
Essential Oils as Multicomponent
Mixtures and Their Potential for
Human Health and Well-Being
Marek Bunse1*, Rolf Daniels2*, Carsten Gründemann3*, Jörg Heilmann4*,
Dietmar R. Kammerer1*, Michael Keusgen5*, Ulrike Lindequist 6*, Matthias F. Melzig7*,
Gertrud E. Morlock8*, Hartwig Schulz9*, Ralf Schweiggert10*, Meinhard Simon11*,
Florian C. Stintzing1* and Michael Wink12*

1Department of Analytical Development and Research, WALA Heilmittel GmbH, Bad Boll, Germany, 2Department of
Pharmaceutical Technology, University of Tübingen, Tübingen, Germany, 3Translational Complementary Medicine, Department
of Pharmaceutical Sciences, University of Basel, Basel, Switzerland, 4Department of Pharmaceutical Biology, University of
Regensburg, Regensburg, Germany, 5Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marburg, Germany,
6Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany, 7Institute of Pharmacy, Freie Universität
Berlin, Berlin, Germany, 8Institute of Nutritional Science, Chair of Food Science and TransMIT Center for Effect-Directed Analysis,
Justus Liebig University Giessen, Giessen, Germany, 9Consulting & Project Management for Medicinal & Aromatic Plants,
Stahnsdorf, Germany, 10Institute of Beverage Research, Chair of Analysis and Technology of Plant-Based Foods, Geisenheim
University, Geisenheim, Germany, 11Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg,
Oldenburg, Germany, 12Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany

Essential oils (EOs) and their individual volatile organic constituents have been an inherent
part of our civilization for thousands of years. They are widely used as fragrances in
perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients
of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties
have qualified EOs early on for both, the causal and symptomatic therapy of a number of
diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs
constitute a typical example of a multicomponent mixture (more than one constituent
substances, MOCS) with up to several hundreds of individual compounds, which in a
sophisticated composition make up the property of a particular complete EO. The
integrative use of EOs as MOCS will play a major role in human and veterinary
medicine now and in the future and is already widely used in some cases, e.g., in
aromatherapy for the treatment of psychosomatic complaints, for inhalation in the
treatment of respiratory diseases, or topically administered to manage adverse skin
diseases. The diversity of molecules with different functionalities exhibits a broad range
of multiple physical and chemical properties, which are the base of their multi-target activity
as opposed to single isolated compounds. Whether and how such a broad-spectrum
effect is reflected in natural mixtures and which kind of pharmacological potential they
provide will be considered in the context of ONE Health in more detail in this review.
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HISTORY OF PHYTOTHERAPY

Aromatic plants have long been used in traditional medicine for
their protective and therapeutic properties, in foods to impart
flavor, but also as anti-inflammatory, antioxidant and
antimicrobial agents (Freitas and Cattelan, 2018).

In Europe, phytotherapy is the best-known field of natural
medicine today. One of the first and most detailed
pharmacognostic guides on plants but also animals and their
compounds such as essential oils or fatty acids is Dioscorides’ ʻDe
Materia Medicaʼ (first century) (Staub et al., 2016). In mediaeval
times (5th–15th century) herbs and extracts prepared therefrom
were used for the treatment of various diseases, especially in
monasteries, but also by healers, mostly women, who knew the
potential of such preparations and later (since 13th century) by
monks and pharmacists (Dufault et al., 2001). In the age of the
plague (14th century), numerous epidemics of bubonic plague and
other infectious diseases killed about 25% of the European
population, which in consequence led to massive restrictions
and regression in all areas of life. Despite basic knowledge of
herbalism, nursing and medicine, the health system of mediaeval
times could not prevent the consequences of the pandemic. At
that time, living and working conditions as well as famines due to
social structures and failed harvests were responsible for the fact
that people were not able to live under adequate hygienic
conditions, let alone to secure nutrition.

With the discovery of America and the sea route to India at the
end of the 15th century (Renaissance), Europeans discovered
plants that were previously unknown to them (e.g., cacao, chili
pepper, sunflower), as well as options to treat further kinds of
ailments. Thanks to printing, medicinal plants could be depicted
and not only described, thus, they were more broadly recognized
and knowledge could be shared to a greater extent. The most
popular herbaria of this period are the “Herbarium Vivae
Eicones” (1530) by Otto Brunfels, the “De Historia Stirpium”
(1542) by Leonhart Fuchs, the “Herbarium” (1597) by John
Gerard, the “English physician” (1649) by Nicholas Culpeper,
and the “Theatrum botanicum” (1669) by John Parkinson
(Makarska-Białokoz, 2020). A real breakthrough in the history
of herbal medicine was initiated by Paracelsus, and especially his
most famous phrase in relation to toxicology “Poison is in
everything, and no thing is without poison; the dose makes it
either a poison or a remedy” (Philippus Theophrastus Aureolus
Bombastus von Hohenheim, 1493–1541; Holzinger, 2013). He
studied the signature of plants, developed methods for extracting
“therapeutic essences” from medicinal plants, and therefore is
regarded as the father of phytochemistry and pharmacognosy.

Beginning in the 18th and 19th centuries, people have been
increasingly concerned by the chemical knowledge of herbs and
their constituents as well as their possible effects on health. Since
then, it had been believed that individual specific chemical
compounds are responsible for the healing properties of a
medicinal plant and that effective preparations should consist
of standardized, easily dosable substances or extracts. For this
reason, individual constituents began to be increasingly isolated
from plants. At that time, morphine isolated from opium poppy
was considered a breakthrough in the study of medicinal plants

by the pharmacist FriedrichWilhelm Adam Sertürner (Sertürner,
1806). Worldwide, many further important compounds were
isolated from plants, such as strychnine, quinine, caffeine,
salicin, cocaine, and digitalin, to name a few (Barnes, 2007).
The era of scientific research on the chemical profile, the
pharmacological and toxicological properties of plant extracts
had dawned. Favored by the development of novel
chromatographic and microscopic methods, herbs became the
sources of medicines in the 20th century. Until 1930, herbal
medicines were very popular and only gradually replaced by
preparations obtained from chemical synthesis, the basis of
synthetic drugs (Ferreira et al., 2014; Jamshidi-Kia et al., 2018;
Makarska-Białokoz, 2020).

The trend of isolating single compounds was countered by the
development of scientifically based rational phytotherapy.
Distinct cultivation and processing methods were the basis of
new guidelines, such as the World Health Organization (WHO)
Guidelines on Good Agricultural and Collection Practices
(GACP) for Medicinal Plants or the European Medicines
Agency (EMA) Guideline on Quality of Herbal Medicinal
Products (CPMP/QWP/2819/00), herbal medicines of tested
quality were developed from then on (Sahoo et al., 2010; Fürst
and Zündorf, 2015). Today it seems to become more important
than ever to develop effective and clinically proven, but also
affordable medicines including traditional, long-established plant
preparations. Furthermore, medicinal plants continue to hold
great promise providing anti-inflammatory, antibacterial,
antifungal, antiviral, anticancer, and antiparasitic compounds
as leads. Thanks to their evolutionary development, plants
possess a quite comprehensive arsenal of defense, protection,
distribution and attraction strategies (Wink, 2003; Sakkas and
Papadopoulou, 2017) based on bioactive and potentially
pharmacologically active specialized metabolites. Given this
considerable potential, medicinal plant extracts and their
complex pharmacological and physiological effects are still
highly underexplored, and the awareness of the need for more
sound scientific studies is growing to better understand the
rationale and the underlying principles of traditional
therapeutic uses.

INHERENT COMPLEXITY

The basis of the diverse biological properties of medicinal plants
and extracts therefrom is the interplay of complex secondary
constituents such as alkaloids, terpenes, flavonoids, tannins, etc.,
as well as non-coding small RNA species, such as microRNA (Xie
et al., 2016), which explain their diverse pharmacological and
therapeutic properties both as individual compounds and as
complex mixtures (MOCS; Wink, 2015). The latter are
preparations used in phytotherapy, but which may also be
applied as adjunctive therapy to a single compound of either
synthetic or natural origin in the context of integrative medicine.
Individual constituents in natural MOCS are often present at
lower levels, compared to the amounts used in therapy with
isolated individual components (Rasoanaivo et al., 2011;
Gorlenko et al., 2020). Interestingly, a neat substance at the
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same level as present in natural plant source mixtures, usually
does not reach the same pharmacological effects on a quantitative
and qualitative scale. This means that the same chemical
constituent may exhibit a clear biological activity when
forming part of a natural mixture (e.g., a plant extract),
whereas the isolated compound may not. Thus, natural
compounds present in combination may enhance each other
(synergism), complement each other (additive effect), or
attenuate each other (antagonism) (Chou, 2006; Hemaiswarya
et al., 2008; Połeć et al., 2022). This complex interplay of
substances responsible for such effects may not only exhibit
positive effects, but may also compensate for, attenuate or
cancel out possible undesirable effects of other components
(Caesar and Cech, 2019). The recent combination of planar
chromatography with multiplex biological effect detection can
straightforwardly differentiate such effects on the same plate
(Ronzheimer et al., 2022; Schreiner et al., 2022). In addition,
unlike isolated individual substances, MOCS often exhibit a
broad spectrum of action (i.e., they are multi-target drugs),
since the diversity of molecular structures (multi-component),
with their specific functional moieties and their respective
chemical and physiological properties do not only have one
common target, i.e. the “multi components result in multi
targets” theory (Nahrstedt and Butterweck, 2010; Schwabl
et al., 2013). The streamlined analysis of 68 different
botanicals does not only highlight such versatility in potential
biofunctional properties, but also prove that such multi-
compounds may interact with various metabolic pathways
(Morlock, 2021; Schreiner et al., 2021). Furthermore, MOCS
may modulate their mutual resorption, but also for specific
compounds from food or medicines and may also affect
typical characteristics of smell and taste (Karalis et al., 2008;
Ku et al., 2020).

