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Chronic kidney disease (CKD) is an increasingly serious public health problem in

the world, but the effective therapeutic approach is quite limited at present.

Cellular senescence is characterized by the irreversible cell cycle arrest,

senescence-associated secretory phenotype (SASP) and senescent cell anti-

apoptotic pathways (SCAPs). Renal senescence shares many similarities with

CKD, including etiology, mechanism, pathological change, phenotype and

outcome, however, it is difficult to judge whether renal senescence is a

trigger or a consequence of CKD, since there is a complex correlation

between them. A variety of cellular signaling mechanisms are involved in

their interactive association, which provides new potential targets for the

intervention of CKD, and then extends the researches on senotherapy. Our

review summarizes the common features of renal senescence and CKD, the

interaction between them, the strategies of senotherapy, and the open

questions for future research.
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1 Introduction

Chronic kidney disease (CKD) is a group of chronic diseases caused by inflammation,

metabolic disorders, toxins and other various factors (Boor et al., 2010). It afflicts more

than 13% of the world’s population (Hill et al., 2016). It is generally characterized by

progressive glomerulosclerosis, tubular atrophy, interstitial fibrosis and renal failure, as

well as non-renal complications (Dai et al., 2019). What could be the root cause(s) of the

persistence of renal injury, multi-organ involvement and the final renal failure in CKD?

Among multiple explanations, the effect of cellular senescence on CKD has been gaining

attention (Xu et al., 2020).

Cellular senescence is defined as the permanent cessation of cell proliferation (Kuilman

et al., 2010) and is used to describe ageing on cellular level. It is characterized by the stable cell

cycle arrest, apoptosis inhibition, sustained high metabolic rate and a pro-inflammatory state
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called senescence associated secretory phenotype (SASP) (Di Micco

et al., 2021). Actually, kidney is one of the most significantly affacted

organs during the process of natural ageing (Long et al., 2005). Renal

ageing and senescence lead to renal pathophysiological changes and

systemic geriatric phenotypes, which are similar to those of CKD. It

should be noted that renal senescence can also occur in sick children

andmay reduce their renal regeneration potential (Melk et al., 2009).

In view of the similarities between CKD and renal senescence, it

is speculated that they are closely related (Kubben andMisteli, 2017).

In fact, senescence is strongly associated not only with the

development of CKD, but also with the progression of CKD, and

vice versa (Schroth et al., 2020). Though effective treatments to halt or

reverse CKD are extremely limited, regulating renal senescence is

expected to provide a new target for its intervention.

FIGURE 1
Mechanisms of cellular senescence. Senescence inducers, such as oxidative stress, DNA damage, mitochondrial dysfunction and epigenetic
stress, can activate the ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related (ATM/ATR) signaling and other multiple pathways,
resulting in p53 phosphorylation and increased p21 transcription, and/or p16 over-experession. Activation of p21 and p16 inhibits cyclin-dependent
kinase 2 (CDK2) or CDK4/CDK6 and prevents retinoblastoma (RB) phosphorylation, leading to G1/S cell cycle arrest. Additionally, activated
ATM/ATR signaling can also induce G2/M cell cycle arrest via checkpoint kinase 1 (Chk1) and Chk2. Wnt/β-catenin promotes senescence by
stimulating p53 and p16, while klotho and sirtuins 1 (SIRT1) inhibit senescence by blocking these pathways. Cellular senescence initially leads to
elevated senescence-associated β-galactosidase (SA-β-gal) and senescence associated secretory phenotype (SASP) release. However, if
senescence persisists, it may evolve to chronic senescence and secondary senescence, and contributes to various degradations. DDR, DNA damage
response; SIPS, stress-induced premature senescence.
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In present review, the evidences for the interactive

association of renal senescence and CKD, potential

mechanisms that might explain this association, therapeutic

approaches targeting senescence for the intervention of CKD,

and the prospects for the future are discussed.

2 Basic concepts of cellular
senescence

Traditionally, cellular senescence has been divided into two types,

namely Hayflick-type replicative senescence, characterized by the

telomere attrition (Hayflick and Moorhead, 1961), and stress-

induced premature senescence (SIPS), caused by various stimuli

(von Zglinicki, 2002; Sedelnikova et al., 2004; Wiley et al., 2016;

Petrova et al., 2016). A variety of markers have been used to identify

cellular senescence, among which the senescence-associated β-
galactosidase (SA-β-gal) activity at pH 6.0, cyclin-dependent

kinase (CDK) inhibitors such as p16ink4a (hereafter referred as

p16) and p21CIP1 (hereafter referred as p21), and SASPs are the

most common ones (Hernandez-Segura et al., 2018). The p53/

p21 and p16/retinoblastoma (RB) pathways are the most critical

signaling pathways that are related to cellular senescence (Calcinotto

et al., 2019) (Figure 1). Another important factor leading to the

expansion and spread of cellular senescence is SASPs, which are a

series of pro-inflammatory and pro-fibrotic factors secreted by

senescent cells (Valentijn et al., 2018), such as interleukin-1 (IL-1),

IL-6, IL-8, transforming growth factors-β (TGF-β), plasminogen

activator inhibitor (PAI), and insulin-like growth factor-1 (IGF-1).

