
Protective effect of quercetin on
kidney diseases: From chemistry
to herbal medicines

Yi-Qin Chen1†, Hao-Yin Chen1†, Qin-Qi Tang1†, Yi-Fan Li1,
Xu-Sheng Liu1, Fu-Hua Lu1* and Yue-Yu Gu1,2*
1Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second
Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 2Department of
Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine,
Guangzhou, China

Kidney injuries may trigger renal fibrosis and lead to chronic kidney disease

(CKD), but effective therapeutic strategies are still limited. Quercetin is a natural

flavonoid widely distributed in herbal medicines. A large number of studies have

demonstrated that quercetin may protect kidneys by alleviating renal toxicity,

apoptosis, fibrosis and inflammation in a variety of kidney diseases. Therefore,

quercetin could be one of the promising drugs in the treatment of renal

disorders. In the present study, we review the latest progress and highlight

the beneficial role of quercetin in kidney diseases and its underlying

mechanisms. The pharmacokinetics and bioavailability of quercetin and its

proportion in herbal medicine will also be discussed.
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1 Introduction

Kidney diseases are one of the life-threatening diseases with high mortality rates (Li

et al., 2021b). Renal injuries could be triggered by various insults such as nephrotoxins,

oxidative stress, or inflammation. These pathogenic factors act as the major driving force

to promote renal injuries towards fibrosis (Gu et al., 2020b), which may eventually lead to

chronic kidney disease (CKD) or end-stage renal disease (ESRD). To date, the effective

drugs and therapeutic strategies for renal injury are still limited.

Natural products have been used in the clinical management of the renal disease. The

constituent compounds of herbal medicine receive considerable attention in experimental

models of kidney disease both in vivo and in vitro (Chen et al., 2018). Quercetin is one of

the most abundant flavonoids present in natural plants. Due to its antioxidative, anti-

hypertensive, and anti-diabetic effects, quercetin has been suggested as an effective

flavonoid that plays a beneficial role in the treatment of cancer, cardiovascular

disease, and metabolic disease (Sok Yen et al., 2021).

Although quercetin has been studied in many studies, we could not locate a recent

overview of quercetin’s action in kidney diseases. In the present review, we discuss and

explore the biological effects of quercetin on kidney injuries such as nephrotoxicity, renal

inflammation, fibrosis, hyperglycemia damage, and oxidative stress. We also identified the
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pathogenic mechanisms of renal disease and focused on the

signaling pathways that are potentially associated with quercetin

treatment.

2 Pharmacokinetics and
bioavailability of quercetin

Quercetin, also known as 3,5,7,3′,4′-pentahydroxyflavone, is
a natural flavonoid compound. In nature, it exists in various

forms in different plants and can be found as either quercetin

aglycone or derivatives, while the most abundant form in the diet

is glycosides (Owumi et al., 2019). Quercetin is highly soluble in

lipids and alcohol. Due to its hydrophobicity, quercetin has

relatively poor solubility in water (0.17–7 μg/ml), gastric fluids

(5.5 μg/ml) and small intestine fluids (28.9 μg/ml), which have

reduced its bio-accessibility (Bağdatlıoğlu, 2016). Quercetin

aglycone exhibit a poor oral bioavailability of about 2%.

However, depending on different radicals bound to the

quercetin aglycone backbone, the solubility and biochemical

activity of quercetin derivatives vary. The glycoside is much

more soluble compared to aglycone, as the glycosyl group

increases the water solubility. After the intake of quercetin-

rich supplements in human bodies, quercetin quickly

disappeared in the body with a 1–2 h removal half-life (Graefe

et al., 1999).

FIGURE 1
Chemical structure of quercetin and its pharmacokinetics in the body. Quercetin is transported by SGLT1, the process begins with hydrolysis in
the gastrointestinal tract and releases quercetin aglycone. Biotransformation reactions include glucuronidation, methylation, and sulfation of
quercetin aglycone are catalyzed by UGT, COMT, and SULT, respectively. Main metabolites such as 3-O-glucuronide and quercetin 3′-O-sulfate
undergo a second transformation in the liver and 80% of the metabolites are bound to plasma albumin and the remaining 20% are free to enter
tissues. The metabolites are reabsorbed in the TECs and enter cells by passive diffusion or active transportation. Up to 20%–60% of the quercetin
intake may be secreted into the urine. Abbreviations: SGLT1, sodium-dependent glucose transporter 1; UGT, UDP-glucuronyltransferases; COMT,
catechol O-methyltransferases; SULT, sulfotransferases; TECs, tubular epithelial cells.
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Quercetin can be transported through sodium-dependent