Nevertheless, there is a strong trend in health policy and the
pharmaceutical industry to replace complex natural MOCS, such
as EOs, with isolated mono-substances in the future. The main
reasons to prefer mono-substances may be simpler quality
control, better application and standardization, straightforward
clinical studies, with known active targets including side effects.
In addition, authenticity control of EOs may be a major issue. By
means of a broad portfolio of methods, like chiral gas
chromatography, isotope-ratio mass spectrometry, NMR, thin-
layer chromatography, vibrational spectroscopy, multi-
dimensional chromatography, high-performance liquid
chromatography, headspace chromatography, and combination
with chemometrics-metabolomics, adulterated or synthetic oils
may be identified (Do et al., 2015). The more complex a MOCS is,
the more difficult it seems to verify its authenticity and
genuineness. This seems to be another reason why biologically
active mono-substances are often favored. When mono-
substances are used, the potential of synergistic action is lost,
which has recently been discovered in a number of natural MOCS
(Ronzheimer et al., 2022; Schreiner et al., 2022). However, rising
costs for mono-compound isolation and purification increasingly
question the positive economic balance, especially in light of the
growing awareness for the ecological impact and its ramifications.
In addition, patient-centered medicine asks for complementary

approaches as a companion to conventional mono-substance
therapies (Agarwal, 2018; Clark et al., 2021) and other effects
and therapeutic benefits with reduced side effects can be achieved
by applying MOCS compared to single compound application.
Therefore, there is an urgent need to re-evaluate MOCS, and
support sound studies to discover their full potential for human
but also animal health in the context of integrative health
approaches (Agarwal, 2018; Clark et al., 2021). This should go
along with sustainable cultivation, not only to maintain and
create jobs and to meet the demand for medicinal plants, but
also to cultivate medicinal plants in an environmentally conscious
manner, to preserve protected species and to protect wild stocks
from uncontrolled collection (Silori and Badola, 2000; Akinyemi
et al., 2018).

ESSENTIAL OILS AS CLASSICAL MOCS

Essential oils (EOs) are among the most versatile and long-term
used medicinal plant preparations (Plant et al., 2019). They are
produced in more than 17,500 aromatic species and are stored in
various plant organs, i.e., blossoms (e.g., Rosa x damascena
Herrm. (Rosaceae), damask rose), leaves (e.g., Cymbopogon
citratus (DC.) Stapf (Poaceae), lemon grass), wood (e.g.,
Santalum acuminatum (R.Br.) A.DC. (Santalaceae),
sandalwood), roots (e.g., Chrysopogon zizanioides L. (Poaceae),
vetiver), rhizomes (Zingiber officinale Roscoe (Zingiberaceae),
ginger; Curcuma longa L. (Zingiberaceae), turmeric), fruits (e.g.,
Pimpinella anisum L. (Apiaceae), anise and Carum carvi L.
(Apiaceae), caraway) (Regnault-Roger et al., 2012). Essential
oils are defined as mixtures of secondary metabolites from
plants (Ahmad et al., 2021) and typically exhibit a strong odor
as they are MOCS containing a variety of volatile terpenes,
aldehydes, alcohols, ketones and simple phenolics (Bakkali
et al., 2008; Sadgrove et al., 2022). The European Chemicals
Agency (ECHA) has defined EOs as “a volatile part of a natural
product obtained by distillation, steam distillation or, in the case
of citrus fruits, by squeezing. It contains mainly volatile
hydrocarbons. Essential oils are derived from various parts of
plants.” (Essential oils - ECHA, 2022). In the plant, they play a
central role in pollination, communication, and protection: They
attract natural enemies of herbivores, protect against pathogens
such as fungi and bacteria, are messengers between plants, attract
seed dispersers and particularly pollinators, protect against
extreme temperature fluctuations, etc. (Holopainen, 2004;
Dudareva et al., 2006; Loreto et al., 2009; Loreto and D’Auria,
2022). As natural mixtures and the products obtained therefrom,
EOs can vary in quality, quantity, and composition even when
obtained from the same plant species. Not only the choice of the
EO recovery process, but also the plant organ used and exogenous
factors during plant growth such as climate, soil conditions, pest
infestation, age and stage of the vegetation cycle play a decisive
role (Masotti et al., 2003; Angioni et al., 2006). In addition, the
composition of EOs may differ between individual plants in a
population and sometimes even different chemotypes exist within
a species. Furthermore, chemical varieties of EO-producing
plants have also been bred, developed, and studied to improve
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their EOs content, quality and composition (Toxopeus and
Bouwmeester, 1992; Sarrou et al., 2017; Lal et al., 2018).

BIOSYNTHESIS AND CHEMICAL
COMPOSITION

In aromatic and scented plants, the vast majority of volatile
organic compounds originate from three precursor categories

(Figure 1), namely phenolic compounds from shikimate and
acetate malonate pathway, fatty acid derivatives, and isoprenoids
(Sangwan et al., 2001; Caissard et al., 2004). The main
constituents of EOs are often isoprenoids, which form the core
structures of terpenoids (Scheme 1). The basic structure of
isoprenoids consists of 2-methylbutane moieties (isoprene or
2-methylbutadiene units), which are biosynthesized in the
cytosol via the mevalonic acid pathway and/or in plastids via
the 2-C-methylerythritol-4-phosphate (MEP) pathway (Newman
and Chappell, 1999). The universal precursors of all terpenoids
are the active isoprene unit, isopentenyl diphosphate (IPP), and
its isomer dimethylallyl diphosphate (DMAPP). Monoterpenoids
are usually formed by the fusion of IPP in a head-to-tail manner
to its isomer DMAPP, leading to geranyl diphosphate (GPP)
(Dubey et al., 2003). In case of sesquiterpenoids GPP will be
further head-to-tail elongated by a second IPP to the C15 farnesyl
diphosphate.

The different biosynthetic pathways of EO substances
constitute the fundament of their structural diversity. Beside
terpenes another main group of EOs is composed of aromatic
and aliphatic constituents.

A common analytical method for assessing commercially
available EOs is chemical characterization by gas-liquid-
chromatography coupled to mass spectrometry. In addition,
analytical techniques such as nuclear magnetic resonance
(NMR) spectroscopy and headspace gas chromatography play
a role in characterizing and evaluating EOs quality and
authenticity, especially for unstable EO molecules like

FIGURE 1 |Concept of EOs acting as MOCSwith multi-target functional
groups.

SCHEME 1 | Biosynthetic pathways of major volatile organic compounds. Modified according to Caissard et al. (2004).
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thermolabile sesquiterpenes, such as from Curcuma caesia Roxb.
(Zingiberaceae) rhizome (Fakhari et al., 2005; Turek and Stintzing,
2011; Mahanta et al., 2020; Truzzi et al., 2021). According to
Bakkali et al. (2008), about 3,000 EOs are known to date from a
wide variety of plants and their organs, of which 300–400 are
particularly important in the medicinal, pharmaceutical,
agricultural, food, sanitary, cosmetics and perfume industries, as
well as in dentistry, as adhesives and flavors (Ramezani et al., 2008;
Turek and Stintzing, 2013; Ibrahim, 2020).

EOs are MOCS normally consisting of 20–200 single
compounds, which divide into main constituents with
concentrations ranging from 20 to 95%, minor compounds
(1%–20%) and trace compounds (<1%) (Stahl-Biskup and Reher,
1987). The specific compound fingerprint is a result of multiple
factors, such as plant species, plant part, growing conditions and
time of harvest. In most cases, predominant constituents with low
odor thresholds determine the typical olfactory EO character. For
example, the quantitatively dominating compounds of oregano oil
(Origanum vulgare ‘Compactum’ L.; Lamiaceae) are carvacrol
(30%–80%) and thymol (27%–80%), whereas in fresh oregano
leaves the main fragrance components are γ-terpinene, p-cymene,
thymol, and carvacrol (Asadollahi-Baboli and Aghakhani, 2015). In
coriander oil (Coriandrum sativum L.; Apiaceae) linalool (68%)
dominates. In white wormwood oil (Artemisia herba-alba Asso;
Asteraceae): α- and β-thujone (57%) and camphor (24%) are the
quantitively dominating compounds. For camphor tree oil
(Cinnamomum camphora (L.) J. Presl; Lauraceae), it is
D-camphor (50%), for dill oil (Anethum graveolens L.; Apiaceae)
α-phellandrene (up to 32%) and limonene (up to 32%) from leaf and
carvone (up to 55%) and limonene (up to 45%) from the fruit.
Peppermint oil (Mentha x piperita L.; Lamiaceae) is characterized by
high amounts of menthol (up to 45%) and menthone (up to 15%)
(Beigi et al., 2018; Bhavaniramya et al., 2019; Dobreva and Dimov,
2021; Poudel et al., 2021).

However, also minor or trace components may produce
intense odors, which contribute to the characteristic flavor
(Góra and Brud, 1983). For example, the fragrance of damask
rose (R. damascena) is characterized by about 27main compounds.
However, only a few compounds (i.e., β-damascenone, rose oxide,
trans-nerolidol, rotundone, 4-(4-methylpent-3-en-1-yl)-2(5H)-
furanone) represented by less than 1%, contribute to the
distinctive scent of rose oil and account for about 90% of the
odor content due to their low odor threshold (Naquvi et al., 2014;
Ohashi et al., 2019). This means that not only a quantitative
evaluation of compounds but also a qualitative view is required
to reveal the full potential of EOs as a classical MOCS.

