a 50% effective concentration (EC50 of

300–520 μg/ml). Hence, both the HSV-1 and HSV-2 were

hindered from entering Vero cells (Eo et al., 2000).

The potential of G. lucidum for the treatment of COVID-19

infection was confirmed in a study by Miqdam et al (2020). Some

hematological and immunological responses in the patient with

coronavirus (COVID-19) were examined by the uptake of G.

luidum, the studied hematological parameters showed a

substantial reduction of COVID-19 malicious effect played by G.

lucidum Al-Jumaili et al., 2020. Furthermore, the potency of G.

lucidum against the SARS-CoV-2 was observed in a research carried

out by Yang et al. (2020), a dose-dependent inhibition of this SARS-

CoV enzyme was observed in G. lucidum extracts (IC50:41.9 pg/ml)

when compared to Coriolus versicolor with IC50:108.4 pg/ml and

Sinomenium acutum with IC50:198.6 pg/ml. Hence, G. lucidum

could serve as a modern, novel, and favourable origin rich in

natural bioactive compounds with anti-coronavirus potential (El

Sheikha, 2022).

Antioxidant and Antiaging activity

A countless number of research studies have documented a

close link betwixt the richness of G. lucidum in different

phytochemical constituents and its antioxidant biological

activity (Kozarski et al., 2011; Abdullah et al., 2012; Mehta,

2014; Kan et al., 2015; Zhang et al., 2015). The efficiency of

different antioxidant plants to prevent cancers and many chronic

ailments has been shown (Collins 2005; Benzie and Wachtel-

Galor et al., 2011). Aging and other age-accompanying disorders

have been linked to the presence of long-term free radicals and

reactive oxygen species (ROS) (Bishop et al., 2015). For this

reason, the study of scavenging free radicals and ROS is of great

importance specifically in anti-aging research. Following the

UVB treatment, the possession of anti-ROS production in

fibroblasts by G. lucidum polysaccharides (GLPs) had been

confirmed (Zeng et al., 2017; Lee et al., 2018). An in vitro

antioxidant properties of different GL components have been

documented (Mau et al., 2002; Yuen and Gohel, 2008; Wachtel-

Galor et al., 2011. In an in vitro study conducted by Ooi and Liu

(2000), the efficacy of the protein-bound polysaccharide (PBP)

and polysaccharide peptide to perform similar to the endogenous

antioxidant superoxide dismutase (SOD) in cancer-bearing

animals was demonstrated.

Liver dysfunction restored

Ganoderma lucidum efficacy to reduce liver dysfunction

induced by Copper oxide was investigated by Ghareeb et al.

(2021). It was affirmed that the application of G. lucidum had a

substantial role to play, to restore the liver function dysfunction

occasioned by the exposure to copper oxide in rats.

Cardioprotective effects

G. lucidum possesses α-tocopherol which is responsible for

the protection of mitochondria, mitigation of cardiac toxicity,

and mitochondrial dysfunction (Sudheesh et al., 2013). The

positive effects of ganopoly on coronary heart disease (CHD)

patients coupled with a remarkable decrease in blood pressure

and serum cholesterol levels by polysaccharide extract of G.

lucidum were also documented by Gao et al. (2004).

Hepatoprotection

The hepatoprotective potency of GL most especially the

polysaccharides (GLPs) and triterpenoids (GLTs) has been

extensively investigated (Yang et al., 2019). Liu et al. (2015)

showed the hepatoprotective potency of G. lucidum

polysaccharides on the hepatocyte injury. This is done by the

inhibition of lipid peroxidation, and elevation of the antioxidant

enzyme activity, alongside the suppression of apoptosis and

immune-inflammatory response. Furthermore, GLTs cause

considerable cyto-protection against the oxidative damage

occasioned by tertbutyl hydrogen peroxide (t-BHP) in

hepatocellular carcinoma cells by reducing the level of

Frontiers in Pharmacology frontiersin.org16

Oke et al. 10.3389/fphar.2022.952027

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.952027


malondialdehyde and escalating the concentration of glutathione

and superoxide dismutase (SOD) (Wu et al., 2016). The liver-

protecting effects of the ethanolic extract of G. lucidum were

confirmed according to the histopathology and serum enzymes

analysis in mice. Hence, it was concluded that G. lucidum could

ameliorate alcohol-induced liver injury (Zhao et al., 2019).

Additionally, G. lucidum mycelium fermented liquid was detailed

with hepatoprotective properties examined in rats (Song et al., 1998).

Prospect of G. lucidum bioactive in the
management of emerging diseases in
Africa

Emerging diseases are either viral or bacterial in origin but

majorly they are of viral origin. The antiviral potential of G.

lucidum had been reported by several researchers through diverse

studies with a few reports from Africa. The ability of this

mushroom to be effective against the causative agents has

been linked to the presence of triterpenoids and

polysaccharides in the mushroom.

