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Puerarin is a flavonoid molecule that widely exists in various plants. Puerarin has

been reported to exhibit anti-tumor effects in various cancers. However, its

exact underlying pharmacological mechanism is unclear. This study evaluated

the anticancer effect of puerarin combined with oxaliplatin (OXA) in vitro and in

vivo. Our results indicated that puerarin can reverse platinum-based anti-

cancer drug resistance, and enhance the OXA’s anticancer effects on breast

cancer. Furthermore, puerarin can inhibit migration and reverse the epithelial-

mesenchymal transition (EMT) induced by low-dose OXA. Further studies

showed that the carbonic anhydrase (CA) XII is a potential target of puerarin.

In conclusion, puerarin is expected to become an adjuvant chemotherapy drug

and potentially become one of the medicated foods for breast cancer patients.
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Introduction

Chemotherapy is used to treat cancer, prolong the life of cancer patients, and even cure

cancer, however, sometimes it can stimulate cancer cells and cause metastasis (Wills et al.,

2021; Dai et al., 2022). Therefore, continuous efforts have been made to find and develop new

strategies for cancer therapy with lower side effects and better efficacy. For this, various

researchers pay great attention to compounds from natural plants and their derivatives, which

can be potential in the treatment of cancers (Chen et al., 2009; Shirode et al., 2015). These

compounds are found in many diets and can be good options for adjuvant cancer treatment.

Flavonoids are a type of natural small molecules with anti-cancer, anti-inflammatory and

antioxidant effects (Maleki et al., 2019; Bisol et al., 2020; Kopustinskiene et al., 2020; Liu et al.,

2022). Puerarin is a typical flavonoid molecule and active ingredient extracted from

leguminous plants of the genus Pueraria, an important medicinal plant known for its

health and beauty benefits. In 1993, puerarin was approved for clinical use and was widely

used in treating cardiovascular diseases (Ahmad et al., 2020). In addition, puerarin has two

benzene rings (A ring and B ring) linked to each other through the central three carbon

structure, andmany evidences have proved that this structure has the ability to down-regulate

mutant p53 protein, block cell cycle and inhibit Ras protein expression and anti-cancer
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properties (Lamson and Brignall, 2000; Bisol et al., 2020). Various

studies demonstrated that puerarin plays an anti-cancer role in

several trials (Wang et al., 2013; Kang et al., 2017; Liu et al., 2017).

Puerarin inhibits lymphatic carcinoma cell proliferation and

reduces the levels of matrix metalloproteinase through reactive

oxygen oxidative stress. In addition, through endogenous and

exogenous mitochondrial pathways, puerarin induces tumor cells

apoptosis (Chen et al., 2016; Hu et al., 2018). Puerarin selectively

reduces tumor cells’ proliferative capacity and extensively inhibits

cancer cells signaling pathway transduction (Liu et al., 2017). Liu

et al. showed that lipopolysaccharide (LPS) treatment increases the

capacity to metastasize of breast cancer cells, while puerarin reduces

the metastasis and invasion of LPS-induced breast cancer cells (Liu

et al., 2017), suggesting that puerarin can potentially be used for

anti-breast cancer.

Epithelial-mesenchymal transition (EMT) refers to how

epithelial cells are depolarized and transformed into

mesenchymal cells due to certain factors (Jiang et al., 2022).

During the metastasis in epithelial tumors, the phenotype of

tumor cells changes primarily caused by environmental stimuli

that enable tumor cells to adapt to the various

microenvironments they encounter (intercellular stroma,

humoral components, or blood) (Park et al., 2020; Qiao et al.,

2021). EMT regulates these phenotypic transformations.

Therefore, to some extent, EMT promotes tumor metastasis

(Pastushenko and Blanpain, 2019). Meanwhile, it has been

reported that low-concentration chemotherapy drugs not only

significantly inhibit tumor proliferation, but also induce EMT of

tumor cells, thus promoting tumor metastasis (Middleton et al.,

2018).

Therefore, this study aims to detect whether puerarin can

enhance the effect of oxaliplatin (OXA), the third generation of

platinum chemotherapy drugs, on breast cancer and inhibit

metastasis of breast cancer cells.

Materials and methods

Chemicals and cell culture

Puerarin was purchased from Meilunbio (Dalian, China).

E-cadherin antibody (ab40772) and vimentin antibody (BF8006)

were purchased from Abcam and Affinity, respectively.