PRODUCTION OF EOs

Various methods to obtain EOs comprise conventional and
modern techniques, including water or steam distillation,
solvent extraction, expression, extraction with supercritical
fluids and subcritical water (Edris, 2007). The focus of novel
environmentally friendly extraction technologies is to minimize
the use of solvents while producing high-quality extracts in a
more cost-efficient and process-optimized manner (Chemat

et al., 2012). Hence, in addition to biotic and abiotic factors,
reproducible and uniform extraction procedures play an
important role in achieving consistent quality and
composition of EOs. A reliable repertoire of methods exist to
control and guarantee their quality, safety and efficacy (Bakkali
et al., 2008).

Hydrodistillation, the boiling of plant material in water or the
treatment of plant material by steam, is the predominant
(historical) method to produce EOs. Nowadays, steam
distillation is common for the recovery of most EOs.
Hydrodistillation is a softer technique than dry distillation,
normally used for wood and bark, because the plant
components are exposed to lower temperatures to recover
volatiles, and thus thermal decomposition of individual
constituents and the production of artefacts in this process is
reduced (Aziz et al., 2018).

Ideally, the EO should be distilled from a single species
without removing or adding individual EO components.
However, not all EOs meet these criteria; for example
camphor oil and ylang-ylang oil are fractionated and corn
mint is dementholized (Chen et al., 2013). In addition, low
recoveries may be opposed to EO production from one plant
species, which is why sometimes equivalent species are used, as
in the case of anise EOs (Sultanbawa, 2016; Shahrajabian et al.,
2019). Furthermore, in some cases it cannot be completely
ruled out that another plant species of equal value also is
harvested, which might be the case with spruce needle oils
(Metsämuuronen and Sirén, 2019; Mofikoya et al., 2022). The
chemical composition of EOs is not necessarily identical to
that found in the respective living plant. Often, very high-
boiling or low-boiling volatile plant compounds are simply lost
because they do not even enter the vapor phase or readily
evaporate and thereby escape during the production process.
While most components shall be retained upon distillation,
others may undergo chemical changes; such as the formation
of chamazulene from matricin in chamomile (Ramadan et al.,
2006). Thus, the composition of EOs represents the final
image including the respective biosynthetic fingerprint but
also the modified substances due to preceding processing.
Furthermore, in some cases, individual compounds are
intentionally removed because of their toxicity, such as
hydrogen cyanide from bitter almond oil or methyl eugenol
from rose oil (Rusanov et al., 2012; Zhang et al., 2019). One
important modified oil, e.g., by increasing the cineole content,
while reducing the acid content, is eucalyptus oil (European
Medicines Agency, 2014).

Some EOs may also be recovered by cold pressing. These cold-
pressed oils are generally derived from citrus fruits, although
distilled citrus oils are also produced. Unprocessed citrus oils may
contain non-volatile phototoxic compounds (i.e., furocoumarins)
that, due to their molecular weight and non-covalent
intermolecular binding forces, may remain in cold-pressed but
not in distilled citrus oils (Ferhat et al., 2007). In addition,
fragrance oils can also be extracted with organic solvents
(n-hexane), producing concretes, absolutes or resinoids, with
liquid or super-critical carbon dioxide, resulting in CO2

extracts, or with some innovative methods like ionic liquid, or
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deep eutectics extraction (Lago et al., 2014; Erşan et al., 2018; Choi
and Verpoorte, 2019). A concrete contains both volatile
compounds and the non-volatile plant waxes and is prepared
by washing the plant material with a non-polar solvent such as
n-hexane. Absolutes are produced by re-extracting concentrated
concretes with ethanol, subjecting to cold temperatures and then
the soluble portion is concentrated to obtain fragrances devoid of
waxes (Aycı et al., 2005). In addition, the enfleurage process is a
very old method of extracting fragrances, in which volatile
fragrance molecules from plant parts are transferred to fat in
which they are embedded (Shankar et al., 2021).

EOs AND THEIR BIO-FUNCTIONAL
PROPERTIES – RISKS AND SIDE EFFECTS
OF IMPROPER APPLICATION
Because of the diverse structural diversity and number of
constituents (Figures 1, 2), EOs as a whole do not seem to
have selective or singular cellular targets (Carson et al., 2002).
Due to their different compound profiles, they can penetrate the
cell wall of microorganisms and the cytoplasmic membrane of
cells and thus disrupt the structural assembly of saccharides,
proteins, fatty acids, and phospholipids, which modulate
membrane permeability and fluidity (Figure 3). Such
interactions with biomembranes are the basis of nearly all

biological activities of EOs and their metabolites to cross
cellular compartments. In this way, EOs may cause
depolarization of the mitochondrial membranes of eukaryotic
cells, by decreasing the membrane potential, impairing the ionic
Ca2+ cycle and other ionic channels thereby reducing the pH
gradient. This may affect crucial metabolic processes such as the
proton pump and the ATP (adenosine triphosphate) pool and
may encompass cytotoxic activities (Richter and Schlegel, 1993;
Novgorodov and Gudz, 1996; Vercesi et al., 1997). EOs may also
modify the fluidity of membranes by making them more
permeable, thus leading to the leakage of radicals, cytochrome
C, calcium and other ions as well as proteins, as in the case of
oxidative stress and bioenergetic failure. This may finally lead to
cell death by apoptosis and necrosis (Yoon et al., 2000;
Armstrong, 2006). Toxicity assessment of a substance or
mixture is performed by means of the selectivity index (SI).
The SI expresses the ratio between measured cytotoxicity
towards normal cells and a desired measured activity, such as
antiviral, or anticancerogenic activity. An ideal antiviral or
anticancer compound would be cytotoxic against normal cells
only at very high concentrations and exhibit antiviral or
anticancer activity at very low concentrations (Prayong et al.,
2008; Astani et al., 2010; Reichling, 2021). The cytotoxic
properties are of great importance for the use of EOs against
certain human or animal pathogens, parasites or abnormal cells
but undesirable in cosmetic products (Bakkali et al., 2008). Due to
their mode of action, acting on multiple targets simultaneously,
resistance and adaptation phenomena towards EOs or individual
compounds thereof have only scarcely been described. For
example, resistance of Bacillus cereus to carvacrol has been
detected after growth in the presence of a sublethal
concentration of this component (Ultee et al., 2000; Di Pasqua
et al., 2006). Furthermore, Pseudomonas aeruginosa showed
increased tolerances to the EO of Melaleuca alternifolia
(Maiden & Beche) Cheel, which was accompanied by changes
in the barrier and energy functions of the outer membrane of the
bacterium (Longbottom et al., 2004). This is a worthwhile aspect
in finding alternatives to antibiotic therapy where resistance
phenomena are increasingly being observed.

In the context of safety evaluation, not only cytotoxicity is
relevant, but also mutagenicity and genotoxicity. Antimutagenic
properties of an EO (in vitro) appear to be based on preventing
mutagens from entering the cells, inactivating them by direct
scavenging, neutralizing their radical oxygen species (ROS) by
binding antioxidant molecules, or activating their own cell-
protective antioxidant pathways. In addition, metabolic
conversion of promutagens to mutagens can be inhibited by
cytochrome P450 isoenzymes, or enzymatic processes metabolize
harmful mutagens and other xenobiotics to harmless metabolites
(Ramel et al., 1986; Kada and Shimoi, 1987; De Flora and Ramel,
1988; Hartman and Shankel, 1990; Kuo et al., 1992; Shankel et al.,
1993; Waters et al., 1996; Sharma et al., 2001; Gomes-Carneiro
et al., 2005; Ipek et al., 2005). ROS alone may trigger DNA
mutation and antioxidants, such as some EO components, may
inhibit this process and thus prevent the development of diseases
(van Wyk and Wink, 2015). The reduced frequency of mutations
caused by EOs was always accompanied by a synergistic

FIGURE 2 | EOs as MOCS and their potential multi-target interactions
with proteins.
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induction of complete petite mutants (mitochondrial gene
mutations of the respiratory chain). Moreover, EOs alone or
in combination with other pharmaceuticals were shown to

induce mainly necrosis and not apoptosis. This supports the
fact that petite mutants are true rho0 mutants. These are
ultimately unable to induce apoptosis due to the lack of

FIGURE 3 | Examples of chemical structures of EO constituents. Modified according to Hyldgaard et al. (2012).
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functional mitochondria, but only passively induce necrosis
(Van Houten et al., 2006).

A number of studies on various EOs and their isolated major
constituents have shown that there is no evidence for a nuclear
DNA mutation neither from the complete formulation nor the
isolated constituents (Bakkali et al., 2005). However, some
exceptions have been reported: Artemisia dracunculus L.
(Asteraceae) EO was positive in rec-Bacillus subtilis assay
(Zani et al., 1991). Mentha spicata L. (Lamiaceae), A.
graveolens, Pinus sylvestris L. (Pinaceae) and M. piperita EOs
were found to be genotoxic in different assays like the Drosophila
melanogaster somatic mutations and recombination test
(SMART) (Franzios et al., 1997; Karpouhtsis et al., 1998;
Lazutka, JR et al., 2001); Anise EO, trans-anethol e.g. from
fennel, β-asarone e.g. from Acorus calamus L. (Acoraceae),
terpineol (p-menth-1-en-ol), trans-cinnamaldehyde, carvacrol,
thymol and S (+)-carvone proved to be active in the AMES
test (Nestmann and Lee, 1983; Hasheminejad and Caldwell, 1994;
Gomes-Carneiro et al., 1998; Stammati et al., 1999). However, it
appears questionable, whether concentrations, which showed
harmful effects in vitro, may be reached in vivo upon proper
application. Some of the phenylpropanoids are converted to
epoxides in the liver, which can thus become mutagenic
(Wink and Schimmer, 2010). Complementarily, it has been
shown using yeast strains (Saccharomyces cerevisiae) in vitro
that exposure to EOs can induce mitochondrial damage
affecting mitochondrial membranes and DNA. This can lead
to the formation of cytoplasmic petite mutants with respiratory
deficits. The specific composition of an EO affected the rate of this
induction, similar to cytotoxicity (Bakkali et al., 2005). In this
context, special selections of plants are cultivated, like calamus (A.
calamus), which are poor in β-asarone, for example (Bertea et al.,
2005).