SASPs enable the primary senescent cells to direct adjacent or distant

nonsenescent cells to experience secondary senescence in autocrine,

paracrine, and juxtacrine manners (Admasu et al., 2021). Another

function of the SASPs is to activate immune surveillance and recruit

immune cells to eliminate senescent cells (Faget et al., 2019).

However, the accumulation of senescent cells often gradually

exceeds the clearance capacity of the immune cells, contributing

to the development of senescence.

3 The association between renal
senescence and CKD

As mentioned above, renal ageing and senescence share

numerous similarities with CKD in renal and systemic

manifestations. Besides, the similarities are also reflected in their

pathogenic mechanisms, such as the secretion of pro-inflammatory

and pro-fibrotic factors, oxidative stress, mitochondrial dysfunction,

and loss of renoprotective factors (O’Sullivan et al., 2017). It is

reported that SASP and CKD-associated secretory phenotype

appear to have a lot in common (Wang et al., 2017). Renal

fibrosis is regarded as the main determinant of the gradual loss

of renal function and the prognosis of CKD (Higgins et al., 2018).

The cytokinemediated signaling pathways, such as the TGF-β/Smad

pathway and the Wnt pathway, which play important roles in renal

fibrosis (Isaka 2018; Luo et al., 2018), are also involved in renal

senescence. In addition, the immune deficiency in CKD is analogous

to immunosenescence (Sato and Yanagita, 2019).

3.1 Evidence for renal senescence in CKD

The characteristics of cellular senescence are presented in all parts

of renal parenchyma in CKD patients and animal models (Dai et al.,

2019;Wang et al., 2021). P53 is over-expressed in the lymphocytes of

CKD patients, and the mesenchymal stem cells from CKD rats are

prematurely senescent (Klinkhammer et al., 2014). Because the renal

functional reserve is gradually impaired, renal senescence

undoubtedly increases the susceptibility to CKD (Nitta et al.,

2013). Indeed, the average prevalence of CKD in the elderly is

significantly higher than that in the young (Prakash and O’Hare,

2009). The fact that elevated p16 level and SA-β-gal activity often

precede the renal changes in different stages of CKD and CKD-

related renal diseases (Li and Wang, 2018), p21 level is significantly

up-regulated in human transplanted kidney undergoing AKI-to-

CKD transition (Cippà et al., 2018), the pathological changes of renal

fibrosis, inflammation and microvascular rarefaction in the elderly

mice are more significant than those in the young control group in

the ischemia-reperfusion injury (IRI) model of CKD (Clements et al.,

2013), and p21 knockout ameliorates progression to CKD in mouse

models (Megyesi et al., 1999), suggesting that renal senescence is

involved in the pathogenesis and progression of CKD.

3.2 Evidence for CKD in renal senescence

Compared with the general population, the renal ageing

and senescence process is greatly accelerated and advanced in

CKD patients (Dai et al., 2019). Besides, a high prevalence of

senescent cells has been noticed in renal biopsies of young

patients with diverse CKD (Halloran and Melk, 2001).

Moreover, the shortening of telomeres and the increase of

SA-β-gal levels in collecting tubules of CKD cats are more

significant than those in general cats, whether young or aged

(Quimby et al., 2013).

4 Potential mechanisms for
association of renal senescence
and CKD

Various animal models have been used to study the association

between renal senescence and CKD or CKD-related renal diseases

(Table 1). As mentioned above, renal senescence may be both the

cause and the consequence of CKD. Acute senescence is a protective

response to various renal insults, which plays a role in promoting

immune clearance and tissue repair (van Deursen.., 2014). However,
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if senescent cells are not cleared in time, they will gradually

accumulate, and may induce chronic senescence. As reported by

various studies, senescent cell accumulation contributes to SASPs

secretion and signaling, abnormal renal repair, and renal fibrosis

(Braun et al., 2012; Liu et al., 2012; Cippà et al., 2018), further leading

to CKD and its systemic complications (Schroth et al., 2020). In turn,

various pathological products of CKD stimulate the kidney to remain

in a state of chronic inflammation, oxidative stress and metabolic

abnormality, which promotes the induction and accumulation of

chronic senescent cells.

