
Novel perspectives on the
therapeutic role of
cryptotanshinone in the
management of stem cell
behaviors for high-incidence
diseases

Xiaomeng Guo1, Ruishuang Ma1, Meng Wang1,
Benson Wui-Man Lau2, Xiaopeng Chen1* and Yue Li1*
1State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese
Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2Department of
Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China

Cryptotanshinone (CTS), a diterpenoid quinone, is found mostly in Salvia

miltiorrhiza Bunge (S. miltiorrhiza) and plays a crucial role in many cellular

processes, such as cell proliferation/self-renewal, differentiation and apoptosis.

In particular, CTS’s profound physiological impact on various stem cell

populations and their maintenance and fate determination could improve

the efficiency and accuracy of stem cell therapy for high-incidence disease.

However, as much promise CTS holds, these CTS-mediated processes are

complex and multifactorial and many of the underlying mechanisms as well as

their clinical significance for high-incidence diseases are not yet fully

understood. This review aims to shed light on the impact and mechanisms

of CTS on the actions of diverse stem cells and the involvement of CTS in the

many processes of stem cell behavior and provide new insights for the

application of CTS and stem cell therapy in treating high-incidence diseases.
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Introduction

S. miltiorrhiza is a well-known traditional Chinese herb utilized as a medicine and a

health-promoting food (Shi et al., 2019). Cryptotanshinone is a natural product found in

S. miltiorrhiza. Many compound medicines containing CTS are currently available on the

Chinese market, including Tanshinone Capsules, Danhong Injection (Wang et al., 2021c),

and Compound Danshen Dropping Pills (Wang et al., 2022b). In addition, the clinical

trials of chemical drugs are summarized (Table 1). CTS is being studied for a variety of

pharmacological effects, including anti-inflammatory (Wu et al., 2020; Liu et al., 2021a),

neuroprotective (Mao et al., 2021), cardioprotective (Wang et al., 2021e), anti-fibrosis (Lo
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et al., 2017; Zhang et al., 2020) and anti-tumor (Dong et al., 2018;

Han et al., 2019; Vundavilli et al., 2022). The diversity of

pharmacological effects of CTS demonstrates unique potential

for the treatment of high-incidence diseases.

In recent years, research on some high-incidence diseases,

such as neurodegenerative diseases, cancer, obesity and obesity-

related complications has increased (Blüher, 2019; Siegel et al.,

2022). One is that these diseases exist in all populations and age

stages, the other is that these diseases have a high mortality rate

(Hao et al., 2021; Gribsholt et al., 2022; Siegel et al., 2022), and

because of the complexity and intractability of these diseases, the

effect of treatment is limited. In contrast, the ability of CTS to

modulate different signaling pathways may offer therapeutic and

preventive benefits. CTS has been shown to be effective in

treating these high-incidence diseases such as obesity, diabetes

(Kim et al., 2007), atherosclerosis (Hao et al., 2019),

neurodegenerative disease (Maione et al., 2018) and cancer

(Chen et al., 2021; Shi et al., 2022). But its effects on stem cell

behaviors remain unclear. CTS, as diterpenoid quinones, mostly

have o-quinone or para-quinone structures with ternary or four-

membered carbon rings on the skeleton (Wang et al., 2017). As

lipid soluble components, CTS can more easily pass through the

cell membrane (Chen et al., 2012). In addition, diterpenoid

quinones can determine the fate of stem cells through a

variety of different mechanisms (Li et al., 2018a; Kim et al.,

2019; Liu et al., 2019). It provides a further opportunity and

reference for future CTS research. Our work focuses on the

diverse and critical roles of CTS in various types of stem cells, and

the potential of stem cell-dependent therapy for high-incidence

diseases.

Stem cells can be extracted from embryonic and postnatal

animal tissues and have the dual properties of self-renewal and

differentiation (De Los Angeles et al., 2015). Stem cell research

has made significant progress in recent years due to its unique

features that hold great promise for medicine (Madl et al., 2018).