It can therefore be assumed that since most EOs have been
shown to be cytotoxic but not mutagenic, it is likely that most of
them are also non-carcinogenic. Nevertheless, some EO or some
of their components can be considered as secondary carcinogens
after metabolic activation. EOs like those from Salvia sclarea L.
(Lamiaceae) and Melaleuca quinquenervia (Cav.) S.T.Blake
(Myrtaceae) may cause estrogen-like secretions which may
induce estrogen-dependent cancers (Cuba, 2001). Others (e.g.,
orange, lemon and Litsea cubeba (Lour.) Pers.; Lauraceae) may
contain photosensitizing molecules, such as flavins, cyanins,
porphyrins and hydrocarbons, and can cause skin erythema or
even cancer (Kejlová et al., 2010). The photosensitizing
furocoumarin psoralen found in some EOs is known to induce
phototoxic effects and may induce skin irritation or cancer, like
phytophotodermatitis, after formation of covalent DNA adducts
when exposed to ultraviolet A or solar light (Averbeck et al., 1990;
Averbeck and Averbeck, 1998; Nguyen et al., 2020). However, in
the dark, the same oil is neither cytotoxic nor mutagenic by itself.
So, there are EOs with phototoxic activities, non-phototoxic but
cytotoxic activities in vitro (Santalum spicatum (R.Br.) A.DC. syn.
Fusanus spicatus (Santalaceae) Australian wood EOs) and EOs
with phototoxic and in vitro cytotoxic activities [Citrus
aurantium subf. dulcis (Yu.Tanaka) M.Hiroe syn. Citrus
gracilis subsp. dulcis (Rutaceae) and C. citratus; murine

fibroblastic cell line 3T3 and rabbit cornea derived cell line
SIRC; (Dijoux et al., 2006)]. Recently, it has been
demonstrated that furanocoumarins may protect terpenes
from oxidation (Bitterling et al., 2022a; 2022b). So, it appears
that interactions between the single compounds of an EO as well
as between different types of MOCS (for example EOs and
polyphenols) may have been overlooked in the past and
deserve closer examinations.

The relevance assessment of these data and their importance
for in vivo experiments is generally difficult since they were
mostly collected in vitro or for single compounds or in
unphysiologically high concentrations.

THERAPEUTIC USES OF EOs

The structural diversity as well as multi-component character of
EOs led to a high number of physiological targets and the
usability in different indication areas. Furthermore,
therapeutical options of EOs are given by the distinct types
of application. Inhalations can reach the upper and lower
respiratory tract (Sadgrove et al., 2021). Through topical
application substances can reach different skin layers,
muscles and joints. Gargle solutions reach the mucous
membranes and capsules or teas transport EOs to the
gastrointestinal tract and lead to systemic absorption
(Seyyedi et al., 2014; Alshehri, 2018; Filipović et al., 2020). A
unique and very interesting way to achieve therapeutic effects
with EOs is via smelling as scent impulses reach different brain
areas via the olfactory nerve (Agatonovic-Kustrin and Morton,
2018; Zhang and Yao, 2019; Chandharakool et al., 2020).
Consequently, EOs are part of interesting therapy options in
case of respiratory diseases, rheumatic disorders, inflammatory
skin diseases, gastrointestinal complaints as well as sleep and
mental illnesses. Nevertheless, in all therapeutic treatments, the
primary goal is the achievement of maximum therapeutic
benefit while minimizing toxic and other undesirable side
effects. The selection of the right essential oil, its dosage,
method of application and integration in daily routine is
correspondingly complex.

For most EOs, there is currently not enough reliable
information regarding the active EO compounds and their
molecular targeting in vitro and in vivo, but also regarding the
best dosage to achieve the optimal efficacy and to minimize
undesirable side effects for optimal safety. In our point of
view, there are two consecutive ways to fill the knowledge gaps.

First, the efficacy and safety of an EO is evaluated based on the
knowledge of other EOs with comparable composition or similar
molecular structures. Since each component of a mixture exhibits
its individual pharmacokinetic profile, the metabolic fate of an
EO is assessed based on its individual substances and their known
properties. This procedure is accepted and applied for most EOs
(Tisserand and Young, 2014). Second, the complexity of EOs
should be considered more in their entirety. In MOCS mutual
interactions of individual compounds as well as interactions with
their molecular environment may occur, resulting in synergistic,
additive, or antagonistic effects. The latter are probably more rare
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according to current data. Therefore, the assessment of a complex
mixture based on its individual active principles will offer a first
impression, but results may not be valid in all predicted
assumptions in the living organism. Appropriate in vitro and
in vivo methods should be developed and applied that evaluate a
more complete picture of complex natural MOCS. In such
studies, the different model parameters may be observed after
testing/administration and compared to the assumed
physiological effects of the individual compounds to evaluate
the difference between single constituents and complex blends.
The literature impressively shows numerous examples of the
advantages of administering specific compounds as natural
mixtures, including lower toxicity. For example, EOs or
extracts with safrole showed the unexpected absence of
genotoxicity and carcinogenicity when compared to the neat
substance at the same concentration level (Ishidate et al., 1984;
Bhide et al., 1991; Choudhary and Kale, 2002). The reduced acute
toxicity in EOs with thymol is another prominent example
(Karpouhtsis et al., 1998). Further investigations seem
worthwhile to get an even more complete picture of the
benefit of EOs as MOCS as compared to isolated compounds.

The specific composition of the EO, the method of
administration, the dosage, the frequency, and the duration of
administration influence bioavailability. In this context, the
(relative) bioavailability of a substance is defined as the
proportion of the administered dose that reaches systemic
circulation in unchanged form. So, an intravenous
administration of a substance is equivalent to 100%
bioavailability (Koch-Weser, 1974; Atkinson, 2007). Three
major routes of intake have been assessed for EOs: the
respiratory tract (including the olfactory system), the
gastrointestinal tract, and the skin/mucosa. Most studies report
rapid absorption of lipophilic EOs components, following oral,
dermal and inhalative, but also rectal and vaginal administration,
nevertheless they differ with regard to ADME parameters and it is
generally concluded that metabolic data on humans are still
incomplete (Kohlert et al., 2000; Schmitt et al., 2009; Bach
et al., 2021). Furthermore, bioavailability is highly individual,
and the same substance can be metabolized differently in a
collective despite choosing the same application route. This
applies to quantitative (fast versus slow metabolizer) as well as
qualitative aspects (different metabolic profiles). In addition, the
same individual may process the same compound differently
depending on food intake and comedication. Further factors are
health status, diet, age, skin integrity, gut microbiota, and other
metabolic variations that may depend, for example, on the time of
day (chronobiology) (Hurst et al., 2007; Karalis et al., 2008; Zhang
et al., 2021).

The most common routes of administration of EOs: Dermal/
mucosal, inhalative (including olfactory system) and oral (via GI),
will be discussed in more detail in the following.

Dermal/Mucosal (Topical) Administration
The skin is the largest organ of the human body with a thickness
of about 3 mm and a layered structure. It provides protection
from external insults, regulates the body temperature, but also the
exchange of water and other compounds, such as minerals, fats,

and various compounds resulting from metabolic
transformations (Schommer and Gallo, 2013; Dąbrowska et al.,
2018). The skin consists of an outer epidermis and the underlying
dermis. The stratum corneum is the most important protective
layer of the epidermis, consisting of dead cells embedded in a lipid
matrix. Below the living epidermal cells are formed in the deep
epidermis. The dermis below the epidermis consists of nerves,
sweat and sebaceous glands, hair follicles, blood and lymph
vessels, followed by the subcutaneous tissue, mainly fat (Ng
and Lau, 2015). This general structure is variable and can
differ depending on the body region. Therefore, different parts
of the body may respond differently to EOs. Theoretically, there
are two pathways for EOs absorption: the intercellular pathway
(between skin cells) and the transcellular pathway (through cells)
(Michaels et al., 1975). A third possible route of entry is through
the hair follicles, bypassing the stratum corneum (Scheuplein and
Blank, 1971; Meidan et al., 2005; Herman and Herman, 2015).
Components that have been absorbed into the skin can be stored
in the epidermis for a period of up to 72 h and then enter the
systemic circulation via the dermis and its blood capillaries.
However, the majority is absorbed within 24 h (Chidgey and
Caldwell, 1986; Beckley-Kartey et al., 1997).

