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Diabetic kidney disease (DKD) is one of the most common microvascular

complications of diabetes mellitus. However, the pathological mechanisms

contributing to DKD are multifactorial and poorly understood. Diabetes is

characterized by metabolic disorders that can bring about a series of

changes in energy metabolism. As the most energy-consuming organs

secondary only to the heart, the kidneys must maintain energy homeostasis.

Aberrations in energy metabolism can lead to cellular dysfunction or even

death. Metabolic reprogramming, a shift from mitochondrial oxidative

phosphorylation to glycolysis and its side branches, is thought to play a

critical role in the development and progression of DKD. This review focuses

on the current knowledge about metabolic reprogramming and the role it plays

in DKD development. The underlying etiologies, pathological damages in the

involved cells, and potential molecular regulators of metabolic alterations are

also discussed. Understanding the role of metabolic reprogramming in DKD

may provide novel therapeutic approaches to delay its progression to end-stage

renal disease.
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Introduction

Diabetic kidney disease (DKD) is the dominant cause of end-stage renal disease

(ESRD) worldwide (Alicic et al., 2017). As the incidence and prevalence of DKD have

surged significantly in consistence with the global epidemic of diabetes, it has placed large

burdens on the society and the families of affected patients (Tuttle et al., 2014). Therefore,

slowing the rate of progression of DKD is obviously of great importance. However, few

therapies have been shown to be particularly effective. The pathological mechanisms

contributing to the development of DKD are complex, with multiple factors involved.

Notably, diabetes mellitus is characterized by metabolic abnormalities, such as

hyperglycemia and hyperlipemia, which cause deleterious effects on the kidneys.

However, strict blood glucose control has not led to positive clinical outcomes
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(Group, 2003; Zhang et al., 2003), nor has the available clinical

management of hyperlipidemia (Haynes et al., 2014). To find

effective therapies, deeper investigations into other mechanisms

mediating the influence of metabolic disorders on kidney damage

are needed.

The kidneys are high-energy-consuming organs (Wang et al.,

2010). They require a large amount of energy to remove waste

from the blood, reabsorb nutrients, balance electrolytes and fluids,

maintain acid–base homeostasis, and regulate blood pressure

(Bhargava and Schnellmann, 2017). Therefore, a normal and

balanced energy metabolism system is particularly important

for maintaining the specific structure and physiological function

of kidneys (Chen et al., 2016). The metabolic process shows

plasticity and can change in accordance with environmental

changes. Metabolic reprogramming, also known as the

“Warburg effect”, was first observed by Warburg in 1958; he

found that tumor cells can synthesize adenosine-5′-triphosphate
(ATP) through glycolysis even under well-oxygenated conditions

(Warburg et al., 1927). In recent decades, technological advances

have enabled a better understanding of energy metabolism. An

increasing number of studies have confirmed the crucial role

played by metabolic reprogramming in the development of

chronic kidney diseases, such as renal fibrosis and autosomal

dominant polycystic kidney disease (AKDKD) (Pagliarini and

Podrini, 2021; Zhu et al., 2021). Recently, the metabolic

alterations that drive the change from mitochondrial oxidative

phosphorylation (OXPHOS) to glycolysis and its principal

branches have attracted increasing interest with respect to

delineating DKD mechanisms (Laustsen et al., 2013). In this

review, we summarize the potential mechanism of diabetes-

induced metabolic reprogramming, provide insights into the

roles they play in the pathogenesis of renal cell damage,

identify potential biomarkers, and discuss promising therapeutic

strategies targeting metabolic reprogramming that prevent or halt

renal injury in diabetes.

Mechanism of metabolic
reprogramming in diabetic kidney
disease

Glycolysis and mitochondrial oxidative phosphorylation are

two main pathways of energy generation in cells. In glycolysis,

one molecule of glucose is reduced to pyruvate in the cytoplasm,

generating two molecules of ATP. The substrates for

mitochondrial oxidative phosphorylation are more diverse

than those involved in glycolysis. Pyruvate generated by

glycolysis can be further shuttled into the tricarboxylic acid

(TCA) cycle for OXPHOS in mitochondria, which produces

an additional 36 molecules of ATP in the presence of oxygen.

Free fatty acid utilization depends mainly on mitochondria, with

106 molecules of ATP generated through the complete oxidation

of one molecule of palmitate. Glutamine can also be used to fuel

OXPHOS in certain cells. Notably, glucose can be metabolized

via side branches of glycolysis, including the advanced glycation

end-product pathway, sorbitol/polyol pathway, diacylglycerol

protein kinase C pathway, and hexosamine pathway, but no

ATP is generated through these pathways, and ion flux under

basal conditions is low (Figure 1).

Compared with glycolysis, OXPHOS is obviously more

efficient for ATP generation; therefore, under normal

circumstances, OXPHOS is the main source of ATP-based

energy in the kidney, with a small amount deriving from

glycolysis (Abe et al., 2010; Ahmad et al., 2021). However, the

ATP production rate of the glycolytic pathway can be 10–100-

fold faster than that of OXPHOS, and it has tremendous potential

to be further enhanced in response to pathological conditions

(Shiraishi et al., 2015). Diabetes, characterized by altered cellular

metabolism, is thought to drive metabolic switching from

oxidative phosphorylation to glycolysis or its side branches in

renal cells. Although the underlying mechanisms are not fully

understood, several potential etiologies leading to this process

have been implicated.