G. lucidum is considered an unexploited natural source of

quite a lot of novel bioactive agents of prodigious value in

industry and medicine, especially in drug development in

Africa. At present, several bioactive compounds isolated from

G. lucidum with potent antiviral, antibacterial, antifungal, etc

activities against several emerging diseases are under

investigation, and the number of studies is constantly

increasing (Gu et al., 2007; Isaka et al., 2007; Linnakoski et al.,

2018). Therefore, diverseG. lucidum bioactive components could

become promising candidates for novel, safe, and readily

available therapeutics for the treatment and control of several

emerging diseases in Africa in a few years (Shahzad et al., 2020)

(Seo and Choi, 2021) (Arunachalam et al., 2022).

Few studies had reported the treatment and control of

different emerging infectious diseases using some of the

African nutraceuticals and phytomedicine. G. lucidum has

been established as a potential natural bioresource for the

improvement of the human immune system against infections

and the treatment of different types of viral infections and other

types of emerging infectious diseases of diverse origins.

Exploitation and exploration of G. lucidum extracts have been

examined as an immune booster in a patient with Ebola virus

hemorrhagic fevers, due to its constituents like selenium, iron,

zinc, crude protein, carbohydrates, and other bioactive

components like beta-glucan. Beta-glucan is an immune

stimulant and is applied in the treatment of various viral

infections (Raut, 2020). These potentials show that G. lucidum

could serve as a novel and future therapy (nutritional therapy and

phytopharmaceuticals) from the natural substance for the

management of infectious diseases in Africa, thereby

complementing the current management and treatment efforts

of diseases in African hospitals.

G. lucidum in nanotechnology: A
promising future potential remedy to
emerging diseases in Africa

Recent advanced developments in the field of

nanotechnology have culminated in the development of

many nanomaterials. Nanotechnology relies on the ability to

design, fabricate, manipulate, study, manufacture, and

application of materials at the nanoscale (10−9 m) (Sousa

et al., 2020). These materials are called nanomaterials which

are recently utilized in health maintenance, electronics,

cosmetics, and other research areas. Conversely,

nanobiotechnology involves the amalgamation of

biotechnology and nanotechnology which established that

technology on the nanoscale can be practically incorporated

with the biology of materials, and mushroom technology is a

recent exploring area (Adebayo et al., 2021a,c). The major

thrust of nanotechnology is the synthesis of nanoparticles

using either physical, chemical, or biological means (green

chemistry).

However, the green approach (biological) has been

confirmed as the safest method of nanoparticle synthesis

which applies microorganisms, plants, animals, and their

metabolites for their environmentally safe and eco-

friendliness with immense potential (Adelere and Lateef,

2016; Lateef et al., 2016a). Several biological materials have

been utilized to synthesize nanoparticles including fungi

(Verma et al., 2010), mushrooms (Owaid et al., 2017),

bacteria (Lateef et al., 2016b; Oladipo IC. et al., 2017;

Oladipo I. C. et al., 2017), plants (Oke et al., 2021; Adebayo

et al., 2021a,b,c; Adebayo et al., 2019a, Adebayo et al., 2019b),

enzymes (Elegbede et al., 2020) and metabolites obtained from

arthropods (Lateef et al., 2016c).

Interestingly, nanofabrication of nanoparticles using

fungi has received lots of attention when compared to any

other biological materials, due to some unusual advantages

and an outstanding property of fungi in nanobiotechnology

when used as bio-factories for nanoparticles production.

Production of both the intracellular and extracellular

enzymes acting as reducing agents for the fabrication of

metal nanoparticles has remained an outstanding property

of fungi that makes them uniquely suitable for nanoparticle

synthesis. Myconanotechnology, a connection linking

nanotechnology and mycology is a field with significant

prospects, partly owing to the large number and diversity

of fungi (Hanafy, 2018; Sousa et al., 2020). Lately, fungi,

majorly mushroom system has been revealed as crucial

bio-nanofactory for diverse nanoparticles synthesis. An

important production of nanoparticles with distinct

dimensions and monodispersity was reported by Guilger-

Casagrande and Lima (2019).

Mushrooms, and other fungi, are of great importance in

nanobiotechnology owing to their potential to produce several
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beneficial biomolecules which are vital tools for nanoparticle

synthesis. The mushroom extracellular production of

biomolecules saves the cost of the downstream process while

their bioaccumulation and high wall-binding ability have been

ascribed to their protein capping and amide linkages in most

mushroom-mediated nanoparticles (Anthony et al., 2013).

Diverse nanoparticles had been synthesized using several

mushrooms coupled with different applications including

nanomedicine (Chatterjee et al., 2020), water purification

(Mohmed et al., 2017), antimicrobial (Hulikere and Joshi,

2019; Aygün et al., 2020).