The protective stratum corneum consists of hydrophilic and
lipophilic regions, which means that strongly water-soluble
molecules such as glucose diffuse poorly through the lipophilic
regions, while strongly lipophilic substances such as cholesterol
and many other terpenoids can hardly cross aqueous regions
(Wester and Maibach, 2000). To permeate through the skin
barrier, substances should possess lipophilic properties as well
as a certain degree of water solubility to facilitate the passage from
the dermis into the bloodstream (Wepierre et al., 1968; Chacko
et al., 2020). Numerous EO constituents appear to enhance their
own and other substances’ dermal absorption. For example,
methyl salicylate may accomplish this in part by increasing
local capillary blood flow and thus acting as a rubefaciens
(Cross et al., 1999). Other compounds can temporarily alter
the transport properties of the stratum corneum by interacting
with intercellular lipids (Williams AC. and Barry BW., 1991;
Williams A. C. and Barry, B. W. 1991). Carveol, α-pinene and
terpinene-4-ol significantly boost permeation of water and
ethanol in isolated human epidermis after 4 h (Magnusson
et al., 1997). Also, (+)-limonene accelerates the transfer of
citronellol and eugenol. Both α-pinene and β-myrcene
similarly increase the permeation of phenylethanol (Schmitt
et al., 2009). For rose oil components it was shown that all
substances under investigation, except α-pinene and
isomenthone, reveal skin permeation rates, which are several
times higher when applied in rose oil as compared to the
individual substance only (Schmitt et al., 2010). Cooperative
interactions between EO constituents that promote the
absorption of EOs and their own constituents may be the
reason. EOs interact with lipids of the skin, reducing their
highly ordered state and thus their barrier function, which
facilitates passage through the dermis. Some terpenoids
improve the transport properties of the skin in such an
efficient manner that they are used intentionally to increase
the absorption of various drugs. This should be considered
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when treating skin with EOs, as they may modulate the
absorption of drugs already applied to the skin (Gao and
Singh, 1998; Hasan and Farooqui, 2021). Apart from the
chemical EO composition, the absorption of EOs through the
skin is dependent on several further factors, such as temperature,
hydration, pressure, specific skin condition, skin microbiome,
and age (Buck, 2004; Schmitt et al., 2009; Schommer and Gallo,
2013; Herman and Herman, 2015). In the last decade, it has
become particularly evident that the skin microbiome not only
influences skin appearance and disease (e.g., acne) but is also
linked to the gut microbiome and plays a major role in immune
defense (Beri, 2018; Nakouti et al., 2022). EOs and other natural
MOCS can be used to rebalance the skin microbiome and the
resulting clinical picture, promoting a healthy skin microbiology
(Han et al., 2017; Wallen-Russell and Wallen-Russell, 2017;
Białoń et al., 2019; Bunse et al., 2022).

Three other routes of topical EO administration, to bypass the
gastrointestinal tract or hepatic first pass metabolism exist,
namely the sensitive mucosa of the mouth, rectum, and
vagina. This kind of application allows that the EO
compounds reach their target unaltered. It also represents a
most efficient way to administer a remedy locally to the lower
colon or to treat vulval and vaginal, as well as mouth infections or
irritations. An adequate dose is crucial because all three tissues
covered with mucous membranes are highly sensitive to
irritation, especially if the EO is unevenly dispersed. For
example, rectal administration of 1,8-cineole, menthol or
thymol resulted in high, moderate and zero elimination via
the lungs in rats, respectively (Grisk and Fischer, 1969). An
EO preparation administered for the treatment of
vulvovaginitis, such as tea tree and geranium oil reaches the
target site in a direct way and can reduce and eliminate infectious
causes and inflammation (Blackwell, 1991; Maruyama et al.,
2008). Oral infections, postoperative wounds or bad breath
caused by bacteria, as well as xerostomia can be treated with
appropriate EOs in e.g., mouthwashes (Fischman et al., 2004;
Alshehri, 2018; Scotti et al., 2018; Filipović et al., 2020). Syzygium
aromaticum (L.) Merr. & L.M.Perry syn. Eugenia caryophyllata L.
(Myrtaceae), Mentha arvensis L. (Lamiaceae), Leptospermum
scoparium J.R.Forst. & G.Forst. (Myrtaceae), Thymus capitatus
Cav. (Lamiaceae) and Thymus vulgaris L. (Lamiaceae) essential
oils showed in vitro antibacterial activities on oral pathogenic
bacteria (Tardugno et al., 2018). Thus, as an example, mouth
rinses with chamomile (Matricaria chamomilla L.; Asteraceae)
essential oils might be applied to treat oral mucosal lesions and
alleviate the suffering of recurrent aphthous stomatitis (RAS)
patients (Seyyedi et al., 2014; Salehi et al., 2019).

Inhalative Administration
During inhalation, substances pass through the trachea into the
bronchi and from there into the increasingly fine bronchioles and
finally into the microscopic, sac-like alveoli of the lungs, where
gas exchange with the blood mainly takes place. Components of
EOs can be absorbed extremely efficiently into the bloodstream
via the alveoli. Uptake depends on the speed of blood flow
through the lungs, the rhythm and depth of respiration, and
the specific lipophilicity of the molecules (Breuninger et al., 1970;

Jaradat et al., 2016). EOs components that find their way into the
bloodstream via inhalation can easily reach the central nervous
system. So, caution should be taken with neurotoxic compounds.
Previous studies on EOs that entered the bloodstream via
inhalation showed no undesired effects, as the concentration
of EOs or their substances hardly reached a dangerous level in
the ambient air or in the body (Falk et al., 1990; Buchbauer et al.,
1991; Jirovetz et al., 1992; Falk-Filipsson et al., 1993). The
situation may be different with neurotoxic ingredients, such as
pinocamphone or thujones. However, there is currently
insufficient information available to define which constituents
represent an inhalational risk. Furthermore, molecules and drugs
can be absorbed through the olfactory epithelium and its
membranes and enter the bloodstream (Kristensson and
Olsson, 1971; Conway and Ghori, 2022). In addition, EOs can
bind and modulate receptor proteins of the olfactory bulbs which
can directly transmit signals via synapsis to electrochemical
nerves and to the brain (Angelucci et al., 2014). More than
1000 different types of olfactory receptor genes are known for
mammals, and less than 400 genes which play role in human
olfactory system. EO individual compounds can interact with
these receptors and thus affect behavior and physiological
conditions. These effects can be used in aromatherapy
(Firestein, 2001; Koyama and Heinbockel, 2020): Different
EOs which have an effect on the psyche may be used to
reduce anxiety, to treat sleep disorders and improve attention
and memory performance (Lizarraga-Valderrama, 2021).
Various studies showed that some of the EO substances
interact with most neurotransmitter systems, e.g., in the limbic
system (amygdala-hippocampal complex) by acting on different
receptor proteins (López et al., 2017; Kennedy et al., 2018;
Kontaris et al., 2020). Lavender oil is another prominent
example, which acts on the serotonin 1A receptor (Baldinger
et al., 2014).

Oral Administration
Oral administration has several advantages: The patient can take
the preparation him- or herself, the dosage is easier and often
there is a high bioavailability. For example, following ingestion of
capsules containing 1,8-cineol, limonene and α-pinene as most
abundant compounds, a treatment of bronchitis and sinusitis, the
bioavailability of the main constituent 1,8-cineole reached 95.6%
(Zimmermann et al., 1995). When taken orally, higher doses can
be applied, but also require greater care in dosing. However, it
should also be noted that the absorption of substances from EOs
can be modulated by the simultaneous intake of food or
comedication (Kohlert et al., 2000; Zhang et al., 2016;
Stevanović et al., 2018). Furthermore, EOs can provoke
mucosal irritation in sensitive individuals (Fischman et al.,
2004). Since irritation depends on the local concentration, EOs
should never be taken undiluted, but in formulations e.g., with
edible oil or encapsulated. In case of an overdose or an adverse
reaction, nausea and vomiting of incorrectly administered EOs
may occur (Woolf, 1999). Gastric digestive enzymes are capable
of degrading and converting individual ingredients (Michiels
et al., 2008; Stevanovic et al., 2020). For example, esters can be
hydrolyzed in the stomach resulting in metabolites with altered
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physico-chemical properties and modulated absorption. After
absorption of the substances into the bloodstream, they reach
the liver, where a significant portion is converted in first-pass
metabolism. However, a few compounds may also become toxic
as a result (Hoskins, 1984; Wink and Schimmer, 2010;
Zárybnický et al., 2018). Therefore, dosage, frequency of
ingestion, patient age, medical history, and life circumstances
are discussable circumstances to successful oral administration of
EOs, and self-medication without medical or pharmaceutical
supervision is not advised. Rather, the potential of EOs can
only fully be exploited when applied with knowledge and care.

METABOLISM

In the body, a large proportion of externally supplied compounds
are metabolized for example by the gut microbiome (Bento et al.,
2013). A compound may be converted into one or more different
metabolites, with altered physical, chemical and biological
properties. During this process, the metabolite usually becomes
more hydrophilic than its parent compound and can thus be
excreted more quickly via the kidneys. Furthermore, excretion
routes are the skin and the respiratory tract (Brown, 1985; Heaney
et al., 2016; Elpa et al., 2021). The liver is the most important
metabolizing organ for EO compounds, but the skin, nervous
tissue, kidneys, lungs, intestinal mucosa, blood plasma, adrenal
glands and placenta also show metabolic capacities (Gropper
and Smith, 2012). As EOs are MOCS each component has
its own metabolic fate, therefore, it is very complex to specify
the metabolism of an EO not only in vitro but especially in
vivo. Typically, a compound undergoes multiple stages of
transformation, and each constituent is eliminated from the
body by one or more pathways with specific kinetics (Kohlert
et al., 2000).