Apoptosis Detection Kit was purchased from Beyotime

(Shanghai, China). Crystal violet was purchased from Sigma-

Aldrich Fluka (America). OXA was purchased from Meilunbio

(Dalian, China), LTD. Cisplatin (DDP) was purchased from

Sigma-Aldrich.

The MCF-7 (human breast cancer cell lines) and MCF-7/

DDP (DDP-resistant cell lines), were from KeyGEN BioTECH

(Nanjing, China). These cells were grown in DMEM containing

penicillin, streptavidin, and 10% bovine serum at 5% CO2,

and 37°C.

Cell viability assay

The drug tolerance effects of puerarin were detected using the 3-

(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide

(MTT) assay on MCF-7, MCF-7/DDP. The cells (5,000 cells/

well) were added to 96-well plates cultured overnight. All assays

were repeated three times. In each flask, MTT solution was added

after 48 h of drug treatment. Incubation in dimethyl sulfoxide

(DMSO) for 4 h dissolves the formazan crystals. OD590 value

was detected with a microplate reader, and detected a 50%

inhibitory concentration (IC50) value. The synergistic effect was

calculated using CompuSyn software.

Rh123 efflux assay

Cells (1 × 106) were cultured for 24 h in six-well plates. A

variety of levels of puerarin were used for the pretreatment of

MCF-7/DDP cells for 24 h [0 μM, 20 μM (L), 40 μM (H)].

After the pretreatment, cells were incubated with Rh123

(5 mg/mL) in a dark room. Then, Rh123-free medium was

used to replace the above medium, and drained the remaining

efflux intervals every hour. After incubation, PBS was used to

wash cells twice. Then, 400 μL lysis buffer was used for lysing

cells, and PBS with 10% FBS was used to maintain the cells.

The flow cytometry was used to determine the green

fluorescence of Rh123.

Wound-healing assay

A wound healing assay was performed to assess changes in

cell motility and migration. Cells were grown to confluency at 5 ×

105 cells per well in 48-well plates. Scratch the cell monolayer

with an apipette tip and then rinse using phosphate buffer saline

(PBS). After the treatment [Control, OXA (5 μM), puerarin

(40 μM) + OXA (5 μM)], a Nikon microscope was used to

take images 0, 24, and 48 h.

Transwell assays

The transwell assay is used to evaluate cell invasiveness.

Three different concentrations of medium [Control, OXA

(5 μM), puerarin (40 μM) + OXA (5 μM)] were used for the

suspension of the cells below. The cells were then inoculated into

an 8 μm polyethylene terephthalate filter membrane coated with

matrix gel. In the lower chamber, about 500 mL of medium was

placed. The cells were fixed for 30 min with paraformaldehyde

(4%) and stained for 20 min with crystal violet (0.1%). A

hundred-fold magnification inverted microscope was used to

image the invaded cells, and the cell numbers were manually

counted.
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Immunofluorescence assays

Cells were treated [Control, OXA (5 μM), puerarin

(40 μM) + OXA (5 μM)] and were cultured overnight. The

cells were treated with methanol and Triton X-100. E-cadherin

and vimentin (both 1:100) were used in an

immunofluorescence experiment. After washing thrice for

20 min, Incubation of the cells with a secondary antibody

(1:200) for 30 min. Following 4,6-diamino-2-phenyl indole

(DAPI) staining for 10 min, and observed under a laser

scanning confocal microscope.

Apoptosis assays

A 96-well plate was used to culture the cells. After drugs

treatment, the culture solution was discarded. Then, Annexin

V-FITC binding solution, Annexin V-FITC and propyl iodide

solution were successively added and gently mixed all the

solutions. In a dark room, plates were incubated for 20 min.

The red and green fluorescence was detected by a fluorescence

microscope.

Animal studies

In this section, BALB/c nude mice (5 weeks) were used. All

mice were raised in sterile conditions. All procedures were

approved according to the guidelines of the Animal Ethics

Committee of the Zhejiang Sci-tech University. The MCF-7

cells were orthotopically implanted into the mice. Cells were

grown until the logarithmic growth stage, centrifuged with

PBS. 50% Matrigel mixture was resuspended in PBS, resulting

in 2 × 107 cells/mL. The right flank of each mouse was injected

0.2 mL cell suspension. After 14 d of tumor transplantation,

four groups of mice were divided: control group (saline given

orally once daily), puerarin treated group (50 mg/kg), OXA

treated group (5 mg/kg), and puerarin and OXA treated group

(50 mg/kg + 5 mg/kg). After the tumor was transplanted, daily

measurements were taken of its volume and weight. All mice

were euthanized after 3 weeks. Tumors were resected and

volumes were measured. V = ab2/2 (a = length, b = width)

was used to calculate tumor volumes. To measure their

survival rates, another 40 mice were distributed into

4 groups (10 per group). The survival time of each mouse

was monitored.