Stem cell transplantation, in which damaged tissues or organs

can be healed via autologous or allogeneic stem cell

transplantation, is one of the growing subjects of interest in
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this discipline. Based on the qualities of stem cells listed above,

stem cell therapies have been widely employed in osteoporosis

and obesity and intensively explored in neurodegenerative

diseases and cancer (Lunn et al., 2011; Plaks et al., 2015;

Pagnotti et al., 2019). Nevertheless, stem cell therapy has

disadvantages, including a low transplantation rate and a low

survival rate (Vissers et al., 2019; Xu et al., 2019). Combining

stem cell therapy with Chinese herbs may improve stem cell

therapy efficacy. CTS, for example, can enhance the development

of C3H10T1/2 mesenchymal stem cells (C3H10T1/2 MSCs) into

brown adipocytes (Imran et al., 2017). CTS can also enhance the

development of bone marrow mesenchymal stem cells (BMSCs)

into neural lineage cells (Deng et al., 2006), which may open up

new avenues of investigation for obesity and spinal injuries.

To demonstrate the multifunctional potential of CTS as a

treatment for high-incidence diseases, this article reviews its

regulatory effects on C3H101/2 MSCs, BMSCs, cancer stem

cells (CSCs), and neural stem/progenitor cells (NSCs/NPCs)

TABLE 1 Clinical trials of compound medicines containing CTS in various diseases (www.clinicaltrials.gov).

Conditions Age Population Drug
Names

Duration
(weeks)

Status ClinicalTrials.gov
Identifier

Website
Links

References

Covid-19 Child,
Adult,
Older
Adult

Intermediate-
size

T89 capsule 2 Available NCT04646031 https://clinicaltrials.gov/ct2/
show/NCT04646031?term=
danshen&draw=4&rank=22

N/A

Acute
Mountain
Sickness

18–50 58 CDDP 1 Completed NCT03270787 https://clinicaltrials.gov/ct2/
show/NCT03270787?term=
danshen&recrs=e&draw=
2&rank=1

N/A

Myocardial
Infarction

18–75 268 CDDP N/A Recruiting NCT05000411 https://clinicaltrials.gov/ct2/
show/NCT05000411?term=
danshen&draw=2&rank=9

N/A

Hypertension 20–55 20 T89 capsule 4 Completed NCT01679028 https://clinicaltrials.gov/ct2/
show/NCT01679028?term=
danshen&draw=3&rank=26

N/A

Angina Pectoris 20–80 1,004 T89 capsule 4 Completed NCT01659580 https://clinicaltrials.gov/ct2/
show/NCT01659580?term=
Salvia+miltiorrhiza&draw=
2&rank=25

Shi et al.
(2020)

Stable Angina 18–50 24 T89 capsule 4 Completed NCT01473888 https://clinicaltrials.gov/ct2/
show/NCT01473888?term=
T89&draw=2&rank=4

N/A

Acute
Mountain
Sickness (AMS)

18–55 132 T89 capsule 2 Completed NCT03552263 https://clinicaltrials.gov/ct2/
show/NCT03552263?term=
danshen&recrs=e&draw=
2&rank=16

N/A

Angina Pectoris 18–80 124 T89 capsule 12 Completed NCT00797953 https://pubmed.ncbi.nlm.
nih.gov/?term=
NCT00797953&filter=
simsearch1.fha

N/A

Unstable
Angina Pectoris

35–75 160 Danhong
injection

4 Completed NCT02007187 https://clinicaltrials.gov/ct2/
show/NCT02007187?term=
danshen&draw=3&rank=46

Chen et al.
(2022)

Acute Stroke 18–70 1,503 Danhong
injection

13 Completed NCT01677208 https://clinicaltrials.gov/ct2/
show/NCT01677208?term=
danshen&recrs=e&draw=
2&rank=23

Li et al. (2015)

Chronic Stable
Angina

18–70 920 Danhong
injection

13 Completed NCT01681316 https://clinicaltrials.gov/ct2/
show/NCT01681316?term=
danshen&draw=3&rank=47

Wang et al.
(2015a),
Liu et al.
(2021b)

Fatty Liver
Disease

18–65 118 Tablet
salviae
miltiorrhizae

24 Active, not
recruiting

NCT05076058 https://clinicaltrials.gov/ct2/
show/NCT05076058?term=
danshen&draw=2&rank=11