In phase 1 reactions, particularly reactive functional groups
undergo changes such as hydrolysis, for example by non-specific
esterases. Or, cinnamic acid methyl ester is hydrolyzed, thus
releasing cinnamic acid and methanol and salicylic acid methyl
ester is transformed into salicylic acid andmethanol (Gibbs, 1908;
Davison et al., 1961; Fahelbum and James, 1977). In addition,
reactions such as oxidation, e.g., by cytochrome P450 enzymes,
and reduction are important mechanisms of metabolization of
EO compounds (Michaels et al., 1975; Miyazawa and Haigou,
2011). In phase 2 reactions (conjunction reactions) substances are
covalently bound to polar endogenous molecules, to substantially
reduce their lipophilicity and facilitate their excretion. Most drug
and EO constituents undergo reactions of this type (Bowman
et al., 1982; Miyazawa et al., 2002). This includes glucuronidation,
sulfation, and glutathione conjugation, whereby the first is the
most common phase 2 reaction in mammals for detoxifying
foreign substances (Dutton, 2019; Jäger and Höferl, 2020).
Interestingly, recent results showed that phase 2 metabolism of
phenolic compounds and terpenoids is significantly more
complex than previously thought. Depending on the
concentration and specific structural elements different
metabolism via sulfotransferases and glucuronic acid
transferases take place (Tremmel et al., 2021). Also, the

excretion route seems to play a significant role. Oral intake of
a thyme extract to humans led to the detection of thymol sulfate
in plasma and urine, whereas thymol glucuronide was only
present in urine (Kohlert et al., 2002). In contrast, for
L-menthol a glucuronic acid conjugate was observed in
humans as the main metabolite in plasma and urine (Hiki
et al., 2011).

The liver plays a central role in the metabolism of EOs. Some
EO components have been reported to alter the production and
activity of drug metabolizing enzymes. In particular, these
responses have been reported for enzymes of the cytochrome
P450 family (Zehetner et al., 2019). In many cases, enzyme
induction results in decreased rather than increased toxicity
because the toxic chemicals are more readily eliminated. For
example, eugenol can increase the activities of specific liver
enzymes when administered to rats, and linalool increases the
activity of cytochrome b5 (Parke et al., 1974; Rompelberg et al.,
1993; Zehetner et al., 2019), which forms part of the respiratory
enzyme chain. In all cases relatively high doses were administered
by either oral or intraperitoneal injection routes and it seems
highly unlikely that humans would be exposed to equivalent
amounts of EOs under physiological conditions. Therefore, it can
be assumed that EOs do not pose a significant risk of affecting
blood levels in humans by cytochrome P450 induction when
applied topically or orally.

INTERACTIONS BETWEEN EO
COMPOUNDS – SAFETY ASSESSMENT

Upon EOs application, interactions may occur between one or
more of its ingredients, as well as with matrix compounds and
individual active pharmaceutical ingredients or food components.
Often, the major constituents reflect quite well the biophysical and
biological properties of the EOs fromwhich they were isolated, with
the extent of their effects mainly depending on their respective
concentration when tested alone or in EOs (Ipek et al., 2005). Such
interactions are difficult to predict but may be categorized. The
simplest is additivity, where the effects and potency of the mixture
are as predicted by the known effects and amounts of its
ingredients, i.e., there is no mutual influence of individual
compound properties. The second possibility is synergy
(synergism, potentiation), which means the effect of the mixture
is significantly increased. Different molecules and their active
groups thus enhance their properties when applied in
combination. Nevertheless, possible synergism between
individual compounds of an EO is complex and cannot be
limited exclusively to a few major constituents (Ronzheimer
et al., 2022; Schreiner et al., 2022). Thirdly, antagonistic effects
may be observed which is the opposite of synergy. This means the
different ingredients of a mixture or when two substances are
administered causes a weakening of the effect compared to what is
expected from the individual compounds (Chou, 2006; Elshafie and
Camele, 2016; Połeć et al., 2022). The fourth effect described for
EOs components is cooperative interaction. For example, limonene
can enhance the permeation of citronellol and eugenol in human
skin epidermis (in vitro) (Schmitt et al., 2009).
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PRECLINICAL DATA

As an example, investigation into the biological activity of linalyl
acetate, terpineol, and (±)-camphor individually or in
combination against human colon cancer cell lines in vitro
demonstrated a synergistic mode of the constituents in the
mixture. Neither camphor nor terpineol alone had any effect
or activity and that of linalyl acetate was only marginal. Together
with terpineol, the activity was increased to moderate (33 and
45% reduction in proliferation, respectively; concentration
10–3 M each). However, when all three substances were used
together in the natural blend, proliferation in the two human
cancer cell lines HCT-116 (p53+/+ and p53−/−) was reduced by 50
and 64% (concentration 10–3 M each), respectively. No toxic
effect on normal intestinal cells was reported (Itani et al., 2008).

The lower toxicity of carvacrol in the presence of thymol is an
example of antagonistic action (Karpouhtsis et al., 1998). In
thyme oil, high levels of thymol and/or carvacrol, totaling
31%–80% thymol and carvacrol, were found to be associated
with antagonistic properties. In feeding studies with rats, the
acute oral toxicity (LD50 values) of these two compounds were
980 mg/kg BW and 810 mg/kg BW, respectively. Assuming an
average LD50 of 895 mg/kg BW each, the LD50 of a thymol/
carvacrol thyme oil would range from 1.1 to 2.9 mg/kg BW. In
fact, the oral LD50 for this thyme oil in the feeding study was
4,700 mg/kg BW, which is about half as toxic as the thymol and
carvacrol content would suggest. Interactions with further EO
compounds naturally present in the oil could of course not be
excluded. However, this influence of only two compounds in
combination alone shows how complex a biological effect in
MOCS may be composed. Further data are reported for
antagonism in skin sensitization, which is known as
quenching. In cinnamaldehyde-sensitive subjects, a quenching
effect on sensitization by cinnamaldehyde was shown for
(+)-limonene in three of 11 human subjects, and in
combination with eugenol, a quenching effect was shown in
seven of the same 11 subjects. It has been postulated that this
may be due to competitive inhibition at the receptor level (Guin
et al., 1984). To confirm this assumption, further studies should
follow.

EOs contain complex mixtures of substances that may be
harmful and/or protective. Plants use them in order to protect
themselves against reactive oxygen species (ROS) produced
automatically during the process of photosynthesis. Especially
phenolic EO constituents, such as thymol, have antioxidant
properties. Such properties of these molecules can mediate
reduced toxicity, such as attenuation of phototoxicity,
allergenicity or mutagenicity. This is evident e.g., for carvacrol,
thymol, and eugenol and their antihepatotoxic effects (Jiménez
et al., 1993; Kumaravelu et al., 1995), for 1,8-cineole and its gastro
protective effect (Santos et al., 2001), for thymoquinone and its
antinephrotoxic action (Badary, 1999) and for linalool and its
antimutagenic action (Berić et al., 2008).

The quality of these effects may be considered either antidotal
to possible toxicity or simply therapeutic, e.g., the antispasmodic
effect of anise oil from P. anisum or cumin oil from Cuminum
cyminum L. of the Apiaceae family (Pourgholami et al., 1999;

Sayyah et al., 2002), the anti-asthmatic action of turmeric oil (C.
longa), may chang oil from L. cubeba (Venugopal and Dhanish,
2018; Smruti, 2021) and the anticarcinogenic action of
(+)-limonene and perillic acid in skin cancer (Lluria-Prevatt
et al., 2002; Raphael and Kuttan, 2003). Biological properties
of a mixture can thus be enhanced or attenuated by its
constituents. So, the presence of large amounts of antioxidant,
antimutagenic, and anticarcinogenic constituents in EO, which
contains low amounts of carcinogens, may render this oil
harmless. In that sense, for biological purposes, it is more
informative to study the entire oil containing assigned single
effective substances, rather than only single components, because
the concept of interactions appears to be more meaningful for
therapeutic purposes. In addition, other minor components can
modulate the activity of the main compounds. (Franzios et al.,
1997; Santana-Rios et al., 2001; Hoet et al., 2006).

THERAPEUTIC POTENTIALS OF MOCS IN
HUMANS

As mentioned above essential oils consist of a plethora of
different secondary metabolites from various metabolic
pathways. The biological activity of these complex mixtures
has hardly been investigated in its entirety on a molecular level.
Nevertheless, the available methods are not designed for such
diverse MOCS, their specific multi-activities can currently only
be assessed more precisely based on their known individual
compounds. A look at the known modes of action of secondary
plant constituents may help to provide a more complete picture
of EOs.

Interactions With Biomembranes
Biomembranes are barriers of eukaryotic and prokaryotic cells
which separate the cells from the environment and
compartmentalize specific metabolic entities or cell organelles
like mitochondria, chloroplasts etc. They consist of a semi-liquid
double layer, which is mainly built up by phospholipids,
glycolipids, and cholesterol. Membrane proteins, ionic
channels, receptors, transporters, and carbohydrates are also
incorporated or attached. The most important tasks of
biomembranes comprise the transport of substances, the
communication, and the exchange of substances with other
cells and tissues (Gennis, 1989; Bondar, 2019). Lipophilic
secondary plant compounds like EO constituents can interact
with the biomembrane, e.g., by attachment or incorporation. For
example, carvacrol, p-cymene, thymol and γ-terpinene may act as
substitutional impurities forming gross perturbation of the
lipophilic fraction of the plasma membrane of microorganisms
(Cristani et al., 2007). Further studies showed that β-
caryophyllene and β-caryophyllene oxide are able to interact
with the phospholipid bilayers (in vitro biomembrane model
of dimyristoylphosphatidylcholine multilamellar vesicles;
Sarpietro et al., 2015). This can lead to altered membrane
fluidity and increased permeability. Some plant constituents may
also modulate ion channel activity, such as mint oil affecting
calcium channels and intestinal smooth muscle cell motility.
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Adenosine transport in endothelial cells is also inhibited by some
essential oils, which may be associated with spasmolytic and local
anesthetic effects (Melzig and Teuscher, 1991).

Disruption or lysis of the biomembrane usually leads to
necrotic cell death. This mechanism could be found for some
EOs with antibacterial activities (van Wyk, 2015; van Wyk and
Wink, 2015, 2017). The first inherent step of most EOs, and thus
their ability to interact with multiple targets, is to cross
membranes.