Mitochondria dysfunction

Mitochondria are double-membraned organelles that

provide sites for cellular respiration and oxygen-consuming

ATP production via OXPHOS. The oxidative power of

mitochondria depends on substrate utilization through a series

of enzymes. ATP synthase, located on the inner membrane of

mitochondria, catalyzes the phosphorylation of adenosine

diphosphate (ADP) to ATP. The phosphorylation process is

powered by a proton-motive force formed by the action of

three respiratory chain complexes named CI, CIII, and CIV,

which pump protons from the inner matrix of the mitochondria

into the intermembrane space. In addition to forming an efficient

coupling between electron transmission and ATP generation,

respiratory chain complexes provide electrons to O2, which

generate H2O. Electrons in the respiratory chain are available

through the action of the reducing equivalents nicotinamide

adenine dinucleotide (NADH) and flavin adenine dinucleotide

(FADH2), which are mainly generated through a sequence of

enzymatically catalyzed reactions in the matrix of the

mitochondria known as the tricarboxylic acid (TCA) cycle.

Recently, Sas et al. (Sas et al., 2016) found that although

metabolic flux mediated through the TCA cycle was increased in

the diabetic kidney cortex, neither oxygen consumption nor ATP

production was increased. A metabolic switch to anaerobic

glycolysis to produce energy was identified when the

mitochondrial function was suppressed (Abe et al., 2010;

Brinkkoetter et al., 2019), suggesting that mitochondrial

dysfunction in diabetes may lead to metabolic alteration.

Mitochondria are susceptible to a variety of genetic and

environmental insults. In fact, mitochondrial dysfunction in
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DKD has been revealed throughmany studies, which have shown

induction of mitochondrial DNA (mtDNA) mutations and

deletions (reduced mtDNA stability) (Czajka et al., 2015),

decreased expression of electron transport chain (ETC)

complex genes and mitochondrial biogenesis (Dugan et al.,

2013), a defective mitochondrial fusion–fission process, and

mitophagy disorders (Higgins and Coughlan, 2014; Dai et al.,

2021; Zhang et al., 2021). An increase in the uncoupling of the

respiratory chain may lead to diminished ATP synthesis in

diabetic mitochondria (Friederich et al., 2008). In addition,

sustained hyperglycemia further induces an abnormally high

proton gradient across the inner mitochondrial membrane,

leading to excessive reactive oxygen species (ROS) or reactive

nitrogen species (RNS) production (Friederich et al., 2008),

which results in a vicious cycle by promoting mitochondrial

dysfunction (Brady et al., 2006; Zorov et al., 2006, 2014;

Venditti and Di Meo, 2020). Moreover, the excessive

metabolic byproduct was caused by the decreased activities

of mitochondria in diabetes, such as citrate succinate,

fumarate, and malate, and the accumulation of these

byproducts is toxic to mitochondria by inhibiting ATP

synthase (Fu X. et al., 2015) or decreasing the

mitochondrial membrane potential (Karlstaedt et al., 2016).

Increased glycolytic flux

The diabetic milieu is characterized by excessive energetic

substrates, including glucose, which is taken up by renal cells via

glucose transporters (Elsas and Longo, 1992). Hyperglycemia

enhances glucose transportation from extracellular to

intracellular compartments by upregulating the expression of

glucose transporters (GLUTs) or sodium–glucose cotransporters

(SGLTs) (Heilig et al., 1997). Glomerular cells take up most of the

excessive glucose by overexpressing transporter isoforms of

GLUT1 (Weigert et al., 2003; Moutzouris et al., 2007).

Mechanical stress resulting from glomerular hypertension has

been shown to be another contributor to increased glycolytic flux

(Lewko et al., 2005). In proximal tubule cells, SGLT2 reabsorbs

glomerular-filtered glucose from the lumen of the proximal

tubules on the apical side. However, despite exposure to

elevated intracellular glucose, this reabsorbed glucose is not

consumed during ATP production in proximal tubules under

normal conditions but diffuses into the interstitial space through

GLUT2 on the basolateral side and is then transported back into

the bloodstream (Mather and Pollock, 2011). Therefore, in

addition to elevated glucose intake, the expression of

glycolytic enzymes is upregulated to enhance glucose

FIGURE 1
Process of energy metabolism in cells.
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decomposition under high-glucose (HG) conditions (Jiang et al.,

2019). Recent work by Sas et al. (Sas et al., 2016) demonstrated

significantly increased levels of several important glycolytic

enzyme transcripts, including hexokinase,

phosphofructokinase, and pyruvate kinase, in the diabetic

kidney, and the protein products of these transcripts catalyze

three irreversible reactions in glycolysis. However, the unchanged

expression of TCA cycle pathway-related genes was observed in

the study. For example, the pyruvate dehydrogenase

multienzyme complex (PDC), a key regulator linking

glycolysis to the TCA cycle by catalyzing pyruvate to acetyl-

coenzyme A (CoA) irreversibly inmitochondria, was shown to be

hyperphosphorylated and inhibited, leading to diabetic kidney

injury in the presence of consistent hyperglycemia (Jeoung et al.,

2006; Rardin et al., 2009; Dugan et al., 2013; Dlamini et al., 2015).

Hence, more pyruvate undergoes anaerobic fermentation to

lactate in a compensatory process.

When glycolytic lactic acid reaches the saturation points,

some of the excess glycolytic intermediate metabolites are

shunted down its side branches (Buse, 2006). For example, the

polyol pathway was shown to metabolize as much as 33% of this

glucose when hexokinase abundance reached the saturation level

in hyperglycemia. Overproduced ROS/RNS were recognized as

important factors that divert glycolytic flux from ATP generation

toward the formation of advanced glycation end products

(AGEs), sorbitol, fructose diacylglycerol, and UDP-N-

acetylglucosamine (UDP-GlcNAc) (Chung et al., 2003). As

important nonmitochondrial sources of ROS/RNS, activated

subpathways further enhance the generation of reactive

oxygen free radical species (Singh et al., 2022).