glucose transporter 1(SGLT1). The process begins with the

hydrolysis of quercetin glycosides by lactase phloridzin

hydrolase (LPH) and intracellular ß-Glucosidases and

releases quercetin aglycone. Quercetin aglycone is then

primarily metabolized in the gastrointestinal tract (Graf

et al., 2006). In enterocytes, the biotransformation of

quercetin includes glucuronidation by UDP-

glucuronyltransferases (UGT), methylation by catechol

O-methyltransferases (COMT), and sulfation by

sulfotransferases (SULT). 3-O-glucuronide and quercetin

3′-O-sulfate are the two main metabolites passing from the

enterocyte and diffusing into the hepatic portal vein to

undergo a second transformation in the liver before

returning to the bloodstream (Figure 1). Afterward, about

80% of aglycone or metabolites are bound to plasma albumin

and the remaining 20% free form can enter the tissues,

therefore the aglycone amount is relatively low in the

blood. The metabolism process takes place in the intestines,

liver and kidneys and the accumulation tends to happen in

those organs.

In the kidney, the metabolites from the plasma go through

the glomerular filtration process, followed by dispersion into

the tubular. The metabolites are partially reabsorbed by

tubular epithelial cells (TECs), and the remaining part

passes into the urine. The transportation to proximal TECs

primarily occurs in the basolateral membrane and apical

membrane (Wong et al., 2011). Quercetin aglycone and

methylated conjugates across the basolateral membrane by

passive diffusion, while sulfated conjugates and glucuronide

conjugates use active transport to enter the cells, due to their

high affinity for organic anion transporters (OATs). The

metabolites are formed in the tubular cells and secreted

into the urine. In the human body, the quercetin

metabolites excreted through urine take up 20%–60% of

total quercetin intake and they are mainly composed of

monoglucuronide sulfates, methylated quercetin

monoglucuronides, and quercetin diglucuronide (Graf

et al., 2006; Mullen et al., 2006).

Previous experiments and studies have revealed the

pharmacodynamics of quercetin, it is found that due to its

chemical structure, it has low water solubility, oral absorption

rate, rapid elimination, and low bioavailability (Diniz et al.,

2020). Such characteristics greatly hindered the application of

quercetin in pre-employment drug testing and clinical practice

(Heeba and Mahmoud, 2016). Casanova et al. (2021)

encapsulated quercetin with Pluronic F127 to make micelles

and found that it had higher water solubility with good

bioavailability, and the protective effect on the kidney had

been greatly improved (Gu et al., 2020a). Although more in-

depth drug experiments and clinical trials are needed, it is

believed that the utilization of quercetin can be improved in

the future.

3 Quercetin in traditional herbal
medicines

Except for various food and supplements, quercetin is widely

abundant in flowers, leaves and fruits of plants. It was determined

in nearly 200 kinds of traditional Chinese herbal medicines, such

as Sophora japonicum, Radix Bupleuri (Sen-ming, 2013),

Gynostemmae Pentaphylli Herba (Conglei Pan, 2019).

High-performance liquid chromatography (HPLC) was

mainly used to determine the content of quercetin in herbal

medicine. As shown in Table 1, the content of quercetin in

different species can vary from less than 1 mg/g to more than

300 mg/g. According to the theory of traditional Chinese

medicine (TCM), the efficacy of these herbal medicines

containing quercetin can be summarized as follows: 1) heat

clearing: the heat described in TCM is somehow related to the

inflammatory response in the body and due to quercetin’s

significant antioxidant property, it can relieve pain and

inflammation. For instance, stranguria is a common urologic

disease that is considered to cause by excessive damp heat in the

lower energizer. In clinical practice, Houttuyniae cordata (Arky

Jane Langstieh et al., 2021), Pyrrosiae lingua (Chen Junhua et al.,

2014), and Centella asiatica (Mohammad Azmin and Mat Nor,

2020) are frequently selected, which contained 315.8 mg/g,

234.6 mg/g, and 77.6 mg/g quercetin, respectively. Other

representative herbal medicines with heat-clearing effect

include Mori follum, Sophora japonica L., and Fallopia

multiflora Herba (Vetrova et al., 2017), and Fallopia multiflora

Herba (Bao Lidao et al., 2015); 2) urination promotion, swelling,

or edema reduction: by dilating the renal arteries, quercetin can

increase blood and urine volume, therefore alleviating the edema.