Modification of Proteins
Due to their diversity of carbon skeletons in combination with a
multitude of functional groups (e.g., aldehyde group, SH group,
epoxide group, double bond, triple bond, etc.; Figure 3),
originating from evolution processes, plant secondary
metabolites exhibit diverse chemical structures/variations with
different chemical and physiological properties (Polya, 2003;
Teuscher and Lindequist, 2010; Wink, 2010; Velu et al., 2018).
Several of these functionalities, especially unsaturated carbonyls,
may build covalent bonds with proteins, peptides, but also DNA
(Wink, 2008; Wink, 2012). Furthermore, aldehydes can form
amides or imines with amino groups of proteins, amino acids, or
DNA bases. Epoxides react with amino and SH groups of proteins
as well as DNA bases. Isothiocyanates bind to amino or SH
groups and allicin (from garlic) or exocyclic methylene groups
(e.g. in sesquiterpene lactones) can bind to SH groups and
glutathione (Wink, 2015). The modifications usually target cell
proteins, such as enzymes, receptors, transcription factors, ion
channels, transport, or cytoskeletal proteins. Thus, the protein
conformation may be modified resulting in altered receptor
binding affinity, protein-protein recognition, catalytic activity,
etc. This also includes proteins involved in diseases, like
Creutzfeldt–Jakob disease, Gerstmann–Sträussler syndrome or
Alzheimer’s disease, and possibly some more, which are
unknown to date (Palmer et al., 1991; Karakaya et al., 2019).
In addition, reactions between proteins and oxidized polyphenols
may decrease allergenicity, which was shown for apple fruits
(Siekierzynska et al., 2021). The same protective mechanisms are
likely found in other multi-target-actions of natural MOCS, such
as EOs.

Also, phenolic compounds from EOs may influence proteins
and peptides (Figure 3) with their hydroxyl groups by forming
hydrogen bonds. Furthermore, phenolic OH groups can
dissociate, resulting in phenolate ions under physiological
conditions, which easily form ionic bonds to positively
charged ammonium groups of amino acids (e.g., lysine,
arginine) (Wink, 2005, 2008; Wink, 2012; van Wyk, 2015; van
Wyk and Wink, 2015, 2017). If numerous hydrogen and ion
bonds are formed with a protein or its functional units,
conformation and thus also the functionality of the protein
will be modified. If transcription factors are affected, gene
regulation is altered as well (Pakalapati et al., 2009; Holtrup
et al., 2011; El-Readi et al., 2013).

Interactions With Nucleic Acids
Due to their diverse functionality, plant secondary metabolites
can also intercalate or alkylate DNA, which can lead to mutations

and even cancer. Wink also described, that important alkylating
secondary metabolites are pyrrolizidine alkaloids in the
Boraginaceae and some Asteraceae representatives, aristolochic
acids in Aristolochiaceae, furanocoumarins in the Apiaceae, and
ptaquiloside in the fern Pteridium aquilinum (L.) Kuhn
(Dennstaeditiaceae) as well as cycasine in Cycadaceae (Wink
and Schimmer, 2010; El-Shazly and Wink, 2014; van Wyk, 2015;
van Wyk and Wink, 2015, 2017). EOs have also been reported to
interact with nucleic acids or associated enzymes of viruses and
inhibit their replication, which might offer promising therapeutic
opportunities in the treatment of influenza or COVID-19 (Asif
et al., 2020; Da Silva et al., 2020; Panikar et al., 2021; Wani et al.,
2021).

Antioxidant Properties
Reactive oxygen species (ROS), which inevitably occur in plant
cells during photosynthesis, can alter functional proteins, lipids
and nucleic acids. ROS can oxidize the DNA base guanosine to 8-
oxoguanosine. While guanosine would normally pair with
cytosine, 8-oxoguanosine no longer pairs with cytosine but
with adenosine. This will lead to mutations. ROS can lead to
cell damage in the plant, which protect themselves against oxygen
radicals by biosynthesizing antioxidant molecules such as
phenolics and terpenoids. Under physiological conditions, the
formation of ROS also occurs in human tissues.

In the case of long-term oxidative stress, an overdose of ROS
can lead to various health disorders, usually chronic, such as
diabetes, metabolic syndrome, cardiovascular disease, and even
cancer (due to DNA mutations). Medicinal plants, herbal
medicines and products derived from algae, which are rich in
polyphenols, often exhibit antioxidant effects in addition to other
pharmacological activities and therefore may prevent and help to
cure disorders (van Wyk, 2015; van Wyk and Wink, 2015, 2017;
Wink, 2022).

As about 22,000 isoprenoids and more than 100,000 of other
secondary metabolites are known, the studies carried out so far
can only be the beginning to exploit the therapeutic potential of
MOCS in general and that of EOs in particular. The multi-
component nature of natural extracts like EOs, results in an
almost inexhaustible pharmacological toolbox with versatile
modes of action (Schreiner et al., 2021). The multi-target
sites of action of EOs are due to their nature being mixtures.
The mutual physico-chemical interactions with molecular
targets but also with the tissues they pass through offer the
possibility of a complex effect that cannot be reached with single
compounds. This versatility gives hope that EOs and other
MOCS might play a central role in combating modern health
challenges.

One of these future challenges, i.e., the antibiotic resistance
will be discussed here in more detail.

ANTIBIOTIC RESISTANCE AND EOs AS
POTENTIAL ANSWERS

Antibiotic resistance is a major and growing problem in health
care and livestock farming. Resistance phenomena arising
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TABLE 1 | In vitro synergistic action between EOs and antibiotics. Methods used: Checkerboard assay (isobologram, fractional inhibitory concentration (FIC) index) or time-kill assay or fold reduction in minimum inhibitory
concentration (MIC) or change in inhibition zone in the presence of EO vapor. [Adapted and compiled from Langeveld et al. (2014)].
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from mutation are common among pathogenic bacteria. The
molecular and structural determinants underlying resistance
towards the major antibiotic classes are as diverse as nature.
Most hitherto identified mutations leading to antibiotic
resistances can be categorized into target modification,
drug inactivation, and drug transport (efflux). Recent
research on the development of resistance also suggests

that changes in the metabolic pathway of bacteria,
including mutations of the relevant genes, may lead to
possible antibiotic resistance (Lopatkin et al., 2021). Since
changes in individual proteins are the underlying principle of
most of these resistance mechanisms, natural MOCS like EOs
offer a great potential for overcoming multidrug-resistant
infections through their multi-target properties. This

TABLE 2 | In vitro synergistic action between EO constituents and antibiotics. Methods used: Checkerboard assay (isobologram, fractional inhibitory concentration (FIC)
index) or time-kill assay or fold reduction in minimum inhibitory concentration (MIC) or change in inhibition zone in the presence of EO vapor. [Adapted and compiled from
Langeveld et al. (2014)].
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antimicrobial potential of EOs for human and animal health is
an evolutionary side effect due to plant interaction and
defense against various pathogens.

Synergistic Actions Between EOs and
Antibiotics
Since the extensive use of antibiotics from 1945 onwards, bacteria
have increasingly been selected for resistance to single or multiple
(multi-resistance) antibiotics. All over the world, people are
aware of the increasing ineffectiveness of these antibiotics and
are intensively searching for novel active substances and new
targets. Therapeutically used natural derived antibiotics are
usually produced by fungi and bacteria, but plants have
successfully developed multi-component-based strategies to
defend themselves against germs for thousands of years. Thus,
it is a promising challenge in the future to develop multi-
component-based antibiotic strategies adapted from nature, or
at least consist of a combination of MOCS and conventional
antibiotics. Studies on EOs and their ingredients in combination
with known antibiotic drugs show promising interactions (Tables
1, 2). For example, synergism may occur when different
compounds simultaneously attack different sites of a bacterial
cell (multi-target effect). Alternatively, there may be
pharmacokinetic or physicochemical interactions, such as
enhancement of solubility or bioavailability. The most
commonly reported test method for assessing interactions with
antibiotics is the checkerboard assay with calculation of the FIC
(fractional inhibitory concentration) index (Hemaiswarya et al.,
2008; Wagner and Ulrich-Merzenich, 2009).

Synergistic effects of antibacterial agents in combination with
antibiotics on different targets are thought to be most efficient.
Also, it has been shown that in vitro synergism between EOs or
EO ingredients and beta-lactam antibiotics do occur, as EOs often
act on cell membranes whereas beta lactams target the cell wall.
Oregano oil showed synergistic effects in combination with
fluoroquinolones, doxycycline, lincomycin, maquindox or
florfenicol against extended-spectrum β-lactamase (ESBL)-
producing Escherichia coli (Si et al., 2008). As described
before, MOCS are highly complex mixtures and their effects
are based on the interaction of their individual compounds both
on a quantitative and qualitative level. If individual ingredients
are lacking or are present in an altered ratio, changes in the overall
properties of an EO may occur. Therefore, basic research on
naturally derived extracts (MOCS), on preparations derived
therefrom, and derived pharmaceutical applications is an
important basis to understand and apply the mechanisms of
action appropriately. Consequently, an exact phytochemical
characterization of MOCS is an always indispensable
prerequisite. It is interesting to note that synergistic effects
through pharmacokinetic and physicochemical actions have
also been observed for secondary metabolites that do not
possess pharmacological activity themselves. p-Cymene is such
an ingredient which, in combination with carvacrol, improves its
activity against B. cereus, presumably by accumulation in the
bacterial membrane, thus modifying its structure and barrier
function (Ultee et al., 2002).