Chronic kidney hypoxia

Diabetes has previously been shown to induce

“pseudohypoxia”, which refers to a state with increased lactate

formation regardless of subsequent exposure to normoxic oxygen

levels (Williamson et al., 1993). Later, studies confirmed the

presence of intrarenal hypoxia in both cortical and medullary

regions of diabetic kidneys, with significantly reduced oxygen

tension (Palm et al., 2004; Rosenberger et al., 2008; Laustsen et al.,

2014; Valdés et al., 2021). Importantly, a decreased level of renal

oxygenation was also found in patients with diabetes (Yin et al.,

2012). Hypoxia is the result of a mismatch between oxygen

delivery and oxygen demand. Specifically, in models of early

diabetic kidney involvement, higher levels of renal blood

perfusion and glomerular filtration rates render “primarily

ischemic” damage unlikely. Therefore, chronic hypoxia in

early diabetic kidneys is mainly related to augmented oxygen

consumption rather than impaired oxygen delivery or blood flow

(Blantz, 2014). The enhanced tubular reabsorption and increased

mitochondrial uncoupling can partially explain the increase in

oxygen utilization (Körner et al., 1994; Palm et al., 2003;

Friederich et al., 2008). In addition, oxygen diffusion distances

increase as the extracellular matrix accumulates between blood

vessels and adjacent cells over time (Fine and Norman, 2008).

Hypoxia is an established driver of the metabolic switch from

mitochondrial oxidative phosphorylation to anaerobic

fermentation, which was first observed by Pasteur in the late

19th century (Nelson and Cox, 2005). The metabolic

reprogramming process seems to involve cell-autonomous

adaptation that maintains ATP levels in response to oxygen

deficiency under hypoxic conditions (Chen et al., 2017). Studies

showed increased pyruvate-to-lactate production concomitant

with unaltered oxidative phosphorylation and activation of the

poly pathway in streptozotocin-induced diabetic kidneys when

there is sufficient oxygen (Palm et al., 2004; Laustsen et al., 2013).

Later, an experiment performed by Laustsen et al. further

demonstrated an increased sensitivity of early diabetic kidneys

to reduced oxygen availability and acquisition of a phenotype

consistent with Warburg metabolism (Laustsen et al., 2014).

Pathological damage induced by
metabolic reprogramming of
different cells in DKD

DKD is associated with structural changes that manifest as

mesangial expansion, podocyte loss, tubular atrophy, and

interstitial inflammation, which result in glomerulosclerosis

and tubular interstitial fibrosis. Proximal tubular epithelial

cells, with high-energy demands to enable constant

reabsorption of nutrients, carry abundant mitochondria that

rely mostly on fatty acid (FA) oxidation for energy at the

baseline and undergo little glycolysis (Marks et al., 2003;

Cargill and Sims-Lucas, 2020). In contrast, glomerular cells,

including podocytes, mesangial cells, and glomerular

endothelial cells, depend mainly on glucose for fuel (Abe

et al., 2010; Bhargava and Schnellmann, 2017; Harzandi et al.,

2021). In addition to resident renal cells, metabolic

reprogramming can characterize immune cells, such as

macrophages, which are closely related to kidney injury in

diabetes. As discussed below, metabolic reprogramming in

diabetes can induce multiple types of damage, including lipid

accumulation, metabolite toxicity, ROS activation, and

inflammation. With specific bioenergetic properties, cellular

activation states vary between cell types, which contribute to

specific pathological changes in the development of DKD

(Figure 2).

Tubular epithelial cells

Tubulointerstitial fibrosis is recognized as the common

pathway of chronic kidney disease progression to ESRD.

Healthy renal tubular epithelial cells require high levels of
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baseline energy; however, the capillaries around renal tubules

are relatively sparse compared with those near glomerular cells,

limiting the oxygen supply to renal tubules (Li S. et al., 2021).

Therefore, renal tubule epithelial cells are more vulnerable to

metabolic abnormities under diabetic conditions. Under normal

conditions, extracellular FAs are transported into cells mainly

via several FA transporters, among which cluster of

differentiation 36 (CD36) (Pepino et al., 2014; Glatz and

Luiken, 2018) and fatty acid-binding proteins (FABPs) are

two important transporters. CD36, a transmembrane protein

belonging to the class B scavenger receptor family, is the major

receptor mediating the binding and uptake of FAs in proximal

tubular epithelial cells (Yang et al., 2017). FABPs constitute a

family of intracellular proteins that function in long-chain fatty

acid (LCFA) uptake, metabolism, and intracellular transport in

the cytoplasm. With 15 members discovered to date, FABP1 is

expressed in epithelial tubular cells (Atshaves et al., 2010; Wang

H. et al., 2021). After entering cells, LCFAs can be converted into

LCFA-CoAs under the catalysis of acyl-CoA synthetase (ACS).

Through FABP1 and carnitine shuttles, involving carnitine

palmitoyltransferase-1 (CPT1) and CPT2 on the

mitochondrial membrane, LCFAs and LCFA-CoAs are

transported into the mitochondrial matrix for β-oxidation,
which provides the TCA cycle with acetyl-CoA (Marks et al.,

2003). Excessive acetyl-CoA can be transported out of

mitochondria via carnitine acetyltransferase (CACT), which

resynthesizes new FAs (Chen et al., 2019; Thongnak et al.,

2020). Unconsumed FAs are converted to triglycerides and

then into lipid droplets through two sequential reactions

catalyzed by lipin-1 (LPIN1) and perlipin-2 (PLIN2) (Donkor

et al., 2009). Recently, metabolic reprogramming in proximal

tubular epithelial cells was demonstrated in both human and

animal models (Czajka and Malik, 2016; Srivastava et al., 2018;

Cai et al., 2020). On one hand, alterations in fuel-source

preferences, from FAs to glucose, lead to impaired FA

oxidation (FAO) in proximal tubular epithelial cells in the

context of diabetes or sustained hyperglycemia. With the

increased uptake of intracellular FAs (Su et al., 2017;

Puchałowicz and Rać, 2020), excessive lipid droplets

accumulate inside proximal tubular epithelial cells (Herman-

Edelstein et al., 2014), which triggers further lipotoxicity by

inducing inflammation, oxidative stress, endoplasmic reticulum

stress, and so on and ultimately leads to cell apoptosis and renal

fibrosis (Wang H. et al., 2021). On the other hand, many studies

showed that the elevated expression of glycolytic enzymes and

enhanced glycolysis in diabetes further induce

epithelial–mesenchymal transition (EMT) and exacerbate

renal fibrosis (Storch and Corsico, 2008); (Yin et al., 2018; Li

et al., 2020a) In addition, several metabolites accumulate in the

TCA cycle due to decreased mitochondrial mechanisms; one of

these metabolites, fumarate, was shown to play a negative role in

the mesenchymal activation (Sciacovelli et al., 2016)and cell

death (Laustsen et al., 2020)of tubular epithelial cells in diabetic

kidneys (You et al., 2016; Miura et al., 2019).