The common ingredients are Ephedra Herba (Saida Ibragic,

2015), Hedysarum Multijugum Maxim (Fu Juan and Huang,

2013), and Plantaginis Semen (Cao Xuesong and Huang, 2019);

3) promoting kidney recovery: other herbal medicines also exert

a nourishing and strengthening effect on the kidney, such as Lycii

Fructus (Kim Le and Ng, 2007), Herba Taxilli (Zhu Kaixin et al.,

2011), and Rubi Fructus (Zhang Jing and Yan, 2020). Crataegi

Folium (Deng Ting et al., 2021) (12.73 mg/g) was reported to

attain a cardiovascular protection effect by lowering blood lipid,

while the contents of quercetin in Ginkgo Folium (Qiu et al.,

2017) and Inulae Flos (Hongmei, 2008) are relatively low (less

than 1 mg/g).

4 Renal protective effects of
quercetin in kidney disease

4.1 Nephrotoxicity

When exposed to certain toxic substances or harmful

pollution for a long period, one may occur nephrotoxicity.

Due to the special biological structure and physiological role,
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the kidneys are important organs for drug metabolism and are

susceptible to toxins including antineoplastics, antibiotics and

many kinds of agents. As summarized in Table 2, many

experimental studies and mechanism exploration of

multifaceted signal transduction and pathways suggest that

quercetin has great potential in reducing renal toxicity.

Antineoplastic agents such as cisplatin (Li et al., 2016a),

methotrexate (Erboga et al., 2015), doxorubicin (Heeba and

Mahmoud, 2016), and cyclophosphamide may cause side

effects in clinical treatment due to dose-related

nephrotoxicity. The nephroprotective effect of quercetin

against cisplatin-induced oxidative stress was demonstrated

by Almaghrabi (2015). In cisplatin-treated rats, quercetin can

reduce tubular injury, downregulate the pro-inflammatory

mediators and maintain renal blood flow. Moreover,

quercetin also exhibited antioxidant and anti-apoptotic

effects, therefore reducing the apoptosis of non-tumor cells

caused by cisplatin treatment (Almaghrabi, 2015; Casanova

et al., 2021). It is worth mentioning that quercetin did not

interfere with the antitumor activity of cisplatin (Sánchez-

González et al., 2017). Furthermore, experimental results have

shown that quercetin may enhance the activity of cisplatin

against cancer (Li et al., 2016a). Likewise, quercetin may

protect against cyclophosphamide-induced hepatic and

renal injury by immunosuppressing the IDO/TDO pathway

(Ebokaiwe et al., 2021). It is hypothesized that this effect may

be due to the combination of quercetin’s ability to scavenge

reactive oxygen species (ROS) and inhibition of

malondialdehyde (MDA) formation. The production of free

radicals and ROS are key triggers for the activation of Nrf2

(nuclear factor erythroid 2-related factor 2) and HO-1 (renal

heme oxygenase 1). Regarding nephrotoxicity, Nrf2/HO-

1 pathway may play an important role in boosting the

GSH, GPx, and SOD antioxidant moieties (Arab et al.,

2021). Quercetin supplementation could markedly activate

the mRNA expression of Nrf2 and HO-1 in copper sulfate-

induced renal injury mice (Peng et al., 2020).

Dosage is of great importance in the understanding of the

pharmacological effects of quercetin. Of note, evidence also

support that when applied with high dose, such as 100 mg/kg/d,

quercetin did not show significant improvement in renal

function or protection against doxorubicin-induced renal

injury (Heeba and Mahmoud, 2016). Nevertheless, quercetin

protects kidneys against antineoplastic drugs through the

inhibition of inflammatory response, enhancement of the

antioxidant system, and exertion of anti-apoptotic effects.

Oral pretreatment of quercetin in rats with gentamicin-

induced renal injury (50 mg/kg) for 10 days revealed an

improvement in renal injury. The mechanisms of the

protective effect of quercetin could be the rebalancing of the

antioxidant system and the modulation of renal biomarkers

(Rahdar et al., 2021). A study reported by Dallak et al. (2020)

showed that toxic doses of acetaminophen formed severe damage

to glomerular ultrastructural compartments after 24 h, and

apoptosis was observed in renal tissues. Pretreatment with

resveratrol and quercetin exerted a protective effect, namely

the reduction of p53 expression in the renal tissue, as well as

the decrease of blood urea, creatinine, and oxidative biomarkers.

