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For over two centuries, clinicians have hypothesized that cancer developed

preferentially at the sites of repeated damage, indicating that cancer is basically

“continued healing.” Tumor cells can develop over time into other more

malignant types in different environments. Interestingly, indefinite growth

correlates with the depletion of a modular, early rigidity sensor, whereas

restoring these sensors in tumor cells blocks tumor growth on soft surfaces

and metastases. Importantly, normal and tumor cells from many different

tissues exhibit transformed growth without the early rigidity sensor. When

sensors are restored in tumor cells by replenishing depleted

mechanosensory proteins that are often cytoskeletal, cells revert to normal

rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive

to mechanical stretching or ultrasound which will cause apoptosis of

transformed growth cells (Mechanoptosis). Mechanoptosis is driven by

calcium entry through mechanosensitive Piezo1 channels that activate a

calcium-induced calpain response commonly found in tumor cells. Since

tumor cells from many different tissues are in a transformed growth state

that is, characterized by increased growth, an altered cytoskeleton and

mechanoptosis, it is possible to inhibit growth of many different tumors by

mechanical activity and potentially by cytoskeletal inhibitors.
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Introduction

Tumors are well known for their heterogeneity (Dagogo-Jack and Shaw, 2018). This

phenomenon generally occurs both within tumors (intra-tumor) or between tumors

(inter-tumor) and thus makes it difficult to find common features of different tumor types

that would enable common treatments. In early studies of tumor cells, they grew on soft

agar, while normal cells required rigid surfaces to proliferate (Hamburger and Salmon,

1977). As a property of many if not most tumor cells, growth on soft agar or “transformed

growth” can be a feature that could potentially be exploited in treating different tumor
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types. For example, recent studies show that transformed growth

correlates withmechanically induced apoptosis (mechanoptosis).

Mechanical forces from stretch, shear, or ultrasound can induce

tumor cell mechanoptosis (Regmi et al., 2017; Tijore et al., 2020;

Singh et al., 2021; Tijore et al., 2021). Thus, in the context of

physiological relevance, mechanoptosis could explain the

benefits of exercise for cancer patients with a wide diversity of

cancers (Wang and Zhou, 2021). Although the basis of

mechanoptosis is still not fully understood, it is a common

feature of tumor cells that can possibly be exploited in

treatments of cancers.

Tumor cells show altered rigidity sensing
due to absence of rigidity sensors

An important question is whether or not growth on soft agar

represents a phenotypic change of the state of tumor cells that

correlates with mechanoptosis. From a number of studies, it is

interesting that the loss of early rigidity sensing correlates with

growth on soft agar (Raval et al., 2003; Bharadwaj et al., 2005;

Wolfenson et al., 2016; Yang et al., 2020). It is important to note

that substrate rigidity will affect a variety of different cell

pathways particularly over longer periods (Paszek et al., 2005;

Doss et al., 2020) and that early rigidity sensing refers to a specific

sensing complex. The early rigidity sensor has been defined as a

sarcomeric unit of about 2 μm in length that has a myosin bipolar

filament in the middle with antiparallel actin filaments anchored

to integrins and the extracellular matrix through alpha actinin

(Meacci et al., 2016; Wolfenson et al., 2016; Saxena et al., 2017a).

During early cell spreading on fibronectin, the sarcomeric unit

assembles rapidly and contracts matrix a total of about 100 nm

before relaxing (total time 40–60 s) (Lohner et al., 2019). If the

force at the peak displacement exceeds 25 pN, then the surface is

considered rigid; and if less than 25 pN, the surface is soft and

anoikis through DAPK1 is initiated (Qin et al., 2018a). In the

cases of tumor cells early rigidity sensing is lost since they are

deficient in one or more mechanosensory cytoskeletal protein(s)

that are part of the early rigidity sensor, restoration of normal

levels of the missing protein(s) typically results in rigidity-

dependent growth (Yang et al., 2020). Conversely, in normal

cells when single mechanosensory cytoskeletal proteins of the

rigidity sensor are depleted, cells exhibit rigidity-independent

transformed growth on soft agar. These behaviors have proven

true for a number of tumor and normal cells across different

tissues (Yang et al., 2020; Tijore et al., 2021). For example, in a

screen of 36 ovarian tumor cell lines ranging from epithelial to

mesenchymal, they all appear to lack early rigidity sensing, with

most cell lines missing known components of the rigidity sensor

(half of the cell lines are depleted in tropomyosin 2.1) (Simpson

et al., 2022).