Podocytes

Podocytes are highly specialized cells with complex

structures known as interdigitating foot processes, slit

FIGURE 2
Pathological damage induced by metabolic reprogramming of different cells during development of DKD.
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diaphragms, and focal adhesion complexes, contributing to the

formation of a glomerular filtration barrier. To sustain the

complex cellular morphology as well as their normal function,

podocytes rely on a constant energy supply involving both

mitochondrial oxidative phosphorylation and glycolysis

(Imasawa and Rossignol, 2013). The podocyte bioenergetic

status seems to be dependent on their stage of differentiation.

For example, aerobic glycolysis has been shown to be the main

source of energy before differentiation, and OXPHOS is

predominant during and after differentiation, with

concomitant stimulation of mitochondrial biogenesis and

functions (Imasawa et al., 2017; Yuan et al., 2020). In

differentiated podocytes, metabolism switches to anaerobic

glycolysis when the mitochondrial function is suppressed (Abe

et al., 2010; Brinkkoetter et al., 2019). However, despite the

significant decrease in mitochondrial oxidative

phosphorylation as a result of PPARγ coactivator-1α (PGC-

1α) and mitochondrial transcription factor A (TFAM) activity

knockdown, no changes were found in urinary albumin excretion

or glomerular morphology (Brinkkoetter et al., 2019). Therefore,

the compensatory increase in glycolysis is thought to provide

sufficient energy to meet podocyte needs under normal

conditions; however, in the setting of cell stress such as

hyperglycemia, the compensatory mechanism may not meet

cellular needs. Metabolic reprogramming in HG-exposed

human podocytes was shown to shift during a

dedifferentiation process with decreased expression of

functional proteins, such as podocin (Imasawa et al., 2017),

leading to podocyte injury (Saleem et al., 2002). Further

studies showed that inhibiting pyruvate from glycolysis to the

TCA cycle in diabetic mice led to substantial podocyte damage,

manifesting as a decrease in the number of cells and a reduction

of synaptopodin (Qi W. et al., 2017; Li et al., 2020b). The

increased flux to side branches of glycolysis is another

mechanism of podocyte damage in metabolic reprogramming,

instead of generating pyruvate, glucose enters side branches to

produce toxic metabolites, such as sorbitol, methylglyoxal, and

diacylglycerol, contributing to podocyte apoptosis (Qi et al.,

2018). In addition, lipotoxicity in podocytes due to decreased

metabolism has recently attracted attention (Audzeyenka et al.,

2022). For example, fructose was shown to drive mitochondrial

metabolic reprogramming in differentiated podocytes, resulting

in lipid accumulation and cell injury (Fang et al., 2021).

Mesangial cells

Glomerular mesangial cells (MCs) are specialized

pericytes located around the glomerular capillaries within

the renal corpuscle, and they synthesize the mesangial

matrix and regulate glomerular hemodynamics via cell

contraction and release various cytokines (Ebefors et al.,

2021).Mesangial cell proliferation is stimulated in the early

stage of DKD; subsequently, the growth of the cells is arrested,

and they undergo hypertrophy and apoptosis (Khera et al.,

2006; Tsai et al., 2020; Chen et al., 2022), contributing to

glomerular sclerosis and a decline in the glomerular filtration

rate. MCs exhibited higher basal respiration rates and reserved

energy-production capacity, possibly making them more

resistant to hyperglycemia. Their mitochondrial respiration

was unaltered under hyperglycemic conditions for a short

time. However, exposure to sustained hyperglycemia did not

enhance glycolysis in MCs despite compromised

mitochondrial respiration, in contrast to the effect on

proximal tubular epithelial cells. Chronic hyperglycemia

caused MCs to lose metabolic switching flexibility in

response to an acutely high glucose load causing

bioenergetic deficits in these cells (Czajka and Malik, 2016).

An earlier study by Asano et al. (Asano et al., 2000) may have

explained this phenomenon by showing that excessive glucose

entered the sorbitol pathway, not the glycolytic pathway, in

hyperglycemia, resulting in the accumulation of sorbitol and

fructose in MCs. As a result, mesangial cells lost their

contractile responsiveness and proliferative capacity

(Derylo et al., 1998). Notably, a recent study by Xu et al.

(Xu et al., 2021) revealed that glucose fluctuation, which refers

to intermittent hyperglycemia, intensified aerobic glycolysis

and suppressed OXPHOS inMCs, and suppressing the aerobic

glycolytic switch improved cell viability, relieved

inflammatory injury, and decreased the apoptosis rate.

Endothelial cells

Glomerular endothelial cells (GECs), which reside within

the glomerular capillary and are facilitated by fenestrae and a

luminal glycocalyx layer, contribute to the formation of the

glomerular filtration barrier (Haraldsson and Nyström, 2012).

GEC dysfunction was recently intensively studied and was

found to be a key perpetrator in the initiation and

development of DKD (Fu J. et al., 2015; Shi and Vanhoutte,

2017; Maestroni and Zerbini, 2018). In contrast to other renal

cells, endothelial cells primarily rely on glycolysis, not

mitochondrial oxidative phosphorylation, for ATP

production despite access to oxygen (Eelen et al., 2018).