TABLE 1 The content of quercetin commonly used in traditional Chinese medicine.

Name Latin name Active
portion

Quercetin content
(mg/g)

Reference

Chai Hu Radix Bupleuri Root 1.7127 Sen-ming (2013)

Che Qian Zi Plantaginis Semen Seed 0.81 Cao Xuesong and Huang (2019)

Fu Pen Zi Rubi Fructus Fruit 0.9451 Zhang Jing and Yan (2020)

He Shou Wu Fallopia multiflora Harald Aerial part 0.55 Bao Lidao et al. (2015)

Huai hua S. japonica L. Flower 13.7 Vetrova et al. (2017)

Jiao Gu Lan Gynostemmae Pentaphylli Herba Leaf 14.78 Conglei Pan (2019)

Sang Ji Sheng Herba Taxilli Leaf 5.27 Zhu Kaixin et al. (2011)

Sang Ye Mori Follum Leaf 1.784–3.645 Zhong Yuekui and Qiu (2021)

Shan Zha Ye Crataegi Folium Leaf 12.73 Deng Ting et al. (2021)

Yu Xing Cao H. cordata Leaf 315.8 Arky Jane Langstieh et al. (2021)

Yin Xing Ye Ginkgo Folium Leaf 0.609 Qiu et al. (2017)

Xuan Fu Hua Inulae Flos Flower 0.86 Hongmei (2008)

Gou Qi Zi Lycii Fructus Fruit 0.296 Kim Le and Ng (2007)

Huang Qi Hedysarum Multijugum Maxim Root 0.6–1.1 Fu Juan and Huang (2013)

Ji Xue Cao (Asiatic Pennywort
Herb)

C. asiatica (L.) (Hydro-Cotyle
Asiatica L.)

Leaf 77.6 (dry) Mohammad Azmin and Mat Nor
(2020)

Ma Huang Ephedra Herba Stem 2.8 (dry) Saida Ibragic (2015)

Shi Wei P. lingua Leaf 234.6 Chen Junhua et al. (2014)
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In addition, quercetin also exerts renoprotective effects on

antiretroviral combination therapy involving multiple drugs.

Valproic acid (VPA) is widely used to intervene in epilepsy

and control multiple seizures. It was deduced from experimental

studies that the effectiveness of quercetin in protecting against

VPA-induced kidney injury and toxicity relies on its ability to

scavenge free radicals and alter antioxidant status (Chaudhary

et al., 2015). Quercetin showed the potential to improve kidney

damage caused by cArt through inhibiting oxidative stress and

inflammatory processes. As a result, quercetin participates in the

scavenging of toxins, improves the cellular structure of organs

and maintains normal biological chemical activity (Gu et al.,

2020a).

Specifically, with the development of industrial technology

and the progress of science and technology, the damage of

chemical raw materials to the kidney has grown immensely

prominent. Data from animal models have shown that the

protective effect of quercetin is closely related to the clearance

of free radicals and reduction of lipid peroxidation in both

industrial chemical raw materials and heavy metal and diesel

particulate pollution (Li et al., 2016b; Qi et al., 2017; Uthra

et al., 2017; Alshanwani et al., 2020; Morsi et al., 2022).

Moreover, Quercetin was also found to reduce

organophosphorus pesticide mixture-induced

nephrotoxicity by regulating fatty acid, energy and sex

hormone metabolism, protecting antioxidant defense

systems and reducing DNA damage (Qi et al., 2017).

Quercetin may regulate the metabolism of phospholipids,

energy, fatty acids and amino acids to protect the kidney

against acrylamide-induced nephrotoxicity (Bao et al., 2017;

TABLE 2 Protective effects and mechanism of quercetin against renal toxins.