RNA sequencing data collection and
procession

The RNA sequencing data for cancer tissues and adjacent

tissues from patients with breast cancer were obtained from

the Gene Expression Omnibus (GEO) database. The

differentially expressed gene (DEG) was considered by four

sample data, involving GSM2286198, GSM2286199,

GSM2286316, and GSM2286317 with two drug treatment

samples and two control samples.

Analysis of differentially expressed genes

In the R computing environment, with the Limma

package, the corresponding fold change and p value for

DEGs between different groups were compared using a

volcano plot. Up- and down-regulated genes had p ≤ 0.05, a

fold change of more than 2.0, defined as log2 (fold change) >
1 or < - 1 for up- and down-regulated genes, respectively. For

gene function enrichment analysis, gene ontology (GO)

annotations of genes in R software were used. A maximum

gene of 5,000 and a minimum gene of 5 was set (p < 0.05 and

FDR <0.25).

Target prediction and molecular docking

To predict puerarin’s targets, the simplified molecular

input line entry system (SMILES) format of puerarin from

PubChem and the similarity ensemble approach (SEA) website

were used (Keiser et al., 2007). Molecular docking was

performed with puerarin and carbonic anhydrase (CA) XII.

An analysis of the complex between the ligand and protein was

carried out by Pymol using the PDB format.

CA XII activity analysis

The CA XII activity in breast cancer cells was

determined by extracellular pH analysis. Cells were treated

with [20 μM (L) puerarin +500 nM U-104] and [40 μM (H)

puerarin +200 nM U-104] for 3 h. The Wilbur-Anderson

method was used to calculate CA XII activity (WAU/mg =

2× (T0-T)/T*mg protein). To determine how long it will take

to reduce the pH of an isotonic buffer from 8.00 to 6.60,

using time (T) (T: catalyzed reaction and T0: unanalyzed

reaction).

Data statistics

Data are analyzed as mean ± standard deviation (SD). The

independent variance t-test were used to assess the differences

between the two groups. The multiple comparisons test were

compared using a one-way analysis of variance, followed by

the least significance difference (LSD) post-hoc test

(SPSS 23.0).
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Results

Puerarin enhanced the effects of
platinum-based anti-cancer drug and
reversed drug-resistance

Figure 1A shows the structural formulas of puerarin. In order to

detect the effect of puerarin in reversing drug resistance, OD590 was

measured. In our results, drug resistance to DDP and OXA can be

reversed by puerarin in MCF-7/DDP cells. In addition, there is a

dose-effect relationship in the reverse effect of puerarin on MCF-7/

DDP cells (Figure 1B). A study was carried out to evaluate the efflux

of Rh123 from MCF-7/DDP cells. Figure 1C indicates that as

compared to the other groups, the puerarin groups had a higher

fluorescence intensity.

There is a synergistic effect of puerarin and
OXA on tumor inhibition

In order to detect the synergistic effects of puerarin and

OXA, the MTT assay was performed. As shown in Figures

2A,B, puerarin improves the inhibitory effect of OXA and

DDP on cell proliferation. Furthermore, combining puerarin

with platinum-based drugs resulted in a combination index

(CI) value less than 1, thus indicating synergistic effects. The

effect of co-treatment on MCF-7/DDP xenografts in nude

mice BALB/c was evaluated. Mice in the combination

treatment group gained weight compared to those in the

OXA-treated group. Compared to the other groups, the

tumor weight of co-treatment group is lowest (Figures 2C–E).

Each group of tumor cells was tested for apoptosis using the

apoptosis detection kit. Annexin V was marked with green

fluorescence indicating apoptotic cells and PI was marked

with red fluorescence indicating necrotic cells. As shown in

Figures 2F,G, puerarin improves the efficacy of OXA and a

significant increase in apoptosis cells was observed in the co-

treatment group. Moreover, compared to a single treatment, mice

of co-treatment group had a higher survival rate (Figure 2H).