However, mitochondrial respiration still plays an important

role in maintaining endothelial cell structural and functional

integrity, such as by maintaining Ca2+ homeostasis and

regulating oxidative stress (Yu et al., 2017; Yamamoto

et al., 2018; Salnikova et al., 2021).

Diabetes is, in particular, a state of chronic hypoxia, and

with elevated glucose uptake and disrupted glucose flow, it

contributes to metabolic reprogramming in endothelial cells

by further enhancing glycolysis and reducing mitochondrial

respiratory capacity (Wu et al., 2017; Li J. et al., 2021; Dumas

et al., 2021). Studies showed that hyperglycemia led to an
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upregulation of glycolytic metabolism and a downregulation

of mitochondrial activity in GECs (Cheng et al., 2011; Qi H.

et al., 2017; Song et al., 2022). Suppressed mitochondrial

activity was associated with increased endothelin-1 receptor

type A (EDNRA) expression and circulating endothelin-1

(ET-1) abundance, which led to the loss of fenestrae in GECs

(Qi H. et al., 2017). Glycolytic activation promoted

endothelial inflammation and macrophage infiltration

(Song et al., 2022). In addition, a significant increase in

dysfunction pathways can lead to increased oxidative

stress. For example, enhanced glucose metabolism in the

hexosamine pathway increased O-linked β-N-

acetylglucosamine (O-GlcNAc) modification of endothelial

nitric oxide synthase (eNOS) in experimental DKD and

subsequent ROS production (Du et al., 2001). Excessive

mitochondrial superoxide produced in dysfunctional

mitochondria further increased side branch pathway

metabolism (Clyne, 2021). Moreover, the metabolic

response was accompanied by a series of molecular

changes, such as increased expression of FASN (encodes

fatty acid synthase) and arginase II (which catalyzes the

hydrolysis of L-arginine and L-ornithine) and decreased

biosynthesis of hyaluronan, which induces lipid

accumulation (Wahl et al., 2016), triggers eNOS

uncoupling, and reduces glycocalyx production in GECs

(Wang G. et al., 2020). All these changes accelerated and

exacerbated diabetic glomerular lesions and progression.

Macrophages

Macrophages, originating from monocytes in peripheral

blood, are classified into two distinct subtypes, M1 and

M2 macrophages. Under homeostatic conditions, the

M2 macrophage anti-inflammatory phenotype is

predominant and depends mainly on OXPHOS for ATP. In

contrast, stimulated resident macrophages acquire a

proinflammatory M1 phenotype, which leads to

inflammatory activity and preferential glycolysis even under

conditions of sufficient oxygen (Curi et al., 2017). Metabolic

reprogramming from OXPHOS toward aerobic glycolysis has

been proven to be a primary indicator and central regulator

during inflammatory activation by rapidly providing

quiescent macrophages with sufficient energy (El Kasmi

and Stenmark, 2015). Therefore, macrophages exhibit

uniquely high metabolic plasticity, which enables them to

respond quickly to external stimuli, including hyperglycemic

signals.

A recent study showed that M1 polarization was increased

in the kidneys of diabetic mice, and the upregulation of

glycolytic enzyme expression, as well as lactic acid

production and glucose uptake, was observed in high-

glucose-stimulated macrophages. As a result, increased

proinflammatory cytokine production caused pathological

damage in DKD. Macrophage infiltration into glomeruli

and the interstitium are related to renal impairment in

DKD. Activated M1 macrophages secrete inflammatory

cytokines, contributing to renal pathological damage, such

as mesangial cell proliferation, podocyte apoptosis, and renal

fibrosis (Chow et al., 2004; You et al., 2013; Lin et al., 2022).

Cellular and molecular regulators of
metabolic reprogramming in diabetic
kidney disease

As discussed above, chronic hypoxia, increased glycolytic

flux, and mitochondrial dysfunction are potential

mechanisms of metabolic reprogramming. Hypoxia-

inducible factor 1α (HIF-1α) is a well-known nucleoprotein

activated under hypoxic conditions. Pyruvate kinase M2

(PKM2) is a key enzyme in glycolytic activity, and sirtuin 3

(SIRT3) directly interacts with various mitochondrial

proteins, playing a crucial role in regulating mitochondrial

functions. Therefore, we focus on the regulatory mechanisms

mediated by these three molecules in the metabolic

reprogramming of DKD (Table 1).

HIF-1α

HIF-1α is the active subunit of HIF-1 and functions as a

master regulator of cellular and systemic homeostatic

responses to cytoplasmic hypoxia. Under normoxic

conditions, HIF-1α is rapidly degraded through the

ubiquitin–proteasome pathway, followed by hydroxylation

by prolyl hydroxylases (PHDs). When the oxygen supply is

limited, the increased stability of the active subunit leads to

HIF-1α accumulation and translocation to the nucleus, where

it binds to hypoxia response elements (HREs), resulting in

elevated transcription of the target genes to facilitate

metabolic adaptation to hypoxia (Wang et al., 1995).

HIF-1α is a key transcriptional regulator of metabolic

modification. On one hand, HIF-1α reprograms central

metabolism by enhancing glycolysis. HIF-1α functions as a

direct transcriptional activator of the glucose transporters

GLUT1 and GLUT3 and nearly all glycolytic enzymes,

including phosphoglycerate kinase 1 (PGK-1), glucose-6-

phosphate isomerase (GPI), phosphofructose kinase-1 (PFK-

1), and lactate dehydrogenase (LDH), to promote both the

uptake and catabolism of glucose (Hu et al., 2006; Zhong

et al., 2010; Yan et al., 2017). On the other hand, HIF-1α
negatively regulates mitochondrial respiration. Evidence

suggests that HIF-1α suppresses the TCA cycle and ETC

activity by preventing substrates, such as glucose and FAs,

from being catabolized to acetyl-CoA, downregulating
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TABLE 1 Molecular regulators of metabolic reprogramming in DKD.