Toxins Model Quercetin
Dose (mg/kg)

Effects/Mechanisms References

Cisplatin 50, 100 Anti-inflammatory, maintained renal blood flow, anti-
oxidative and enhanced the antitumor activity,
reduced renal injury

Sánchez-González et al. (2017), Casanova
et al. (2021), Li et al. (2016a), Almaghrabi
(2015)

Methotrexate 15, 50 Anti-oxidative, reduced renal injury, scavenged free
radicals

Yuksel et al. (2017)

Cyclophosphamide 50 Anti-inflammatory, anti-oxidative Ebokaiwe et al. (2021)

Doxorubicin 10, 50 Anti-oxidative, anti-inflammatory, protected
podocytes

Khalil et al. (2018), Heeba and Mahmoud
(2016)

Cadmium 10, 50 Anti-inflammatory, anti-oxidative, reduced renal
injury, regulated the metabolism of lipids, amino
acids, and purine, anti-oxidative

Jia et al. (2020), Liu et al. (2020), Guan et al.
(2021)

Sodium nitrite 200 Anti-inflammatory Alshanwani et al. (2020)

Diesel exhaust particles 60 Anti-oxidative, anti-inflammatory, promoted
autophagy

Morsi et al. (2022)

Ferrous sulfate 50 Reduced renal injury Gholampour and Saki (2019)

Acrylamide rats 5, 10, 20, 40, 50 Reduced urea, uric acid levels, anti-oxidative, anti-
apoptotic

Bao et al. (2017), Uthra et al. (2017), Bo et al.
(2018)

NTiO2 75 Anti-inflammatory, anti-oxidative, anti-apoptotic Alidadi et al. (2018)

Gold nanoparticles 100 Anti-inflammatory, anti-oxidative Abdelhalim et al. (2018)

Organophosphate
pesticides

10, 50 Regulated the metabolism of fatty acids, energy, and
sex hormones, anti-oxidative, anti-apoptotic

Qi et al. (2017), Li et al. (2016b)

Ochratoxin A 50 Anti-inflammatory, anti-oxidative, anti-apoptotic Abdel-Wahhab et al. (2017)

Combination
antiretroviral therapy

50 Anti-inflammatory, anti-oxidative, improved the
cytoarchitecture and biochemical activities of the
organs

Gu et al. (2020a)

Acetaminophen 50 Anti-inflammatory, anti-oxidative, reduced renal
injury

Dallak et al. (2020)

Echis pyramidum
venom

10 Anti-oxidative, anti-edema, and wound healing effects Al-Asmari et al. (2018)

Gentamicin 50 Attenuated lipid peroxidation, antioxidative, reduced
renal injury

Rahdar et al. (2021)

Valproic acid Supernatant,
renal, tissue

0.05 mM Cleaned the free radicals, anti-oxidative Chaudhary et al. (2015)

Contrast media Human 500 mg Reduced renal injury Vicente-Vicente et al. (2019)

HK-2 cells 10, 100 μm Reduced renal injury Andreucci et al. (2018)
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Bo et al., 2018). All these findings have shown that quercetin

can produce significant protective effects in alleviating

nephrotoxicity and renal insults caused by drug treatments

(Figure 2).

4.2 Acute and chronic renal injury

4.2.1 Acute kidney injury
Injuries from mesangial cells, endothelial cells (ECs),

podocytes, TECs, and inflammatory cells could also lead to

glomerular and interstitial fibrosis. Unresolved renal

inflammation could also trigger cell apoptosis and fibrosis by

releasing pro-apoptotic, pro-fibrotic growth factors, cytokines,

and chemokines (Gu et al., 2021a).

Cell apoptosis and glomerular injuries are observed during

renal ischemia. Quercetin can effectively prevent glomerular loss

caused by renal hypochlorous ischemia (Gonçalves et al., 2021).

The pathogenesis of renal ischemia/reperfusion injury (IRI)

involves oxidative stress responses in the kidneys and distal

organs, and the antioxidant effect of quercetin can prevent

partial IRI (Gholampour and Sadidi, 2018). Regarding

apoptosis, iron apoptosis is the iron-dependent regulatory

necrosis that contributes to the progression of acute kidney

injury (AKI), quercetin inhibits iron apoptosis in proximal

renal TECs, thereby reducing AKI (Wang et al., 2021).