N/A

Peripheral
Arterial Disease
Intermittent
Claudication

40 Years
and older

107 Danshen
Gegen
Capsule

24 Completed NCT02380794 https://clinicaltrials.gov/ct2/
show/NCT02380794?term=
danshen&draw=8&rank=5

N/A
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(Table 2), and discusses the mechanism by which CTS promotes

cell proliferation/self-renewal and differentiation. This review

demonstrates the potential for CTS to improve the application of

stem cell therapies and stem cell transplantation and provide new

therapeutic strategies for the high-incidence diseases.

CTS and C3H10T1/2 mesenchymal
stem cells

C3H10T1/2 can be used as a viable MSC model to

determine the ability of potentially obese cells to

differentiate into adipocytes (Wen et al., 2022). The

induction of C3H10T1/2 MSCs into brown adipocytes is

critical for obesity treatment. Between the mid-1970s and

2020, the World Health Organization estimates that the

worldwide obesity rate has tripled and may continue to rise

(Kumanyika and Dietz, 2020). Obesity is strongly associated

with cardiovascular disease, type 2 diabetes, and cancer, the

latter of which accounts for most human health problems

(GBD 2015 Obesity Collaborators et al., 2017; Kumanyika and

Dietz, 2020). Intriguingly, CTS has been revealed to induce

differentiation of C3H10T1/2 MSCs into adipocyte lineages

(Figure 1). Understanding the mechanism by which CTS

induces the differentiation of C3H10T1/2 MSCs is critical

for treating obesity.

CTS acts as an anti-diabetic and anti-obesity agent by

stimulating the amp-activated protein kinase (AMPK) (Kim

et al., 2007). AMPK is required for metabolic management

and obesity-related disorders (Lopez, 2017; Garcia et al., 2019)

since it regulates brown adipose tissue (BAT) thermogenesis and

white adipose tissue browning (Lopez and Tena-Sempere, 2017).

Recently, one appealing technique for combating obesity has

been the use of heat generated by BAT and beige adipose tissue to

treat obesity (Lu et al., 2016). CTS stimulates brown cell

development in C3H10T1/2 MSCs via activating the

p38 mitogen-activated protein kinase (p38-MAPK)/Adenosine

5‘-monophosphate (AMP)-activated protein kinase α (AMPKα)/

FIGURE 1
Schematic diagrams of the effects of CTS on differentiation of C3H10T1/2 MSCs for the treatment of obesity.

TABLE 2 The alternations and influences of CTS on physiological behavior of various stem cells.

Cell Types Species Phenotypes DOSE Molecular
target/mechanisms

References

C3H10T1/2 MSC Mouse Cell differentiation 8 µM P38-MAPK/AMPKα/Smad1/5 Imran et al. (2017)

BMSC Monkey Cell differentiation 10 μg/ml Unknown pathways Deng et al. (2006)

NSC Human Cell proliferation Unknow STAT3 Zhang et al. (2016a)

NPC Human Cell apoptosis 1 and 3 µM NRF2 Lee et al. (2020)

NSCLC CSC Human Cell self-renewal 5–20 µM Hippo Jin et al. (2020)

LNCaP TIC Human Cell self-renewal and Proliferation 2.5, 5 and 10 µM Wnt/β-catenin Zhang et al. (2016b)
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drosophila mothers against decapentaplegic protein (Smad1/5)

pathway (Imran et al., 2017). Among these, the expressions of

Uncoupling protein 1 (Ucp1), PR domain-containing 16

(Prdm16), and peroxlsome proliferator-activated receptor-γ
coactlvator-1 (Pgc-1α) specific genes are dramatically elevated