Key
regulators

Author Year Models
in vivo

Models
in vitro

Effect
on metabolic
reprogramming

Expression
in DKD

Injuries References

HIF-1α Ting Cai
et al.

2020 Human with diabetes proximal
tubule

Promote ↑ mitigate related
tubulointerstitial
injury;

Cai et al. (2020)

CD-1mice + STZ epithelial cells
(PTCs)

renal fibrosis

HIF-1α Hanxu Zeng
et al.

2020 streptozotocin (STZ)-
induced diabetic
C57BL/6 mice

(HG)-
stimulated
bone marrow-
derived
macrophages
(BMMs)

Promote ↑ renal
inflammation

Zeng et al. (2020)

HIF-1α Wei-Long
Xu et al.

2021 - The mouse
glomerular
mesangial
cells (MCs)

Promote ↑ inflammation
injury; apoptosis

Xu et al. (2021)

HIF-1α Ryoichi
Bessho et al.

2019 male db/db mice human renal
proximal
tubular
epithelial cells
(HRPTECs)

Promote ↑ tubulointerstitial
fibrosis

Bessho et al. (2019)

HIF-1α Bijaya K.
Nayak et al.

2016 OVE26 mice Mesangial
cells (MCs)

Promote ↑ glomerular injury; Nayak et al. (2016)

tubulointerstitial
fibrosis

HIF-1α Keiichiro
Matoba et al.

2013 male db/db mice Murine
mesangial
cells
(MES-13)

Promote ↑ glomerulosclerosis Matoba et al. (2013)

PKM2 Weier Qi
et al.

2017 Human with diabetes; Mouse
podocytes
and human
podocyte cell
lines

Dimeric
PKM2—Promote

Dimeric
PKM2—↑

fibrosis in both
glomeruli and
tubules

Qi et al. (2017b)

STZ-induced diabetic
DBA2/J mice; diabetic
eNos KO mice.

Tetrameric
PKM2—↓

PKM2 Le Li et al. 2020 db/db mice HUVECs Dimeric
PKM2—Promote

Dimeric
PKM2—↑

renal
inflammation

Li et al. (2020c)

Tetrameric
PKM2—↓

PKM2 Haijie Liu
et al.

2021 CD-1 mice with STZ-
induced diabetes

HK2 cells Dimeric
PKM2—Promote

Dimeric
PKM2—↑

kidney fibrosis Liu et al. (2021)

Tetrameric
PKM2—↓

PKM2 Swayam
Prakash
Srivastava
et al.

2018 CD-1 mice with STZ-
induced diabetes;

- Dimeric
PKM2—Promote

Dimeric
PKM2—↑

kidney fibrosis Srivastava et al.
(2018)

Tetrameric
PKM2—↓

PKM2 Eva M
Palsson-
McDermott
et al.

2015 - BMDMs and
PECs isolated
from C57BL/
6 mice

Dimeric
PKM2—Promote

Dimeric
PKM2—↑

inflammation Palsson-McDermott
et al. (2015)

Tetrameric
PKM2—↓

PKM2 Jialin Fu 2022 STZ-induced diabetes;
mice with
PKM2 overexpression
in podocytes
(PPKM2Tg)

- Dimeric
PKM2—Promote

Dimeric
PKM2—↑

fibrosis;
inflammation

Fu et al. (2022)

Tetrameric
PKM2—↓

SIRT3 Swayam
Prakash
Srivastava
et al.

2021 CD-1 mice with STZ-
induced diabetes

HMVECs;
HK-2 cells

Suppress ↓ endothelial-to-
mesenchymal
transition; kidney
fibrosis

Srivastava et al.
(2021)

(Continued on following page)
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mitochondrial mass by promoting mitophagy and inhibiting

mitochondrial biogenesis (Thomas and Ashcroft, 2019). In

turn, mitochondrial dysfunction increases the levels of ROS,

which can stabilize HIF-1α by inhibiting the activity of PHDs,

and another oxygen-dependent dioxygenase enzyme, factor

inhibiting HIF (FIH), promotes HIF degradation (Hagen,

2012). An increase in TCA cycle metabolites, such as

succinate and fumarate, also leads to HIF-1α accumulation by

inhibiting PHDs (Selak et al., 2005; You et al., 2016). Importantly,

these processes progress independent of hypoxic. Additionally,

HIF-1α signaling inhibits the diversion of pyruvate from

glycolysis into the TCA cycle by increasing the expression of

LDH and pyruvate dehydrogenase kinase (PDK), which

phosphorylates and inactivates PDC (Kim et al., 2006).

A HIF-1α-mediated switching to glycolysis was observed

in rodent models of DKD, proximal tubules, mesangial cells,

and macrophages under HG conditions and proved to play a

pivotal role in the fibrosis process of DKD by inducing

inflammation, lipid accumulation, and the EMT (Matoba

et al., 2013; Nayak et al., 2016; Bessho et al., 2019).

Therefore, metabolic reprogramming regulated by HIF-1α
is likely an important target for ameliorating DKD fibrosis.

PKM2

PKM2 is a key isoform of pyruvate kinase (PK), acting as the

rate-limiting glycolytic enzyme that catalyzes the final step from

phosphoenolpyruvate (PEP) to pyruvate (Tsutsumi et al., 1988;

Bluemlein et al., 2011). PKM2 is mainly expressed in the kidneys

(Alquraishi et al., 2019), existing as an active tetramer, a less

active dimer, or an inactive monomer (Wen et al., 2021). In most

cases, PKM2 forms tetramers under physiological conditions,

promoting the entry of pyruvate into the TCA cycle. However,

researchers have identified a shift of PKM2 from tetramer to

dimer or monomer formation in models of DKD (Sun et al.,

2011; Qi W. et al., 2017; Li et al., 2020b), thereby shifting glucose

metabolism toward aerobic glycolysis (Tamada et al., 2012). This

shift to lower activity of PKM2 is always caused by post-

translational modifications of PKM2, such as phosphorylation,

acetylation, sulfenylation, and oxidation (Yang and Lu, 2015; Qi

W. et al., 2017; Alquraishi et al., 2019).

Low-activity dimers or inactive monomers of PKM2 reduce

the conversion of PEP to pyruvate, leading to accumulation of

intermediary metabolites upstream. The intermediary

metabolites are then available as precursors for the glycolytic

TABLE 1 (Continued) Molecular regulators of metabolic reprogramming in DKD.