4.1 Renal senescence promoting CKD

The persistence of chronic senescent cells plays a critical role

in the correlation between renal senescence and CKD (Figure 2).

The interactions between cell cycle regulators and inhibitors,

changes in the balance between pro-apoptotic and anti-apoptotic

factors, and metabolic abnormalities may explain this persistence

and its promoting effect on CKD.

4.1.1 Senescent cell anti-apoptotic pathways
5SCAPs refer to mechanisms that contribute to the

prolonged survival of senescent cells (Wang et al., 2021).

Activation of the BCL-2 family, ephrin ligand B1 (EFNB1),

EFNB3, Forkhead box O-4 (FOXO-4), HSP90/p-AKT, and

p21/JNK plays an important role in SCAPs (Wang et al.,

2021). BCL-2 inhibits autophagy by interacting with

autophagy protein Beclin1 and suppressing the formation of

autophagosome (Yosef et al., 2016; Goligorsky, 2020). FOXO-4 is

a p53 sequester in the nucleus, which can restrict p53-mediated

apoptosis (Baar et al., 2017). The activation of p21 prevents

senescent cells from apoptosis by limiting JNK signaling and

caspase (Yosef et al., 2017). Stabilized p-AKT by HSP90 also

contributes to the prolonged survival of senescent cells

(Fuhrmann-Stroissnigg et al., 2017). In fact, agents targeting

the SCAPs can inhibit renal senescence and decline of renal

function in chronological and transgenic ageing mice (Baar et al.,

2017), indicating a relationship between SCAPs and CKD.

4.1.2 Autophagy dysregulation
Autophagy is a highly conserved process of cellular

degradation and recycling. Thus, impaired autophagy will lead

to the persistence and accumulation of senescent cells. The role of

autophagy in cellular senescence is related to αklotho (Shi et al.,

2016), telomerase (Harris and Cheng, 2016) and adenosine

monophosphate-activated protein kinase (AMPK)/rapamycin

(mTOR) pathway (Goligorsky, 2020). Autophagy

TABLE 1 Animal model studies on the relationship between cellular senecence and chronic kidney disease (CKD).

Model Intervention Effect of intervention Indication

renal IRI Lee et al., (2012) p16ink4a/p19ARF double KO improved epithelial repair, renal fibrosis
and inflammation

Reduced senescence has a renoprotective effect in AKI

renal Tx Braun et al.,
(2012)

p16ink4a KO less atrophy and fibrosis after Tx Inhibiting senescence have therapeutic benefit in kidney
transplantation

DN Wolf et al., (2005) p27kip1 KO reduced glomerular hypertrophy and
tubule-interstitial lesion

Inhibiting senescence by deletion of p27Kip1, an inhibitor of CDKs,
attenuates the functional and morphologic features of DN.

DN Al-Douahji et al.,
(1999)

p21cip1 KO mitigated proteinuria and glomerular
expansion

Inhibiting senescence ameliorates glomerular hypertrophy in DN,
which is protective of renal function

CKD Chang et al., (2016) upregulate klotho reduced vascular calcification Inhibiting senescence by upregulating α-klotho attenuates vascular
calcification in CKD.

CKD Hum et al., (2017) stable delivery of AAV
expressing klotho

reduced hyperphosphatemia Inhibiting senescence by sustained klotho treatment reduces
hyperphosphatemia in CKD.

CKD Hu et al., (2011) transgenic overexpressing
klotho

enhanced renal function and less
calcification

Inhibiting senescence by overexpressing klotho ameliorates vascular
calcification and preserves renal function in CKD.

chronic GN Haruna et al.,
(2007)

klotho transgene reduced proteinuria and improved renal
function

Inhibiting senescence by genetic manipulation of klotho gene
ameliorates progressive renal injury in CKD.

post-AKI CKD Shi et al.,
(2016)

recombinant αklotho
administration

accelerated renal recovery and reduced
renal fibrosis

Inhibiting senescence by αklotho overexpression mitigates renal
fibrosis and retards AKI progression to CKD.

UUO Gong et al., (2021) knockdown of BRG-1 reduced renal fibrosis Reduced senescence attenuates renal fibrosis in CKD.