in brown adipocytes. Ucp1 is found only in thermogenic

adipocytes (including brown and beige adipocytes) and serves

as their morphological and functional signature (Pfeifer and

Hoffmann, 2015). Additionally, CTS can boost the expression

of certain genes, such as TNF Receptor Superfamily Member 9

(Cd137), Heat Shock Protein Family B (Small) Member 7

(Hspb7), cyclooxygenase-2 (Cox2), and Transmembrane

Protein 26 (Tmem26) in beige adipocytes induced by the

adipogenic hormone 0.5 mM IBMX, 1 μM Dexamethasone,

and 10 μg/ml Insulin (MDI). Surprisingly, it can also

drastically decrease the mRNA levels of two specific genes in

white adipocytes, Phosphoserine Aminotransferase 1 (Psat1) and

Resistin (Imran et al., 2017). Notably, activation of AMPK by

CTS has been verified in vitro to differentiate C3H10T1/2 MSCs

into brown adipocytes. However, in vivo research will need to be

conducted in the future to further elucidate the regulatory

mechanism through which CTS induces MSCs.

The identification of pathways and associated variables may

result in developing new CTS-based obesity treatments in the

future. CTS has demonstrated therapeutic potential in treating

obesity, and additional research is necessary to fully understand

CTS’s role in medicine.

CTS and bone marrow mesenchymal
stem cells

BMSCs are a type of pluripotent stem cell capable of self-

replication and differentiation (Hao et al., 2019). BMSCs can be

extracted from various tissues, including bone marrow, adipose

tissue (Shanbhag et al., 2020), and umbilical cord blood

(Contentin et al., 2020). BMSCs can develop into various cell

types, including neurons (Hu et al., 2019), and offer distinct

benefits in the treatment of spinal cord and nerve injuries. Spinal

cord injury (SCI) is an incurable condition that results in the

irreversible loss of motor, sensory, and sensory-motor

capabilities below the level of the injury. Currently, there is no

therapeutic intervention that guarantees complete recovery

(Wilson et al., 2012; Chalfouh et al., 2020). CTS can induce

the development of BMSCs into neural lineage cells (Figure 2),

which makes them more suitable for spinal injury treatment

(Deng et al., 2006). Additionally, CTS has been used to treat

nervous system injuries (Hu et al., 2019; Li et al., 2019). It

represents the therapeutic potential of CTS for SCI.

Neuron-specific enolase (NSE), glial fibrillary acidic protein

(GFAP), and Neurofilament protein (NF) have been employed as

markers for stem cell differentiation into neuronal lineage cells,

and their expression ability can reflect stem cell development into

neuronal cells (Singh et al., 2013). CTS-induced BMSCs are

transplanted into spinal cord-injured monkeys. NF is

discovered in 4% of Hoechst33342 stained cells. NSE and

FIGURE 2
Schematic diagrams of the effects of CTS on differentiation of BMSCs for the treatment of spinal cord injury.
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GFAP are detected in 5% of Hoechst33342 labeled cells. These

findings reveal that CTS can cause BMSCs to differentiate into

neuronal lineage cells. Simultaneously, the mRNA expression of

GAD65 and GAD67 in the induced cells demonstrates that the

differentiated cells can produce neurotransmitters. Furthermore,

the monkey cortical somatosensory evoked potential (CSEP) and

motor evoked potential (MEP) with SCI reverted to normal, and

spinal cord tissue samples are effectively stained with

hematoxylin and eosin, demonstrating spinal cord healing and

regeneration (Deng et al., 2006).

Unfortunately, the specific mechanisms underlying the

differentiation of BMSCs into neural lineage cells induced by

CTS are still not fully illustrated yet. As a phosphoinositide 3-

kinase (PI3K) inhibitor, LY294002 can stimulate the

differentiation of BMSCs into neural cells (Wang et al., 2012).

This study shows that inhibiting PI3K/v-akt murine thymoma

viral oncogene homolog (AKT) could be a useful mechanism for

stem cell research in treating neurological illnesses. A useful tool

for tiny compounds that block routes (Wang et al., 2012). CTS

plays a vital role by suppressing PI3K/AKT, such as reducing

nerve pain after surgery and having anti-stroke properties (Zhu

et al., 2017; Zhang et al., 2019). However, it is unclear whether

CTS can stimulate BMSC proliferation and differentiation via

modulating PI3K/AKT pathway expression.

CTS and neural stem/progenitor cells

NSCs are mostly observed in the adult central nervous system

as a continuous supply of nerve cells (Draijer et al., 2019). NSCs

can self-renewal and are pluripotent. As a result, NSCs can

generate all neuroectodermal lineages in a manner appropriate

for locations and developmental stages (Kahroba et al., 2021).