Key
regulators

Author Year Models
in vivo

Models
in vitro

Effect
on metabolic
reprogramming

Expression
in DKD

Injuries References

SIRT3 Jinpeng Li
et al.

2020 CD-1 mice with STZ-
induced diabetes

HK-2
proximal
tubule cells;
HMVECs.

Suppress ↓ epithelial-to-
mesenchymal
transition;
endothelial-to-
mesenchymal
transition; kidney
fibrosis

Li et al. (2020a)

SIRT3 Yunfei
Wang et al.

2019 - HUVECs Suppress ↓ endothelial cell
apoptosis in
kidneys; renal
inflammation
injury

Wang et al. (2019)

SIRT3 Zhiwen Liu
et al.

2019 db/db mice mouse
proximal
tubular cell
line
(BUMPT)

Suppress ↓ renal oxidative
damage and cell
apoptosis

Liu et al. (2019)

SIRT3 Xiaocui Jiao
et al.

2016 - HK-2 cell Suppress ↓ oxidative stress;
renal tubular cell
apoptosis

Jiao et al. (2016)

SIRT3 Ying Wang
et al.

2021 - HK-2 cell Suppress ↓ inhibition of
autophagy

Wang et al. (2021b)

SIRT3 Monica
Locatelli
et al.

2020 BTBR ob/ob mice with
type 2 diabetes.

- Suppress ↓ glomerular
inflammation

Locatelli et al. (2020)

SIRT3 Li Zhuo
et al.

2011 - Rat mesangial
cell
line (MCs)

Suppress ↓ mesangial
hypertrophy

Zhuo et al. (2011)
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side branches, leading to accumulation of toxic metabolites

(Srivastava et al., 2018; Liu et al., 2021). Besides, the

PKM2 dimer can be translocated into the nucleus via multiple

mechanisms (Hitosugi et al., 2009; Yang et al., 2012; Wang et al.,

2014; Yang and Lu, 2015), where it acts as a coactivator of HIF-1α
(Luo et al., 2011) and signal transducer and activator of

transcription 3 (STAT3) (Gao et al., 2012), a member of the

STAT protein family, mainly in response to various cytokines

and growth factors (You et al., 2015; Zheng et al., 2019) to

promote metabolic reprogramming. Nuclear PKM2-mediated

STAT3 has been reported to be sufficient to induce metabolic

reprogramming of macrophages by increasing HIF-1 signaling

(El Kasmi and Stenmark, 2015). The nuclear translocation of

PKM2 was also shown to increase the expression of LDH and

PDK1, thus ultimately leading to lactate accumulation (Luo et al.,

2011; Yang and Lu, 2015). Moreover, researchers revealed that

diabetic patients with advanced kidney functions had lower levels

of active PKM2 in renal glomeruli and podocyte-specific PKM2-

knockout (KO) mice with diabetes developed worse albuminuria

and glomerular pathology. They further discovered that by

activating PKM2, mitochondrial biogenesis, mitochondrial

fusion, and mitochondrial membrane potential were re-

established, suggesting that PKM2 also regulates metabolic

reprogramming by affecting mitochondrial functions (Qi W.

et al., 2017; Gordin et al., 2019). In addition, pathological

PKM2 isoform switching has also been described in renal

tubular epithelial cells and endothelial cells of diabetic

kidneys, inducing inflammation by regulating intracellular

metabolic reprogramming and, eventually, leading to

glomerular lesions and renal fibrosis, which promotes DKD

progression (Qi W. et al., 2017; Li L. et al., 2020; Liu et al., 2021).

SIRT3

SIRT3, belonging to the sirtuin family, is a highly conserved

nicotinamide adenine dinucleotide (NAD+)-dependent histone

deacetylase (de Oliveira et al., 2010). It is expressed at high levels

in the kidneys (Jin et al., 2009) as long or short isoforms

(Murugasamy et al., 2022). The short isoform is predominant

in the mitochondrial matrix, where it acts as a functionally active

mitochondrial deacetylase (Onyango et al., 2002; Schwer et al.,

2002). SIRT3 can directly interact with at least 84 mitochondrial

proteins (Yang et al., 2016) and regulates several cellular

processes, including mitochondrial DNA damage repair, gene

expression, energy metabolism, redox balance, and autophagy

(Ahn et al., 2008; Sundaresan et al., 2008; Cimen et al., 2010;

Cheng et al., 2013; Li Y. et al., 2018).