Puerarin inhibited migration and invasion
and reversed EMT induced by low
dose OXA

Morphological changes in the cancer cells in different treatment

groups were observed by an optical microscope. As a result of low

dose OXA, cancer cells developed pseudopodia and the co-

treatment group displayed signs of apoptosis, such as rounded

and shed cells, as shown in Figure 3A. The migration and invasion

of co-treated cells was detected by wound-healing assay and

transwell assay, and the results as shown in Figures 3B,D, the

migration was highly enhanced in the OXA-treated group, whereas,

it was significantly inhibited in the co-treatment group. Similarly, A

combination of purarin and OXA inhibits the invasion of cancer

cells by low-dose OXA (Figures 3C,E). Moreover, the expression of

EMT biomarkers was detected using an immunofluorescence assay

and it was found that vimentin levels of co-treatment group were

lower than that of OXA group, whereas E-cadherin levels were

higher, as shown in Figures 3F–H. Based on these results, the OXA-

treated group promotes EMT, whereas puerarin inhibits the EMT

process caused by OXA.

FIGURE 1
Puerarin reversed drug resistance of platinum-based anti-cancer drug. (A) The structural formulas of puerarin (B) The IC50 values of OXA and
DDPonMCF-7were detected. The cancer cells were treatedwith different concentrations of puerarin (Control: DMSO, puerarin-L: 20 μM, puerarin-
H: 40 μM). (C) The fluorescence intensity of Rh123 in MCF-7/DDP was lower than the fluorescence intensity in MCF-7. Puerarin treatment reversed
the change in a dose-dependent manner (*p < 0.05, **p < 0.01).
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There is a widespread influence of
puerarin in cancer cells

The RNA sequencing data (GSE85871) for cancer tissues

and adjacent tissues of patients with breast cancer were got

from GEO database. The graph was drawn with the log2 ratio

and the −log10 (p) of each gene as shown in Figure 4A.

Downregulated genes and upregulated genes are indicated

by green and red, respectively. The hierarchical clustering

was made using the differentially expressed genes, as shown

in Figure 4B. The various interactions between the control

group and puerarin treatment groups were recorded by the

STRING database and visualized in Cytoscape, as shown in

Figure 4C. Analysis with GO and the KEGG revealed

that differentially expressed genes tended to be enriched for

tumor metastasis and energy metabolism, as shown in

Figures 4D–G.

CA XII is a potential drug target of puerarin

The SMILES format of puerarin from PubChem and

the SEA website was used to predict puerarin’s targets. CA

VII and CA XII were the first two potential drug targets

with the Max Tanimoto Coefficient (MaxTC) of 1.00, as

shown in Figure 5A. The CA XII is more closely associated

with cancer cells than with CA VII. The molecular docking

results showed that there is a good combination between

puerarin and CA XII, with the docking score -5.93, as

shown in Figure 5B. CA XII catalyzes the hydration of

carbon dioxide to H+ and HCO3
−, causing the acidic

extracellular pH to decrease. The ability of puerarin to

inhibit CA activity was determined by measuring

extracellular pH. The results showed that puerarin could

inhibit CA activity under a dose-effect relationship

(Figure 5C). Low dose OXA treatment increased the

FIGURE 2
Puerarin enhanced the effects of OXA. (A,B)MTT assay was operated to detect the inhibition on MCF-7 cells. Puerarin enhances the inhibitory
effect of OXA and DDP on cell proliferation (C–E) Mice in the combination treatment group gained weight compared to those in the OXA-treated
group. Compared to the other groups, the tumor weight of co-treatment group is lowest. (F,G) Annexin V-FITC and PI-TRITC were used to detected
the apoptosis cells. Puerarin improves the efficacy of OXA and a significant increase in apoptosis cells was observed in the co-treatment group
(H) Mice of co-treatment group had a higher survival rate than the mice in other groups (*p < 0.05, **p < 0.01).
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extracellular pH compared to the control group, meanwhile,

the puerarin inhibited this trend, thereby suggesting that

puerarin inhibited CA activity, as shown in Figure 5D.

Discussion

Recently, for breast cancer, while significant progress has

been made in diagnosis and treatment, the prognosis remains

bleak (Zhao et al., 2017; Chen et al., 2022). It was reported that

after OXA treatment, residual cancer cells revealed increased

metastasis significantly. Our previous study and other research

all showed that low-dose platinum-based anti-cancer drugs could

induce EMT of cancer cells (Liu et al., 2015). EMT caused by

chemotherapy is a significant determinant of drug resistance to

chemotherapy and cancer metastasis.