Further in vitro synergism was monitored between oregano oil
and doxycycline, florfenicol, or sarafloxacin against ESBL-
producing E. coli from chickens (Si et al., 2008). Furthermore,
oregano oil showed in vitro synergistic effects with gentamicin
against B. cereus, B. subtilis, and a strain of Staphylococcus aureus
(Rosato et al., 2010). In contrast, the combination with
gentamicin was less effective (rather additive than synergistic)
against E. coli, Acinetobacter baumannii, and another strain of S.
aureus; the isobologram method showed some synergism, while
the FIC index indicated an additive effect (Rosato et al., 2010).
The combination of oregano oil and gentamicin only yielded an
additive in vitro effect against Yersinia enterocolitica (Rosato
et al., 2010). The combination of oregano oil with the
antibiotics levofloxacin and maquindox against E. coli revealed
low synergism (FIC index 0.5) (Si et al., 2008). A study on thyme
oil showed synergistic in vitro effects against S. aureus and
Klebsiella pneumoniae when applied in combination with
ciprofloxacin (van Vuuren et al., 2009). The EO of Shiraz
thyme (Zataria multiflora Boiss.) demonstrated synergistic
action with vancomycin against methicillin-sensitive S. aureus
(MSSA) and 12 clinical methicillin-resistant S. aureus (MRSA)
isolates, although FIC data for individual strains were not
reported (Mahboubi and Bidgoli, 2010). Vancomycin is among
the few antibiotics available to treat MRSA infections, and yet
resistance has already been reported according to Mahboubi and
Bidgoli (2010). The composition of this Shiraz thyme EO (thymol
39%, carvacrol 15% and p-cymene 10%) is similar to oregano oils
(Burt, 2004; Mahboubi and Bidgoli, 2010) and thus may offer a
solution to possibly bypass vancomycin resistances and reduce
antibiotic use.

Essential oils from cloves (S. aromaticum) and cinnamon
(Cinnamomum verum J.Presl; Lauraceae) combined with
lysozyme amplify the effects of a carbapenem- (imipenem)
and an aminoglycoside-antibiotic (gentamicin) against the
bacterial pathogens Pseudomonas aeruginosa and Klebsiella
pneumoniae. The results indicate that the essential oils of both
plant species reduce the minimum inhibitory concentrations of
gentamicin and imipenem against multi-drug resistant clinical
isolates of the two Gram-negative bacterial species and thus
significantly increase the antibiotic effects (Sakr et al., 2021).

In addition, Australian tea tree oil (M. alternifolia) was studied
in vitro in combination with aminoglycoside antibiotics. This
revealed synergistic effects when treating E. coli, Y. enterocolitica,
Serratia marcescens, and S. aureus with the EO and the antibiotic
gentamicin (Rosato et al., 2010). When applying this
combination against A. baumannii, B. subtilis, and a further
strain of S. aureus, the FIC index was in the borderline range
between additivity and synergism. Furthermore, tea tree oil
combined with tobramycin also showed a synergism against
E. coli and S. aureus (D’Arrigo et al., 2010). The mechanism
is characterized by a multi-target effect because the
aminoglycosides inhibited protein biosynthesis and tea tree oil
damaged the cytoplasmic membrane of the bacteria. In contrast,
tea tree oil has been shown to exhibit additive/undifferentiated
activity in vitro with the glycopeptide vancomycin to control a
clinical MRSA isolate, and antagonistic activity together with
ciprofloxacin (LaPlante, 2007).
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An overview of possible in vitro interactions of further
antibiotics with EOs (Table 1) shows that there are still many
gaps (empty fields) to be filled in this area of research. The need
for research in this direction could be forward-looking. In
addition, in vivo studies should be performed that investigate
the combination of intravenously administered antibiotics with
orally administered EOs.

Interrelation Between Individual EOs
Constituents and Antibiotics
Most studies on the interaction of EO ingredients and
antibiotics have been performed in vitro and the underlying
mechanisms have not yet been further investigated. However,
since antibiotics specifically focus on one target and EO
metabolites attack diverse sites of bacterial cells, it can be
assumed that multi-target effects are working in most cases.
However, a few effects can also be attributed to synergisms
between antibiotics and EO constituents (Table 2) that target
bacterial resistance mechanisms, such as inhibition of efflux
pumps (Shahverdi et al., 2007; Lorenzi et al., 2009; Johny et al.,
2010), which may also be due to membrane damage and
metabolic disruption (Gibbons, 2008).

The EO constituent eugenol was tested in vitro in combination
with antibiotics from eight different groups against the bacteria
E. coli, Enterobacter aerogenes, Proteus vulgaris, P. aeruginosa and
S. typhimurium. Synergistic effects were found among all
antibiotics. These were most evident with ampicillin,
polymyxin B, norfloxacin, tetracycline, rifampicin, and
vancomycin, but synergisms were also detected in combination
with penicillin and chloramphenicol (Hemaiswarya and Doble,
2009). Noteworthy, carvacrol and thymol seem to show stronger
effects on antibiotic-resistant S. typhimurium, E. coli and S.
aureus strains compared to eugenol. The mechanism has been
suggested to be increased by antibiotic penetration across
permeabilized membranes and/or inhibition of protective
enzymes (Palaniappan and Holley, 2010). In fact, even minor
differences in the molecular structure of EO constituents can have
a significant impact on their ability to synergize with antibiotics.
For example, carvacrol and thymol are structural isomers and
only differ in the position of their hydroxyl group. While,
carvacrol was found to act synergistically against Klebsiella
oxytoca in combination with ampicillin and nitrofurantoin,
thymol was indifferent (Zhang et al., 2011). In this regard, a
benzene ring with prop-2-enal side group appears to be less
synergistically active than methylethyl- and methyl side groups
(Palaniappan and Holley, 2010; Zhang et al., 2011).

The results show that EOs may contain quite effective single
compounds. Nevertheless, the efficacy can neither be attributed to
these mono-substances alone nor to the quantitatively leading
compounds. Rather, the mixture should be assessed in its
complex overall composition and the understanding of
possible mechanisms of action should be approached with the
help of individual compounds. The study results of studies on
individual compounds show how precisely adjusted the
compounds in their respective composition may act and
justify the assumed multi-target mechanisms of action. Of

course, it will be necessary to adapt existing methods for the
investigation of complex mixtures or to develop completely new
experimental procedures to meet the requirements of complexity
(Ronzheimer et al., 2022; Schreiner et al., 2022). Our current
scientific techniques seem to have reached a limit.

CONCLUDING ASPECTS FOR FUTURE
RESEARCH

The long-term use of plant derived EOs, but also other naturally
derived MOCS, does not come by chance. As the history of our
medicine impressively demonstrates, medicinal plants, extracts,
and formulations therefrom, are the basis of many
pharmaceutical achievements of modern times. It seems to be
true that “There’s an herb for every ailment”, or better that “there
is a MOCS or single compound from nature” for every ailment.

With the help of new technologies, the extraction and
processing of herbal preparations and the active ingredients
derived therefrom have been improved and several single
compounds have been discovered as leads. Whereas the search
for single compounds from nature is still ongoing, the research on
MOCS has stalled due to lacking experimental approaches
limiting the look on the entire repertoire of the toolbox.

MOCS, using EOs as an example, impressively demonstrate
how diverse and valuable complex mixtures are. With the help
of their uncountable molecular structures and functional
groups, they possess mechanisms of action, both known and
unknown to date, whose chemical properties can complement
and potentiate each other in the form of synergisms,
antagonistically neutralize toxic effects or additively contribute
to a stable basic structure.

In the case of EOs, the individual compounds not only seem
to interact with each other, they also interact with their
environment and can thus influence the activity or
conformation of molecular targets, often proteins. At the
same time, they can bind to receptors and trigger
physiological and psychological reactions. These biological
activities are reflected in the pharmacological and
therapeutic effect of EOs as MOCS. In addition, EOs as
natural mixtures can achieve a characteristic multifaceted
effect, which, compared to an isolated compound, has not
only one site of action, but multi-targets. MOCS thus do not
only use one target, but likely the entire toolbox. These multi-
target properties of EOs could for example positively influence
the successful treatment of infections due to (multi-)resistant
bacteria and thus help save lives. Studies have shown that
natural EOs in combination with antibiotics are quite
capable of enhancing the antibiotic effect. This could
minimize or prevent the careless use of antibiotics and the
associated selection of resistant bacteria. When complex EOs
are used against pathogenic bacteria, the bacterium is attacked
at many different sites simultaneously, which means that it
usually cannot develop a targeted resistance mechanism and
can thus be treated successfully. Homolog mechanisms have
likely long been used in the plant kingdom for resistance to
pathogens and have evolved steadily in evolutionary terms.
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It is worthwhile to broaden our view and to integrate data
from studies on the effectiveness of single, isolated compounds
as individual pieces of the puzzle into the overall picture of
complex effectiveness. Humans themselves and the nature
around them consist of myriad of substances and a
complete reduction to a few compounds does not seem to
do justice to the real picture. To date, it has not been fully
understood how drugs interact and react with endogenous
enzymes, the variable human microbiome, foods, feeds,
chronobiologic factors, ethnic-, age- and gender-specific
characteristics, or even with other drugs. Much more
research is needed in this area, and the complexity of
possible interactions seemingly pushes our current methods
to their limits. Therefore, new methods and techniques need to
be developed and existing ones improved. The goal of helping
people recover in the best possible way should be at the
forefront. The benefits of phytotherapy using EOs and other
MOCS, which have been approved for thousands of years,
should not be forgotten, or underestimated. There is a great
chance not only for phytochemical and pharmacological

achievements, but also for the development of new
methods for the evaluation of complex natural mixtures in
connection with biological processes, for future, sustainable
and affordable healthy therapeutic strategies.
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