Carvedilol can relieve AKI caused by renal IRI and

quercetin restores renal function by reducing inflammation

(Rezk et al., 2021). Quercetin may also prevent AKI by

regulating Mincle/Syk/NF-κB signaling to inhibit

macrophage inflammation (Tan et al., 2020). Quercetin

improves kidney damage by regulating macrophage

polarization (Lu et al., 2018). Lipopolysaccharide (LPS)

induces AKI in mice, and quercetin pretreatment protects

mice from LPS-induced renal inflammation by inhibiting the

TLR4/NF-κB signaling pathway (Tan et al., 2019). Quercetin

may prevent sepsis-associated AKI by inhibiting NF-κB
activation and upregulating Sirt1 expression (Lu et al.,

2021). Besides, CD38 plays an important role in

macrophage activation during sepsis-induced AKI. In the

FIGURE 2
The potential role of renal toxins in the pathogenesis of AKI. Nephrotoxins may cause glomerular and interstitial kidney injury, tubular cell
necrosis, and excessive apoptosis. In addition, the normal metabolism of the body can also be disrupted. This contributes to the reduction of kidney
filtration and the impaired function of reabsorption and secretion, and eventually leads to acute kidney injury. (㊀ indicates therapeutic targets of
quercetin; ↑ and ↓ indicates the regulatory role of quercetin on pathogenic changes); Abbreviations: TNF-α, tumor necrosis factor α; IL-1β,
interleukin 1β; iNOS, inducible nitric oxide synthase; GSH, glutathione; SOD, superoxide dismutase; Nrf-2,Nuclear factor erythroid 2-related factor 2.
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LPS-induced AKI mouse model, quercetin induces the

blockade of CD38, thus significantly alleviating renal

dysfunction and the infiltration of inflammatory cells (Shu

et al., 2018).

Interestingly, as kidneys are one of the targets of SARS-

CoV-2, up to 36% of SARS-CoV-2-infected patients develop

AKI. COVID-19-induced inflammation is closely associated

with AKI. Quercetin restores renal function by inhibiting the

inflammatory and apoptosis-related signaling pathways (Gu

et al., 2021b). Quercetin may potentially target SARS-CoV-2

3Clpro, which might inhibit the invasion of coronavirus, the

life-threatening inflammation and cytokines storm in AKI

(Diniz et al., 2020).

4.2.2 Chronic kidney injury and renal fibrosis
One of the notable pathological characteristics of CKD is renal

fibrosis, a prolonged wound-healing process that responds tomultiple

tissue injuries in the kidney. This process is characterized by

glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studies

have shown that renal fibrosis could be triggered by chronic

inflammation. Renal injuries promote the recruitment of

inflammatory cells and the release of related cytokines,

chemokines, and ROS. This inflammatory process eventually

activates fibroblasts and promotes the synthesis and accumulation

of extracellular matrix (ECM) proteins. It is demonstrated that

quercetin alleviated inflammation by upregulating the miR-124/

NF-κB pathway in LPS-stimulated TECs (Guo et al., 2020). Of

note, quercetin can also reduce macrophage accumulation and the

expression of inflammatory cytokines in the kidneys of obstructive,

therefore inhibiting renal fibrosis (Ren et al., 2016).

Transforming growth factor beta (TGF-β) is a major cytokine

that promotes ECM accumulation. It may also induce the

apoptosis of podocytes and promote epithelial to mesenchymal

transition (EMT) progression (Arauz et al., 2015). One study has

demonstrated that quercetin downregulated TGF-β signaling and

reduced the expression of EMT-related proteins to halt the

progression of glomerulosclerosis (Liu et al., 2019b). Other

studies have also suggested that quercetin suppressed TGF-β
signaling via Sonic Hedgehog, PTEN/TIMP3 and PI3k/Akt

signaling pathways (Cao et al., 2018; Liu et al., 2019a; Tu et al.,

2021). All the studies have suggested the anti-fibrotic role of

quercetin in chronic kidney injury.

FIGURE 3
The overview of signaling pathways and therapeutic targets of quercetin in the treatment of diabetic nephropathy. Quercetin acts as an anti-
hyperglycemic agent by regulating glucose-related signaling pathways. Quercetin also targets fibrotic, inflammatory, and oxidative mediators such
as TGF-β, SIRT1, AKT, andNF-κB to inhibit inflammation, fibrosis, oxidative stress, apoptosis, and promote autophagy to exert renal protective effects.
Abbreviations: Gsk-3β, glycogen synthase kinase-3; AKT, protein kinase B; AMPK, AMP-activated protein kinase; mTOR, mammalian target of
rapamycin; P70S6K, 70-kDa ribosomal protein S6 kinase; GLUT4, glucose transporter protein type-4; TGF-β, transforming growth factor beta; NF-
κB, nuclear factor κ-light-chain-enhancer of activated B cells; SIRT1, silent information regulator 1; NLRP3, NLR family pyrin domain containing 3;
CAT, catalase; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; GSH, glutathione; ROS, reactive oxygen species; ECM, extracellular
matrix; IL-18, interleukin-18; IL-1β, interleukin-1β; (Figure created with BioRender.com).
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4.3 Diabetic nephropathy

4.3.1 Anti-hyperglycemic effect
As shown in Figure 3, the regulatory roles of the signaling

pathways involved in diabetic nephropathy (DN) are complex.