Furthermore, NSCs can spontaneously develop into neurons,

astrocytes, or oligodendrocytes (Wang et al., 2015b; Draijer et al.,

2019). NSCs can be stimulated to proliferate, migrate, and

differentiate in response to the central nervous system and

pathological injury (Kernie and Parent, 2010; Sun, 2014).

This, in turn, stimulates neurogenesis (Laterza et al., 2017;

Wu et al., 2017). Unfortunately, due to its low cell count,

endogenous neurogenesis does not fully promote repairing

and regenerating nerve-damaged neurons, particularly in

severe nerve injury such as stroke (Kernie and Parent, 2010).

As a result, NSC transplantation for the treatment of severe

neurodegenerative diseases may be a viable alternative to

compensating for abnormalities in the endogenous neural

repair mechanism (Boese et al., 2018).

The regulatory role of CTS in NSC
proliferation and differentiation

By inhibiting Signal transducer and activator of transcription

3 (STAT3), CTS can prevent the proliferation of human

embryonic stem cells-derived NSCs (Zhang et al., 2016a)

(Figure 3). As a STAT3 inhibitor, CTS can reduce CSC

proliferation as well (Xiong et al., 2018). It will aid future

research into the interaction between CTS and stem cells and

provide insight into whether the same target may be employed in

diverse disorders.

FIGURE 3
Representative scheme illustrating the potential mechanisms underlying the CTS regulation in proliferation and differentiation of NSCs for the
treatment of cognitive disorder.

Frontiers in Pharmacology frontiersin.org06

Guo et al. 10.3389/fphar.2022.971444

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.971444


Despite the intense interest in the impact of CTS on NSC

proliferation and differentiation, the precisemechanisms behind this

regulatory role remain unclear. Thus, how to control NSC and its

potential mechanisms induced by CTS may provide a permissive

milieu for adult neurogenesis in neurological illnesses. By inhibiting

STAT3, CTS can prevent the proliferation of human NSCs.

Intriguingly, blocking STAT3 may also boost NSC proliferation

(Ma et al., 2018). It is worth investigating whether STAT3 inhibition

has distinct effects on NSCs derived from different sources or

whether varying concentrations of CST affect NSCs. Similarly,

STAT3 plays a critical function in NSC differentiation (Figure 3).

STAT3 inhibition can minimize the severity of spinal cord injury

(Cui et al., 2017), suppress astrocyte production, and increase NSC

neurogenesis (Cao et al., 2010). These findings strongly imply that

CTS, via decreasing STAT3, may play a role in neurogenesis.

Despite an accumulating body of research indicates the

impact of Chinese herbal monomers on NSCs (Wang et al.,

2021d; Wang et al., 2021b), the precise mechanisms are still not

fully understood yet. There is no doubt that STAT3 has been a

hot topic in the proliferation and differentiation of NSCs

(Zyuz’kov et al., 2020; Li et al., 2021). CTS can bind to the

SH2 domain of STAT3 and inhibit the phosphorylation of

STAT3, preventing STAT3 from forming dimer and make

STAT3 unable to serve a function (Shin et al., 2009). In brief,

STAT3 is a bridge between CTS and NSCs, which is conducive to

the further study of NSCs by CTS.

The regulatory role of CTS in NPC
apoptosis

CTS can inhibit the apoptosis of Parkinson’s disease patient-

derived human-induced neuronal progenitor cells (PD-hiNPCs)

by restoring the membrane potential availability in PD-hiNPCs,

reducing the levels of total ROS and mitochondrial ROS, and

down-regulating the expression of apoptotic protein caspase-3

(Lee et al., 2020). ROS have been recognized as an important

factor in Parkinson’s disease (Hemmati-Dinarvand et al., 2019).