However, with aging and under pathological conditions,

SIRT3 expression is downregulated (Benigni et al., 2016). In a

high-glucose environment, reduced SIRT3 abundance promotes

glycolysis and inhibits OXPHOS through the regulation of

oxidative stress and mitochondria-related proteases, resulting

in metabolic reprogramming in kidney cells. Reduced

SIRT3 levels directly inhibit the activity of manganese

superoxide dismutase (MnSOD), which is the first line of

defense against oxidative stress (Finley et al., 2011a). By

inhibiting the deacetylation of its target protein forkhead box

protein O3a (FOXO3a), SIRT3 depletion leads to the decreased

activity of other antioxidants, such as catalase and isocitrate

dehydrogenase 2 (IDH2), which is associated with glutathione

reductase (Jacobs et al., 2008; Sundaresan et al., 2009; Yu et al.,

2012). As a result, excessive ROS accumulates and stabilizes HIF-

1α, which subsequently promotes the glycolytic process (Finley

et al., 2011a). Studying SIRT3-knockout mice, researchers found

hyperacetylation and reduced activity of enzymes involved in the

TCA cycle and ETC activity, including NADH dehydrogenase

ubiquinone 1 alpha subcomplex 9 (NDUFA9) in complex I,

succinate dehydrogenase subunit A (SDHA) in complex II, and

complex III (Ahn et al., 2008; Finley et al., 2011b; Wang S. et al.,

2020). In addition, decreased SIRT3 levels could result in reduced

mitochondrial biosynthesis, abnormal mitochondrial dynamics,

impaired mitophagy, and an increase in abnormal mitochondria,

ultimately contributing to mitochondrial dysfunction (Tseng

et al., 2013; Feng et al., 2018). In addition, the lack of

SIRT3 for promoting glycolysis has been associated with a

higher PKM2 dimer formation rate (Srivastava et al., 2018)

and activated STAT3 signaling (Srivastava et al., 2020b).

Reduced SIRT3 levels lead to hyperacetylation and decreased

PDC activity, thereby promoting glycolysis–glucose oxidative

uncoupling and the accumulation of pyruvate/lactate (Bause

and Haigis, 2013; Zhang et al., 2020).

Emerging therapeutics for regulating
metabolic reprogramming in diabetic
kidney disease

Several strategies have been proven effective in controlling

the metabolic switching between mitochondrial OXPHOS and

glycolysis. Renin-angiotensin-aldosterone system (RAAS)

inhibitors, including angiotensin-converting enzyme inhibitors

(ACEIs) and angiotensin II receptor blockers (ARBs), are

conventional therapies for DKD. A recent study by Srivastava

et al. (Srivastava et al., 2020a) showed that imidapril, an ACE

inhibitor, suppressed abnormal glucose metabolism through

glycolysis and simultaneously restored mitochondrial FAO,

thus ameliorating renal fibrosis in diabetic mice. The

underlying mechanism might be related to the restoration of

the expression of N-acetyl-seryl-aspartyl-lysyl-proline

(AcSDKP), an endogenous peptide that is normally present in

the plasma, and the exogenous addition of this peptide led to a

similar effect. However, ARBs did not exert any effect on

metabolic reprogramming.

Recently, large placebo-controlled studies confirmed the

beneficial effects of SGLT2 inhibitors in delaying the
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progression of ESRD in diabetic patients (Neal et al., 2017;

Perkovic et al., 2019). These inhibitors reduced tubular

reabsorption of glucose, thus lowering blood glucose and

enhancing renal oxygenation of the cortical region (Hesp

et al., 2020). They also normalized TCA cycle activity,

mitigated TCA-metabolite accumulation, and inhibited

oxidative stress in the kidneys of diabetic mice (Tanaka et al.,

2018). Recent studies suggested that dapagliflozin reduces

diabetes-induced tubulointerstitial damage by suppressing

metabolic switching from lipid oxidation to glycolysis (Cai

et al., 2020), and another SGLT2 inhibitor, empagliflozin, was

shown to protect kidney tubules from undergoing the EMT by

normalizing suppressed SIRT3 levels and inhibiting aberrant

glycolysis (Li et al., 2020a). In addition to the medicines

already on the market, some preclinical therapies were also

proven effective. For example, Interleukin-22 (IL-22), an

endogenous cytokine secreted by immune cells, has been

shown to correct metabolic reprogramming by maintaining

mitochondrial integrity, reducing ROS, and inhibiting lipid

accumulation in DKD (Chen et al., 2021; Shen et al., 2021).

Glycolysis inhibitors and PKM2 activators have also been

revealed to effectively disrupt metabolic reprogramming (Qi

W. et al., 2017; Liu et al., 2021). Therefore, metabolic

reprogramming is a pivotal target, and therapeutic strategies

regulating metabolic reprogramming may be beneficial in

retarding DKD progression.

Conclusions and future perspectives

The regulation of the metabolic network is complicated. As

we reviewed, a combination of several mechanisms accounts for

metabolic reprogramming in DKD, and all these factors influence

each other. Oxygen depletion directly leads to decreased

mitochondrial metabolism and glycolytic pathway activation

(Seagroves et al., 2001). In turn, increased mitochondrial

uncoupling contributes to intrarenal hypoxia in diabetic

kidneys by stimulating O2 consumption (Friederich et al.,

2008). The increased side branches and mitochondria

dysfunction interact with each other through ROS production

(Brownlee, 2001). Thus, some key molecules of energy

metabolism are discovered as core regulators of metabolic

reprogramming and represent potential targets for the

treatment, such as HIF-1α, PKM2, and SIRT3. An in-depth

understanding of these key regulatory molecules will help to

develop effective drugs to reverse energy metabolism

abnormalities. Moreover, the affected cells are not isolated in

the kidneys. There is also a cross-talk between cells, which means

that a change in cellular metabolic reprogramming may cause

damage to other cells. For example, the metabolic

reprogramming of endothelial cells leads to podocyte defects

and depletion (Qi H. et al., 2017). The elevated anaerobic

glycolysis in renal tubular epithelial cells inhibited the

proliferation and differentiation of co-incubated podocytes (Li

M. et al., 2018). Therefore, future research should focus on

metabolic reprogramming in more types of cells and the

interaction between them.

In summary, the pathogenesis of DKD development is complex,

and therapies that target a single mechanism or pathway show little

effectiveness in treating the disease. Metabolic reprogramming

includes multiple steps in energy molecule processing and can

lead to a broad spectrum of abnormalities. Knowing the role

played by metabolic reprogramming in DKD is of great

importance for understanding the pathophysiology and opens the

door to a variety of novel therapeutic applications.
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