Both hyperglycemia and dyslipidemia can induce structural and

functional damage in diabetic kidneys (Sun et al., 2019). On one

hand, quercetin decreases blood glucose levels by increasing the

release of insulin while reducing hepatic glucose production.

Mechanistically, quercetin may also enhance glucose uptake by

regulating the expression and function of GLUT4 and the insulin

receptor beta subunit (Ali et al., 2020).

On the other, hyperglycemia also induces metabolic

alterations, resulting in the disturbance of protein, fat, and

carbohydrate metabolism. Disorders of these metabolites also

increase the burden on the diabetic kidneys. Quercetin at a

dosage of 10 mg/kg/d can reduce blood glucose and

triglycerides serum levels (Gomes et al., 2015). Likewise, at the

early stage of DN, 50 or 100 mg/kg/d quercetin could improve

lipid metabolism by alleviating albuminuria and renal function.

In terms of lipid metabolism, quercetin reduces serum

cholesterol, and triglycerides, and increases low-density

lipoprotein cholesterol through the SCAP-SREBP2-LDLr

signaling pathway in the diabetic rat model (Jiang et al., 2019).

4.3.2 Anti-oxidative effect
The excessive expression of intracellular ROS is one of the

significant changes in DN. ROS induces the activity of

apoptosis-related enzymes, causing damage to the podocytes

and promoting the proliferation of fibrotic cells to induce the

synthesis of ECM (Ma et al., 2018). These processes result in

renal fibrosis and inflammation and turn out to the progression

of DN. Quercetin has acted as a free radical scavenger in DN

animal models. For instance, one study measured the

antioxidant-related enzymes and histopathological changes

in kidneys and found that quercetin alleviated the damage

by preventing oxidative stress (Elbe et al., 2015). As reported

by other studies, dihydro quercetin exerts a renal protective

effect on DN rats at the dose of 100 mg/kg/day, with the

downregulated expression of ROS-related proteins and

NLRP3 inflammasome (Ding et al., 2018). Besides, another

study has revealed that both quercetin and quercetin-

nanoparticle complex reduced structural damage to the

kidney, improved renal function and alleviated oxidative

stress by downregulating the expression of ICAM-1 (Tong

et al., 2017).

4.3.3 Autophagy promotion
Autophagy plays a crucial role in the intracellular

degradation system for cellular homeostasis. As for kidney

diseases, autophagy may protect functions in both glomerular

and tubular compartments by suppressing excessive

inflammation and fibrosis in AKI, CKD, and DN (Kimura

et al., 2017; Bhatia and Choi, 2020). For example,

hyperglycemia induces the dysregulation of autophagy in

major types of resident kidney cells, mainly the impairment of

podocytes. Autophagy is primarily regulated by signaling

pathways such as the serine/threonine protein kinase

mammalian target of rapamycin (mTOR), AMP activated

protein kinase (AMPK), and sirtuins. High glucose can inhibit

podocyte autophagy through AMPK pathway (Platé et al., 2020)

and activate the mTOR signaling to inhibit podocyte autophagy.

Evidence has suggested a quercetin-rich fruit, guava, is able to

protect against type 2 diabetes mellitus-induced renal and

pancreatic dysfunction by preventing cell apoptosis,

autophagy, and pyroptosis (Lin et al., 2016). More studies

have also demonstrated quercetin regulating blood glucose/

lipid levels and improving renal fibrosis, potential mechanisms

could be the modulation of the AMPK-dependent autophagy

process, inhibition of mTORC1/p70S6K signaling, or the

activation of Hippo pathways in vitro and in vivo (Lu et al.,

2015; Lei et al., 2019; Lai et al., 2021). Further studies should

focus on the glycemic regulating role and underlying

mechanisms of quercetin treatment on DN.

4.4 Senolytic therapy for kidney disease

As clinical interest in kidney aging rapidly arises, the

progression of cellular senescence relates closely to the stable

cell cycle arrest. The accumulation of renal senescent cells (SCs)

promotes inflammation and fibrosis, leading to multiple kidney

disorders. The senolytics are a class of drugs that may selectively

clear SCs. Quercetin, together with dasatinib, acts as the novel

pharmacological senolytic agent for a number of kidney diseases

(Kirkland and Tchkonia, 2020).