Since many of the proteins that are part of the early rigidity

sensor are cytoskeletal proteins, it is logical to ask if their

depletion or replenishment alters other protein levels in the

cells or only involves the proteins in question. Interestingly,

RNAseq comparisons of the cells with versus those without the

cytoskeletal protein, tropomyosin 2.1 (Tpm2.1), show that the

levels of 700–1000 mRNAs are significantly altered (Yang et al.,

2020). Thus, it seems that the loss of the early rigidity sensor

causes a major change in cell composition that is, indicative of a

change in phenotype. Another question is how the changes in

cytoskeletal properties result from the change in the cell state.

Depletion of cytoskeletal proteins such as tropomyosin 2.1,

Filamin A and myosin IIA can result in major changes in the

organization of the cytoskeleton throughout the cytoplasm and

not just in cortical regions (Luo et al., 2013). Although relatively

less is known about how this portion of the cytoskeleton

influences the organization of cytoplasmic organelles, it is

clear that the transformed cell state involves changes in the

ER-mitochondrial stress pathway that could increase the

mechanoptosis of the cells (Doghman-Bouguerra and Lalli,

2019; Kim et al., 2020).

Tumor cells are sensitive to
mechanoptosis and killed by mechanical
forces

Over the last few decades, numerous studies have focused on

understanding the role of biochemical cues in tumor

development and progression. However, in recent years, it has

been documented that tumor growth and progression can be

influenced by external mechanical stresses (Yuan et al., 2016;

Emon et al., 2018; Riehl et al., 2021). Recent literature has

suggested that tumor cells are vulnerable to damage by

external mechanical stresses. For instance, physiologically

relevant shear forces were found to kill adherent tumor cells

via an apoptotic pathway triggered by bone morphogenetic

protein receptor, Smad1/5 and p38 MAPK (Lien et al., 2013).

Another study observed that fluid shear stresses sensitize cancer

cells to TRAIL-induced apoptosis via caspase activation (Mitchell

and King, 2013). Similarly, circulating tumor cells were killed at

high shear forces via an oxidative stress-induced mitochondrial

apoptotic pathway (Regmi et al., 2017). Further, it was reported

that exercise or mechanical stretching of tumors caused tumor

regression in a mouse model (Betof et al., 2015; Berrueta et al.,

2018). All these studies indicated that mechanical stresses could

inhibit cancer growth.

If we look at these findings in a broader context, they might

be relevant since physically active muscle tissue shows a low risk

of tumor formation. In fact, muscle-associated tumors are rare

and don’t even make it to the list of 36 commonly occurring

tumors worldwide (Bray et al., 2018). In support of these facts,

several clinical studies have found that there is a strong

correlation between exercise and tumor growth inhibition. For

instance, recent studies reported that resistance exercise, a form
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of exercise to improve muscle tone and endurance was associated

with a 33% lower risk of all causes of mortality in cancer survivors

(Hardee et al., 2014). Another excellent review article

summarized the positive impact of exercise on cancer

mortality, recurrence and treatment-related side-effects

(Cormie et al., 2017). In fact, an article from the NCI

reported that 13 cancer types including breast cancer were

inhibited by exercise (Moore et al., 2016). Although there is

no exact explanation of the basis for the correlation between

exercise and tumor growth inhibition, there is a definite

possibility that periodic mechanical stresses generated during

exercise cause selective tumor cell killing. In further support of

the idea that tumor cells are sensitive to exercise-induced strains,

we found tumor cell mechanoptosis was caused by 5% strains as

shown in Figure 1 (Tijore et al., 2021) and such strains are easily

attained with normal exercise. Both tumor cells and normal cells

depleted of early rigidity sensors showed the same behavior.

Again, the tissue of cell origin did not appear to affect the

mechanoptosis. Thus, the phenotypic changes with

transformed growth include increased mechanoptosis.

Mechanical forces cause intracellular
calcium uptake to induce mitochondria-
mediated apoptosis