Ganoderma has been broadly investigated with a great

application as antioxidant, antitumor, antidiabetic, anticancer,

antimicrobial, hepatoprotective, anti-inflammatory, anti-HIV, and

antiproliferative to mention a few. The most frequent species like G.

lucidum, G. applanatum and G. tsugae, and G. capense have been

investigated for their application in biomedicine (Mohanta et al.,

2016). A high significant antimicrobial property against different

pathogenic bacteria had been shown by Ganoderma applanatum-

mediated AgNPs. Moreover, Aygün et al. (2020) reported the

antimicrobial potential of the AgNPs synthesized by both

intracellular and extracellular parts of G. lucidum with size

9–21 nm and spherically shaped against various microorganisms

including P. aeruginosa, E. coli, C. albicans, E. hirae, L. pneumophila

and many more.

The biomedical applications of AgNPs mediated by G. lucidum

concerning drug-resistance of E. coli isolated from CAUTI were

investigated by Al-Ansari et al. (2020), and it was affirmed that the

biosynthesized AgNPs using ethanolic extract of a G. lucidum

demonstrated exceptional biomedical properties. It was further

stated that the existence of l,4- Dioxane-2,3-diol, Ethyl

acetoacetate ethylene acetal, and Pyridin- 3-ol in the G. lucidum

is responsible for the observed anti-tumor, antioxidants, and

antimicrobial potential of the silver nanoparticles. The result

provides a piece of valuable application information for a novel

nanoparticle that can be eco-friendly and cost-effective to combat

drug resistance in microbes and cancer.

Elumalai et al. (2021) studied the cytotoxicity of the efficacy of

the bio-fabrication of gold nanoparticles by usingG. lucidum against

colon cancer cell lines in humans (HT-29). The synthesized

nanoparticles were spherical, oval, and irregularly shaped with a

size range from 1 to 100 nm while the findings from MTT of

biosynthesized nanoparticles revealed potent cytotoxic activity on

HT-29 colon cancer cells. Hence, the biosynthesized nanoparticles

serve as an effective agent for cancer therapy.

Antioxidant and antibacterial activity estimation of the

biosynthesized AgNPs using Ganoderma lucidum was

conducted by Poudel et al. (2017). A high significant amount

of antioxidant and antibacterial activities against human

pathogenic bacteria were shown by the AgNPs compared to

gentamicin and streptomycin (standard).

The synergy between the tetracycline and the AgNPs

(2 nm spherical) produced by G. lucidum, showed an

enhanced tetracycline with a well-improved antimicrobial

activity against different microorganisms (Karwa et al.,

2011; Ekar et al., 2015). In the same vein, the antimicrobial

potency of the G. applanatum-mediated AgNPs with size

133 nm and spherical shape against diverse microorganisms

including S. aureus, E. coli, S. epidermidis, Vibrio cholerae, B.

subtilis, and so on have been documented (Mohanta et al.,

2016).

The theranostic applications of the biosynthesized silver

nanoparticles (AgNPs) using G. lucidum extract were

examined by Nguyen et al. (2021a). The susceptibility of the

cancer cells to AgNPs/GL with IC50 value of 21:85 μg ml−1 for

HepG2 and 67:77 μg ml−1 for MCF-7 were observed as the

antimetastatic impact of AgNPs on the HepG2 and MCF-7

cell lines. Many other researchers including Yu et al. (2019),

Nguyen et al. (2021b), and Mohanta et al. (2016) to mention a

few worked on biosynthesized nanoparticles using G. lucidum

with different applications most especially in medical science as a

therapy for diverse ailments.

Given all these applications, nanoparticles synthesized using

G. lucidum have shown great potential in application in diverse

areas than free G. lucidum solution. Hence, G. lucidum in

nanotechnology could be a preferable future solution to

several emerging diseases in Africa.

Conclusion

Having established the high content of bioactive

compounds present in Ganoderma species, especially G.

lucidium, it can be concluded that it is a mushroom that is

worth all the attention it has been getting over the years and

recently. It is now abundantly clear why a lot of attention has

been given to this mushroom in China where traditional

medicine has been solidly established over the years. The

wide range of diseases that these bioactive compounds can

be used to treat or managed points to the huge potential of this

mushroom for the discovery of constituents or drugs that can be

used to combat many emerging or reemerging diseases in Africa

where the mushroom is known to be indigenous to. It can be

concluded that it is the most useful mushroom when it comes to

searching or prospecting for bioactive compounds to combat

any disease in the world.

Recommendations

It is recommended that more attention be given to these

mushrooms by researchers in Africa. Grants should be made

available by governments of African nations and donor

countries and agencies for researchers to stimulate their

interest in domestication and utilization of Ganoderma

mushrooms. Awareness programs on this mushroom should
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be organized for microbiologists, nutritionists, mycologists,

farmers, trado-medical practitioners, pharmacists, and

researchers, in general, to educate and discuss the potential

of this mushroom in detail.
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