Senescent TECs are the driving force in renal fibrosis

progression, which may activate fibroblasts. The combination

of quercetin and dasatinib may specifically induce apoptosis of

senescent TECs, therefore restoring renal function and

ameliorating fibrosis (Li et al., 2021a). Another study has also

shown that the combination of quercetin and dasatinib can

alleviate renal insufficiency and damage in animal models of

renal ischemia. In vivo study has revealed that senolytic therapy

of quercetin and dasatinib improved renal artery stenosis by

reducing the p21 positive stenotic TECs and attenuating

mesenchymal transition (Kim et al., 2021). Notably, obesity

could promote cellular senescence and impair renal function.

Researchers have found an increased expression of renal markers

of senescence, such as p16, p19, and p53, in a high-fat-diet-

induced mouse model. Renal function and fibrosis are improved

in quercetin-treated mice (Kim et al., 2019). Similarly, an open-

label Phase 1 pilot study (NCT02848131) in patients with

diabetic kidney disease showed that the combination of

quercetin and dasatinib can eliminate senescent cells and

significantly reduce senescent cell burden in adipose and skin
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tissues within 11 days. The possible mechanisms of their

protective effects may be associated with the decrease of p16-,

p21 expressing cells and the downregulation of senescence-

associated secretory phenotype (including the expression of

pro-inflammatory cytokines IL-6, IL-1α, and MMP-9)

(Hickson et al., 2019). More explorations are needed to

investigate the mechanism of analytic therapy and verify its

efficacy and safety. The combination of quercetin and

dasatinib could serve as new therapeutic agents to hinder

renal senescence.

4.5 Other renal disorders

Dietary intake of the flavonoid quercetin has been proven

effective in lowering blood pressure and restoring endothelial

dysfunction in animal models of hypertension. Quercetin intake

improves endothelium-dependent relaxation and inhibits α1-
adrenoceptor mediated contractions in aortic rings from

hypertensive rats. In addition, quercetin treatment in high

dose promotes a significant reduction in blood pressure in

spontaneously hypertensive rats compared to the control

group (Choi et al., 2016; Elbarbry et al., 2020). These data not

only demonstrate the anti-hypertensive effect of quercetin but

also provide evidence for its role as a novel cardioprotective

compound.

Renal cell carcinoma (RCC) has become a common

subtype of kidney cancer, which has the highest propensity

to manifest as metastatic disease. We lack knowledge of the

correlation between migration and invasion in RCC, thus few

therapeutic options are available (Meng et al., 2015).

Intriguingly, recent studies have found that quercetin has

anti-tumor effects against diverse types of cancers via

multiple signaling pathways (Zhu et al., 2018). For

example, a study explored the anti-tumoral effect of a

potential chemopreventive effect of quercetin, the

combination of quercetin and anti-sense oligo gene therapy

provides stronger suppressive effects on RCC cells rather than

a solo treatment. These studies have provided the possibility of

quercetin as a novel treatment for renal cancer (Meng et al.,

2015).

Autosomal dominant polycystic kidney disease

(ADPKD) is a monogenic disease characterized by the

massive enlargement of fluid-filled cysts in the kidney.

One study has found that quercetin dramatically inhibited

the formation and growth of the cyst, suggesting that

quercetin could hinder renal cyst progression and should

be represented as a novel candidate strategy for the treatment

of ADPKD (Zhu et al., 2018). Nevertheless, speaking of

kidney stones, quercetin also reduces the reabsorption of

sodium, calcium, and water, thereby preventing the

formation of a kidney stone in the urinary tract

(Nirumand et al., 2018).

5 Conclusion and future perspectives

Quercetin, an active compound from natural products, has

shown a significant protective effect in various models of kidney

diseases. However, most of the studies have reported observational

results and phenotype changes rather than themechanisms of action

related to the crucial pathogenesis. Besides, although experimental

research has focused on the therapeutic effects and mechanisms of

quercetin, it could hardly be used in the clinical setting due to its

poor solubility and low oral bioavailability. Nevertheless, further

research on nanoparticles, liposomes, micelles, or novel materials is

in urgent need to improve the drug delivery system of quercetin and

bring this natural compound to the forefront of therapeutic agents

for the treatment of kidney disease.
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