In terms of the mechanism of mechanically-induced tumor

cell apoptosis, there is a logical pathway that involves the

susceptibility of tumor cells to damage from activation of an

ER-mitochondrial stress pathway. In both the cases of stretch-

and ultrasound-activated apoptosis, an early step is dependent on

mechanosensitive Piezo1 channels. Since tumor cells are sensitive

to phospholipase C activation (Halder et al., 2014), calcium entry

through Piezo1 or other mechanochannels at the plasma

membrane could activate phospholipase C hydrolysis of

PIP2 to release inositol triphosphate, IP3; however, the direct

activation of IP3 release by Piezo1 action has not been seen,

which implicates a secondary mechanism in transformed growth

cells (Kuriyama et al., 2022). Binding of IP3 to the IP3 receptor in

the ER causes calcium loading of mitochondria through the

VDAC1 channel in the mitochondria that is, physically linked

to IP3R (Doghman-Bouguerra and Lalli, 2019; Simoes et al.,

2020). Many anticancer compounds cause apoptosis through

calpain activation as a result of an increase in intracellular

calcium downstream of PLC dependent IP3 release (Wu et al.,

2010; Lu et al., 2012; Huang et al., 2014; Cho et al., 2015; Kerkhofs

et al., 2018; Bae et al., 2021). This is similar to other systems

where Piezo1 activation is linked to apoptosis through

mitochondrial malfunction in the ER-mitochondrial stress

pathway (Hope et al., 2019). It is important to note that

Piezo1 is implicated in many mechanical cell processes

through a variety of different models (see reviews (De Felice

and Alaimo, 2020; Dombroski et al., 2021)). The particular

factors that activate mechanoptosis including the prolonged

periodic mechanical stimulation make it somewhat different

than those other models for Piezo1 functions. What has

struck us is that many different cell lines in the transformed

growth state regardless of origin and EMT state are sensitive to

mechanoptosis. All these findings are summarized in Figure 2

and the ER-mitochondrial stress model comes from recent

reviews (Simoes et al., 2020; Kerkhofs et al., 2018; Doghman-

Bouguerra and Lalli, 2019).

Genes associated with ER-mitochondrial
stress pathway are upregulated in the
transformed cell state

The detailed analyses of changes in cellular mRNA

composition (RNAseq) with rigidity-independent growth

versus rigidity-dependent growth indicate that a number of

genes associated with the ER-mitochondria stress pathway are

upregulated in the transformed growth state (Yang et al.,

2020). Upon comparison of which genes are increased in

the transformed growth state of both human foreskin

fibroblasts without Tpm2.1 (HFF) and MDA-MB-231 tumor

cells that normally lack Tpm2.1, there are 86 genes in common

(Table 1). When MDA-MB-231 cells exhibit rigidity-

dependent growth upon tropomyosin 2.1 expression, there

are 13 upregulated genes that are also upregulated in

normal HFFs (Table 1). In recent papers, a number of

common genes that are highly expressed in the transformed

growth state are featured and several of them are involved with

mitochondrial stress and ROS (green highlighting), cancer

functions (blue highlighting) as well as mitochondrial DNA

repair (orange highlighting) (Doghman-Bouguerra and Lalli,

2019; Simoes et al., 2020; Wu et al., 2021). Perhaps most

surprising is that thirteen of the identified proteins are

FIGURE 1
Bar graph showing the percentage of apoptotic cells with or
without 24 h of 5% mechanical stretch for MDA-MB-231 breast
cancer cells with or without expressed tropomyosin 2.1 (Tpm2,1)
and mouse embryo fibroblasts before or after
Tpm2.1 knockdown. Adapted from (Tijore et al., 2021).
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interferon inducible (IFI and OAS proteins) and many are

involved in anti-viral activities. Since these pathways are

commonly activated in tumor cells and are upregulated

during the transformed growth of fibroblasts, it is logical to

consider them as possible contributors to the mechanoptosis

sensitivity of the transformed growth state.

FIGURE 2
Diagrams of a working model for Mechanoptosis of transformed growth cells. In (A) the Piezo1 channel is shown in complex with cytoplasmic
proteins that are linked to an actomyosin network that needs to be active for mechanoptosis. In the lower panel the hydrolysis of PIP2 is shown to
produce IP3 although the mechanism of activation of phosphatidyl inositol phospholipase C (PI-PLC) is not understood nor is the link to
Piezo1 activity. In (B) the rise in IP3 level activates the release of ER calcium by the IP3 receptor that is linked to the VDAC channel, causing a rise
in mitochondrial calcium levels leading to apoptosis. The ER calcium pump, SERCA is shown in complex with p53 at these sites.

TABLE 1 RNAseq data showing the thirteen genes that are elevated in expression (co-expressed) in normal human foreskin fibroblasts (HFF) and
MDAMB-231 cells expressing Tpm2.1. In the HFF cells after Tpm2.1 knockdown and the MDA-MB-231 cells, there were 86 genes that were
elevated in expression (inversely co-expressed).