CTS can exert antioxidant effects by activating the transcription

of nuclear factor erythroid 2-related factor 2 (NRF2) signaling

pathway (Figure 4). Among them, CTS can boost the expression

of certain genes, such as superoxide dismutase 1 (SOD1),

FIGURE 4
Representative scheme illustrating CTS’s inhibitory role in the apoptosis of NPCs by regulating the NRF2 signaling pathway for the treatment of
parkinson’s disease.
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peroxiredoxin 1 (PRX1), peroxiredoxin 5 (PRX5), glutathione

peroxidase (GPX1) and NAD(P)H quinone dehydrogenase 1

(NQO1) in PD-hiNPCs (Lee et al., 2020). These results provide

evidence for CTS as a treatment for PD.

Stem cell therapy has shown significant promise in treating

neurodegenerative disorders such as Alzheimer’s and

Huntington’s disease (Duncan and Valenzuela, 2017).

Simultaneously, CTS has made strides in Alzheimer’s disease

research (Mei et al., 2009; Maione et al., 2018). However, the

therapeutic effect of transplantation of NSCs pretreated with CTS

in vitro is unclear. Therefore, further studies are needed to clarify

how CTS mediates the proliferation and differentiation of NSCs.

These findings will provide the basis for new therapeutic

strategies for the treatment of neurodegenerative diseases.

CTS and cancer stem cells

Tumor-initiating cells (TICs), also known as CSCs, are the

primary causes of recurrence, metastasis, and poor prognosis in

many types of cancer. As a result, it is thought to be the source of

tumorigenesis (Li et al., 2018b; Atashzar et al., 2020). CSCs are

more resistant to chemotherapy and radiation treatments, posing

a catastrophic dilemma in cancer treatment (Hoey et al., 2009;

Vermeulen et al., 2010; Takebe et al., 2015). Stem cells may be the

source of all tumor cells in malignant tumors and the primary

cause of drug resistance, tumor recurrence, metastasis, and poor

prognosis (Maccalli et al., 2018). According to research, targeting

or relieving CSCs can restrict tumor formation and progression

and minimize treatment resistance, hence preventing tumor

progression (Mai et al., 2017; Sun et al., 2017). At the

moment, CTS is vital in limiting the proliferation of tumor

stem cells (Ding et al., 2016). It has shown promise in

inhibiting non-small cell lung cancer stem cells (NSCL CSCs)

(Figure 5) and prostate initiating cells (Figure 6).

The aberrant activation of the Hippo signaling pathway and

Yes-associated protein (YAP)/transcriptional co-activator with

PDZ-binding motif (TAZ)-transcriptional enhancer associate

domain (TEAD) has been linked to cancer, making this

pathway an appealing target for therapeutic intervention

FIGURE 5
Representative scheme illustrating CTS’s inhibitory role in the proliferation of NSCL CSCs by regulating the Hippo signaling pathway for the
treatment of non-small cell lung cancer.
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(Arthur et al., 2009). CTS controls the ectopic movement of TAZ

from the nucleus to the cytoplasm, lowering the stem cell

characteristics of NSCL CSCs (Jin et al., 2020). The Hippo

pathway is divided into two sections. Macrophage Stimulating

one and Macrophage Stimulating 2 (MST1/2), Mitogen-

Activated Protein four Kinases (MAP4K), and Large Tumor

Suppressor Kinase one and Large Tumor Suppressor Kinase 2

(LATS1/2) are the key inhibitory kinase modules, and YAP/TAZ

and TEAD are transcription modules. When Hippo pathway is

activated, LATS1/2 phosphorylates YAP/TAZ directly and

inhibits nuclear YAP/TAZ through 14-three to three mediated

cytoplasmic retention and ubiquitination-mediated proteasome

and autolysosome degradation. Vestigial Like Family Member 4

(VGLL4) inhibits TEAD transcription activity. When Hippo

pathway is closed, YAP/TAZ is dephosphorylated and

delivered to the nucleus, where it combines with the

transcription factor TEAD, allowing target gene transcription

to contribute to cell proliferation (Park et al., 2018). CTS inhibits

the expression of TAZ target genes Connective tissue growth

factor (CTGF), Transcriptional Intermediary Factor 1 (TIF-1),

and Mothers Against Decapentaplegic Homolog 2 (Smad2) but

does not affect YAP. CTS, however, does not impact the

phosphorylation of TAZ’s upstream gene LATS1/2 but instead

work directly on TAZ, regulating TAZ translocation from the

nucleus to the cytoplasm. Furthermore, CTS decreases the

expression of NSCL CSCs specific markers octamer-binding

transcription factor 4 (Oct4), Nanog, and Aldehyde

Dehydrogenase one Family (ALDH1) mRNA levels while

increasing the expression of Cyclin Dependent Kinase 3

(CDK3), Integrin Subunit Alpha X (CD11c), and High affinity

immunoglobulin gamma Fc receptor I (CD64) mRNA levels (Jin

et al., 2020).