New therapeutic options that safely enhance chemotherapy

sensitivity significantly improve efficiency in cancer treatment

(Luan et al., 2020; Zhang et al., 2020). In our study, the

combination of puerarin and OXA can improve the sensitivity

of OXA chemotherapy, thus, inhibiting the metastasis of breast

cancer. In addition, puerarin can reverse OXA resistance in drug-

resistant breast cancer. The combined administration of puerarin

can also inhibit low-dose OXA-induced EMT as indicated in the

results. Meanwhile, the co-treatment group inhibited tumor

weight in vivo compared with the chemotherapy drug group

alone. Therefore, puerarin can be used as a complementary

medicine for OXA in enhancing the chemotherapy sensitivity

and anti-cancer ability of OXA.

Multiple studies have shown that puerarin has good

anticancer mechanisms against several cancer cells (Li et al.,

2019; Aboushanab et al., 2021). However, the exact molecular

FIGURE 3
Puerarin inhibited migration and invasion and reversed EMT. (A) Morphological changes of the cancer cells in different treatment groups
observed by a microscope (B,D) The results of wound-healing assay. (C,E) The results of transwell assay (F–H) The results of immunofluorescence
(*p < 0.05, **p < 0.01).
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mechanism and potential drug target of puerarin remain

unknown (Wang et al., 2020). Natural small molecules from

plants generally have an extensive range of pharmacological

activities (Sun et al., 2017). Our results showed that puerarin

has the potential to inhibit various functions and signaling

pathways of breast cancer cells. Furthermore, it was found

that the CA XII is the puerarin’s potential target and puerarin

inhibits the acid secretion mediated by the CA protein. The CA

XII exists in various organsand plays a key role in life activities

(Karhumaa et al., 2000; Parkkila et al., 2000; Liao et al., 2003). CA

XII’s expression can be detected in various types of tumor,

including breast cancer and other cancer (Kivela et al., 2005;

Hsieh et al., 2010; Ilie et al., 2011). Extensive evidences suggest

that CA XII plays a key role in the migration, invasion and

metastasis of cancer cells. Hsieh et al. demonstrated that silencing

CA XII also reduces the migration and invasion of breast cancer

cells, and that CA XII interacts with matrix metalloproteinases in

proteolysis of ECM during migration and invasion of cancer cells

(Hsieh et al., 2010). As another target protein in this study, CA

VII is mainly related to the pathogenesis of neuromuscular

disorders and has almost no correlation with cancer

(Pastorekova et al., 2004; Viikilä et al., 2016), therefore we

chose CA XII as our target protein. Recent studies have

indicated that CA XII participates in chemotherapy drug

resistance, hence, promoting the further development of

tumors (Kobayashi et al., 2012; Kopecka et al., 2015). Our

results showed that a low dose of OXA activates the CA XII’s

activity in breast cancer cells, which is detrimental to cancer

treatment. Puerarin can inhibit the activity of CA XII, which can

influence chemotherapy drugs to enhance the anticancer effect of

chemotherapy drugs.

There are also some deficiencies in this study. In future research,

in-depth studies on the mechanism of puerarin in vivo and

systematic studies on the toxicity, side effects of puerarin could

be done. In addition, the pharmacological activity of puerarin could

be further enhanced by targeted modification of its structure

through medicinal chemistry methods.

Our results demonstrated the anticancer effects of puerarin

on tumor cells and models of xenograft mice. Puerarin targeted

CA XII and affected multiple carcinogenic signaling networks. In

FIGURE 4
Puerarin effected multiple functions and signal pathways of cancer cells. (A) The volcano plot of differentially expressed genes (B) The
hierarchical clustering of differentially expressed genes. (C) The protein-protein interaction network of differentially expressed genes (D–F) The GO
analysis results of differentially expressed genes, (D)Biological process, (E)Cellular component, (F)Molecular fuction (G) The KEGG analysis results of
differentially expressed genes.
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addition, puerarin significantly increased platinum sensitivity

and inhibited platinum-induced EMT in breast cancer. There

are some reasons why puerarin is expected to become an

adjuvant chemotherapy drug and has the potential to become

one of the medicated foods for breast cancer patients.
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