Co-expressed (n = 13) Inverserly Co-expressed (n = 86)

CDCA7 APOBEC3G CYP1B1 IF127 NCOA7 SAMD9L

CDK19 APOL1 DDX58 IF144 OAS1 SECTM1

CREB3L4 ASPHD2 DDX60 IF144L OAS2 SLC22A23

FAM102B ATF3 DDX6OL IFI6 OAS3 SSTR2

GJA1 BAMBI DHX58 IFIH1 OASL STX11

ITGA10 BATF2 EPSTI1 IFIT1 PARP12 THEMIS2

KISS1 CCL5 FAM46A IFIT2 PARP14 TMEM140

MARCKSL1 CD24 GBP4 IFIT3 PATL2 TMEM229B

NTM CDK18 GBP5 IFITM10 PCDH1 TNIFSF10

PTPRQ CEACAM1 GCH1 L23A PIK3AP1 TRANK1

RGCC CFB GIMAP2 IL4I1 PLEKHA4 TYMP

TMEM191C CH25H GNAO1 ISG15 PLEKHF1 USP18

TPM2 CMPK2 GRIP2 ISG20 PRRG4 ZNF467

CPEB3 HERC5 KIF26B RARRES3 ZNFX1

CTSS HERC6 LAMP3 RRAD

CXCL10 HLA-B LMO2 RSAD2

CXCL11 HLA-F MX1 RTP4

CXCL16 IDO1 MX2 SAMD9
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Based upon common changes in gene levels in both

fibroblasts and breast tumor cells with transformed growth, it

is logical to argue that the genes involved are responsible for

changes in cytoskeletal organization of tumor cells. For example,

transformed cells produce high traction forces onmatrices (Indra

et al., 2011; Alcoser et al., 2015) (Yang et al., 2020), whereas the

cytoplasm of transformed cells is softer which helps them to

efficiently metastasize to different tissues (Lv et al., 2021). The

organization of cell cytoplasm involves a cohesive actin network

that can bridge between adhesions (Cai et al., 2010; Rossier et al.,

2010). Further, nodes in the network are throughout cytoplasm

and can consequently contribute to the stiffness of the cell upon

indentation (Luo et al., 2013; Luo et al., 2016). What is currently

unclear is which proteins are involved in the changes in

cytoskeletal organization of tumor cells as well as how those

changes might be related to changes in ER-mitochondrial

organization that would enable mechanoptosis.

In vitro testing using combinations of
cytoskeletal drugs

Combination therapy, the use of two or multiple drugs at the

same time for treatment has become one of the fastest growing

therapeutic areas for cancer treatment (Mokhtari et al., 2021). On

the other hand, cytoskeleton targeting drugs, especially drugs

targeting microtubules and actin filaments, are used as

chemotherapeutic drugs in the clinics (Kubiak et al., 2020).

However, many of the approved cytoskeletal drugs, for

example, Paclitaxel (Taxol), mainly work through preventing

mitosis possibly by stabilizing microtubules (Gallego-Jara et al.,

2020). Other cytoskeleton components that are part of the

rigidity sensing modules and cell growth are still largely

overlooked.

Our recent findings have defined a number of components of

the rigidity sensors including DAPK1, PTPN12, AXL, EGFR,

Calpain 2, Src, and the cytoskeletal proteins such as myosin IIA,

tropomyosin 2.1, alpha actinin, filamin A, tropomodulin, and

αvβ3 integrin (Meacci et al., 2016; Wolfenson et al., 2016; Yang

et al., 2016; Saxena et al., 2017a; Saxena et al., 2017b; Qin et al.,

2018b) (Ghassemi et al., 2012). Of these components, DAPK1,

PTPN12, AXL, EGFR, tropomyosin 2.1 and alpha actinin have

roles as tumor suppressors in some cases. In the case of DAPK1,

it localizes with the rigidity sensors at the sites of integrin-ECM

attachment. On soft pillars, it is activated by

PTPN12 phosphatase and rapidly leaves the pillars to

potentially activate apoptosis if enough adhesions are soft

(Qin et al., 2018b). On stiff pillars, its density increases along

with other adhesion proteins potentially due to greater tyrosine

kinase activity. Although we expect that a similar set of events

takes place in transformed cells at adhesions, the details have not

been worked out. Once we understand the important changes in

the transformed growth state that enable unregulated growth, it

would be possible to consider targeted drugs as well as

mechanical perturbations to inhibit tumor cell growth.

Thus, these findings raise a question of whether or not

cytoskeleton drugs which targeting rigidity sensing

components, should be part of cancer combination therapy.

The challenges include not only selecting the best

combination of drugs but also deciding the best concentration

of each drug. Fortunately, with the help of Artificial Intelligence

(AI) and high throughput preclinical screening systems,

researchers can effectively design the combination therapy for

different diseases or even individual patients in a remarkably

short time (Rashid et al., 2018). It is logical to screen for different

combination of drugs that will inhibit transformed cell growth

but not normal cell growth. Altogether, the combination of

various cytoskeleton drugs along with checkpoint inhibitors,

chemotherapeutic drugs, or mechanical therapies could serve

as a new avenue for cancer treatment in the future.