FIGURE 6
Representative scheme illustrating CTS’s inhibitory role in the proliferation of LNCaP TICs by regulating the Wnt signaling pathway for the
treatment of prostatic cancer.
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CTS can reduce the proliferation of NSCL CSCs by

reducing Hippo signaling pathway and the proliferation of

LNCaP TICs by inhibiting Wnt signaling pathway (Zhang

et al., 2016b). The Wingless-Int1 (Wnt)/β-catenin signaling

pathway has been demonstrated to be intricately related to

prostatic CSCs (Schneider and Logan, 2018). Cell fate

determination has been linked to abnormalities in the

regulation of Wnt/β-catenin pathway. The Wnt/β-catenin
pathway could be activated in several ways, including the

binding of Wnt protein to members of Frizzled family of

receptors. When Wnt pathway is engaged, GSK3β may

phosphorylate freshly synthesized β-catenin protein,

preventing them from entering the nucleus and playing a

role. When GSK3β is inactive, β-catenin cyclic protein

accumulates and is transported to the nucleus, activating

the downstream target genes, influencing cell self-renewal

and proliferation (Valkenburg et al., 2011). The most

notable property is CTS’s ability to suppress β-catenin
protein expression. As a result, stem cell growth and

stemness are inhibited. Additionally, CTS dose-dependently

decreased the protein expression of the stem cell genes Nanog,

SRY-Box Transcription Factor 2 (Sox2), and Oct4.

Intriguingly, CTS decreases C-X-C Motif Chemokine

Receptor 4 (CXCR4) mRNA and protein levels. Furthermore,

CTS can regulate biological activities associated with the function

of stromal cell derived factor 1 (SDF1)/CXCR4 axis, such as

migration and metastasis (Zhang et al., 2016b). This

demonstrates that CTS may be a promising small molecule

therapeutic candidate for suppressing LNCaP TIC growth.

Finally, CTS has the potential to be a good anticancer drug

since it can suppress the proliferation of diverse CSCs. It is hoped

that future research will delve deeper into the past association

between CTS and CSCs.

Conclusion and future perspectives

This review summarizes current evidences on the role and

impact of CTS in various stem cells and provides a new

perspective on the prevention and treatment of high-

incidence diseases. More importantly, CTS exhibits great

potential in various high-incidence diseases and influences

the cell proliferation/self-renewal and differentiation of stem

cells. It is critical to investigate the potential mechanism of

CTS in the proliferation and differentiation of enormous stem

cells, as this may provide further opportunities and references

for future CTS research. So far, research on the impact of CTS

on stem cells remains in its early phases, and it is unclear how

CTS affects stem cell destiny regulation and integration. The

effect of CTS on stem cells progresses to in vivo research,

which will eventually alter disease treatment. Although

significant progress has been made in understanding the

role of CTS in stem cell proliferation and destiny

regulation, we are only now beginning to understand its

significance in stem cell development. Stem cells provide a

wonderful platform for understanding CTS function and a

unique possibility for developing new therapeutics and

treatments for high-incidence diseases. It is critical to focus

on stem cell biology and molecular mechanisms in future

studies. As a result, additional research into the effects of CTS

on stem cells can assist the medical community in realizing its

therapeutic potential through stem cell treatment.

The introduction of several compound drugs, including CTS,

gives us complete confidence in the clinical prospects of CTS. The

ability of CTS to cross the blood-brain barrier fulfills the FDA’s

quantitative drug analysis standard (Wang et al., 2022a).