Tumor cell mechanoptosis: Mechanism
and future therapeutic directions

What are the requirements for tumor cell mechanoptosis?

The model in Figure 2 highlights the fact that myosin

contractility is needed for ultrasound-induced mechanoptosis

(Singh et al., 2021). This is not easy to interpret, since myosin

inhibition dramatically decreases actin polymerization and

causes the loss of the cytoplasmic actin networks that provide

cytoplasmic coherence (Cai et al., 2010; Rossier et al., 2010; Luo

et al., 2013). Many conditions including soft matrices cause

reduced myosin contractility in normal and transformed

growth cells and could thereby decrease mechanoptosis.

Alternatively, there are many drugs that activate tumor cell

apoptosis through a similar ER-mitochondrial stress pathway

to the one that is, activated by mechanical forces and may be

synergistic with mechanoptosis (Kumar et al., 2012; Lin et al.,

2014; Lu et al., 2019).

When tumor cells are able to grow for long periods, tumor

cells can differentiate to better grow in their microenvironment.

For example, propagating tumors in mice and serially selecting

tumor cells from specific tissues established tumor lines that

target specific tissues (Kang et al., 2003). When the growth of

those tumor cells was tested on matrices of different stiffness,

better growth was found on surfaces that mimicked the stiffness

of the tissues that they targeted (Kostic et al., 2009). The

differentiation potential of tumor cells indicates that it will be

difficult to find a common property of tumor cells. Further, there

are studies that show phenotypic changes of tumor cells with

different matrix environments (Paszek et al., 2005) or with

modifications of integrin function (Weaver et al., 1997).

Looking back to the basis of the transformed growth state and

the relation to regeneration and inflammation (Sheetz, 2019),

transformed growth could be stimulated by normal
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inflammatory processes. The increased expression of miR-21

downregulates Tpm2.1 expression and causes the loss of early

rigidity sensing, which occurs in many tumor cells (An et al.,

2018; Yan et al., 2018; Wang et al., 2019). Thus, there are many

factors like TGF-ß that cause an increase in miR21 expression,

which will promote transformed growth (Qian et al., 2009; Dai

et al., 2017; Despotovic et al., 2021). These conditions are

reversible and can be related to the microenvironment as well

as circulating growth factors related to inflammation. For these

reasons, tumor growth can be episodic and respond to general

trauma or acute inflammation but will be slowed in non-

inflammatory conditions with depletion of miR-21. In this

example, tumor growth is still related to the loss of rigidity

sensing and the transformed growth state, which means that

treatments targeting the transformed growth state may still be

effective.

Conclusion

As we have noted, the transformed growth state is a general

property of tumor cells irrespective of tissue origin and thus, a

treatment that targets the transformed state can be effective

against different tumor types. Characterization of tumor cells

shows that they have altered cytoskeleton functions and can

undergo mechanoptosis. In early cancer studies, tumor cells were

described as being in a transformed growth state and the

transformed growth state has been shown recently to depend

upon depletion of the early rigidity sensor module that is,

activated in normal cells as they spread on matrices

(Wolfenson et al., 2016; Yang et al., 2020). Normal cells can

assume the transformed state upon depletion of single

cytoskeletal proteins involved in the rigidity sensing module

and conversely tumor cells will assume a rigidity-dependent

state upon restoration of normal levels of the depleted proteins

that then enable rigidity sensing (Yang et al., 2020). The most

common protein that is depleted in many cancers is

tropomyosin 2.1 and this can be the effect of miR21 causing

depletion of the tropomyosin 2.1 mRNA because miR21 is

upregulated in cancer development, wound repair and

inflammation (Qian et al., 2009; Dai et al., 2017; An et al.,

2018). An important point is that the transformed state is

common to most tumor cells; therefore, treatments that

target the transformed state might be effective against many

tumor types.

Although we don’t fully understand the molecular pathways

that account for the differences between the transformed and

normal growth states, there are some aspects of cytoskeletal

organization that could be involved. For example, the actin

cytoskeleton of normal cells involves myosin contraction as

well as actin crosslinking by filamin A and the depletion of

either of these proteins will cause cell transformation (Cai et al.,

2010; Luo et al., 2013; Luo et al., 2016; Wolfenson et al., 2019).

Thus, it is logical to suggest that the actin filament networks in

tumor cells are altered as compared to the normal cells. In the

future, additional studies are required to further understand the

differences between normal and transformed cell cytoskeletons

and how they might be exploited to develop tumor treatments.
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