However, it should be recognized that CTS carries potential

hazards. CTS has been demonstrated to have pharmacological

toxicity in both in vivo zebrafish research (Wang et al., 2021a)

and in vitro cell experiments (Wu et al., 2016; Kim et al., 2017),

which is the most important problem for CTS to be solved.

Furthermore, CTS has poor water solubility, poor oral

absorption, low bioavailability, and high photosensitivity,

which are some of the factors limiting its development (Wang

et al., 2022c; Zhang et al., 2022), but there have beenmany studies

to improve CTS bioavailability through spray formulations

(Wang et al., 2022c), nanoparticles (Zhang et al., 2022), and

nano-emulsions (Chengxi et al., 2019). CTS requires large-scale,

randomized, double-blind, and controlled clinical trials to

validate the safety and increase clinical efficacy. Although

progress has been made in understanding the role of CTS in

high-incidence diseases, what is urgently needed is to explore its

impact on different stem cells and future therapeutic potential for

various diseases.
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Glossary

CTS Cryptotanshinone

S. miltiorrhiza Salvia miltiorrhiza Bunge

C3H10T1/2 MSCs C3H10T1/2 mesenchymal stem cells

BMSCs bone marrow mesenchymal stem cells

NSCs/NPCs neural stem/progenitor cells

CSCs cancer stem cells

AMPK amp-activated protein kinase

p38-AMPK p38 mitogen-activated protein kinase

AMPKαAdenosine 5‘-monophosphate (AMP)-activated protein

kinase α
Smad1/5 drosophila mothers against decapentaplegic protein

BAT brown adipose tissue

Ucp1 Uncoupling protein 1

Prdm16 PR domain-containing 16

Pgc-1α peroxlsome proliferator-activated receptor-γ
coactlvator-1

Cd137 TNF Receptor Superfamily Member 9

Hspb7 Heat Shock Protein Family B (Small) Member 7

Cox2 cyclooxygenase-2

Tmem26 Transmembrane Protein 26

MDI 0.5 mM IBMX, 1 μMDexamethasone and 10 μg/ml Insulin

Psat1 Phosphoserine Aminotransferase 1

SCI Spinal cord injury

NSE Neuron specific enolase

GFAP glial fibrillary acidic protein

NF Neurofilament protein

BMSCs Bone marrow mesenchymal stem cells

CSEP cortex somatosensory evoked potential

MEP motor evoked potential

PI3K/AKT phosphoinositide 3-kinase/v-akt murine thymoma

viral oncogene homolog

STAT3 Signal transducer and activator of transcription 3

PD-hiNPCs Parkinson’s disease patient-derived human-induced

neuronal progenitor cells

NRF2 nuclear factor erythroid 2-related factor 2

SOD1 superoxide dismutase 1

PRX1 peroxiredoxin 1

PRX5 peroxiredoxin 5

GPX1 glutathione peroxidase

NQO1 NAD(P)H quinone dehydrogenase 1

TICs tumor-initiating cells

NSCL non-small cell lung

CSCs cancer stem cells

YAP Yes-associated protein

TAZ transcriptional co-activator with PDZ-binding motif

TEAD transcriptional enhancer associate domain

MST1/2 Macrophage Stimulating 1 and Macrophage

Stimulating 2

MAP4K Mitogen-Activated Protein Kinase Kinase Kinase

Kinase

LATS1/2 Large Tumor Suppressor Kinase 1 and Large Tumor

Suppressor Kinase 2

VGLL4 Vestigial Like Family Member 4

CTGF Connective tissue growth factor

TIF-1 Transcriptional Intermediary Factor 1

Smad2 Mothers Against Decapentaplegic Homolog 2

Oct4 octamer-binding transcription factor 4

ALDH1 Aldehyde Dehydrogenase 1 Family

CDK3 Cyclin Dependent Kinase 3

CD11c Integrin Subunit Alpha X

CD64 High affinity immunoglobulin gamma Fc receptor I

Wnt/β-Catenin Wingless-Int1/β-Catenin

Sox2 SRY-Box Transcription Factor 2

CXCR4 C-X-C Motif Chemokine Receptor 4

SDF1 stromal cell derived factor 1
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