UUO Adis et al., (2013) rhEPO mitigated tubular epithelial cell
regeneration and renal fibrosis

Inhibiting senescence by erythropoietin preserves tubular epithelial
cell regeneration and ameliorates renal fibrosis in CKD.

telomerase deficient
Westhoff et al., (2010)

renal IRI higher expression of p21, and reduced
cellular regeneration

IRI leads to increased senescence

Multiple animal models have been used to study the association between CKD and renal senescence. Since CKD may be caused by various renal diseases, especially acute kidney injury

(AKI), glomerulonephritis (GN) and diabetes nephropathy (DN), those CKD-related renal diseases are also included in the research on the association between CKD and renal senescence.

This table summarizes several of these studies, and describes the models and the interventions that are used in them, as well as the effects of the interventions. AAV, adeno-associated virus;

BRG-1, brahma-related gene-1; CDK, cyclin-dependent kinase; EMT, epithelial-to-mesenchymal transition; IRI, ischemia-reperfusion injury; KO, knock-out; rhEPO, recombinant huma

erythropoietin; Tx, transplant; UUO, unilateral ureteric obstruction.
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dysregulation is also involved in promoting CKD (Lenoir et al.,

2016). It has been shown that knockout of rubicon, a negative

regulator of autophagy (Nakamura et al., 2019), and the

autophagic flux induced by calorie restriction (CR) (Schmitt

and Melk, 2017) can slow down the process of renal tubular

atrophy and interstitial fibrosis.

FIGURE 2
Potential mechanisms for senescence promoting chronic kidney disease (CKD). Renal senscence and CKD are tightly connected. Chronic
stimulation of various stressors in CKD leads to the continuous and excessive induction of chronic senescent cells and relaease of senescence
associated secretory phenotype (SASP), which contributes to their accumulation and persistence. Another crucial reason for their persistence is
senescent cell anti-apoptotic pathways (SCAPs), which prevents senescent cells from clearancemainly though the B-cell lymphoma-2 (BCL-2),
Forkhead box O4 (FOXO4)/p53, p21/JNK and HSP90/p-AKT pathways. Meanwhile, this persistence promotes SASP secretion and spread, induces
abnormal renal repair, and exacerbate renal fibrosis, culminating in CKD progression and its systemic complications. Dysregulation of autophagy and
immune system are involved in both the persistence of senescence and the progression of CKD.
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4.1.3 SASPs
Continuous stimulation of SASPs is crucial in promoting

CKD, because it contributes to the enhancement and

propagation of senescent phenotypes, induces abnormal

renal repair, and causes a decline in renal function.

Besides, factors related to chronic release of SASPs are also

known as pro-fibrotic factors (Goligorsky, 2020), such as

TGF-β and Wnt. Therefore, SASPs are able to exacerbate

renal fibrosis, and further lead to CKD deterioration

(Goligorsky, 2020). In addition to their local effects on the

kidney, SASPs also induce systemic transmission of pro-

inflammatory and pro-fibrotic signaling, resulting in

systemic phenotypes of CKD (Goligorsky, 2020).

4.1.4 Immune system alterations
Abnormal activation of the innate immune system in CKD

patients leads to increased pro-inflammatory cytokines (Sato and

Yanagita, 2019) and senescence of renal tubular cells (Jin et al.,

2017). The adaptive immune response of CKD patients is also

affected, which is characterized by the increase of CD4+CD28− cells

(Lisowska et al., 2012), the decrease of regulatory T (Treg) cells

(Lisowska et al., 2012) and immature B cells (Kim et al., 2012), a shift

toward the pro-inflammatory Th1 differentiation (Litjens et al.,

2006), and the decline of CD4/CD8 T cell ratio (Yoon et al.,

2006). The accumulation of senescent cells is not only due to

immune dysfunction, but also related to immune evasion

(Pereira et al., 2019). In addition, infiltration of pro-inflammatory

B cells and T cells conduce to a pro-fibrotic milieu, and induce renal

fibrosis, leading to CKD progression (Lee et al., 2017).

4.2 CKD promoting the renal senescence

The potential mechanisms for CKD promoting renal

senescence are showed in Figure 3, and the details are as

follows.

4.2.1 Telomere attrition
Stresses induced by multiple kidney injuries in CKD

accelerate telomere attrition, subsequently leading to increased

FIGURE 3
Potential mechanisms for chronic kidney disease (CKD) promoting senescence. CKD contributes to senescencemainly byMultiple pathological
products of CKD leads to chronic inflammation, oxidative stress, andmetabolic abnormality in the kidney, which contributes to senescence. Besides,
telomere attrition, klotho defect, sirtuins (SIRTs) deficiency, autophagy inhibition, and immune dysfunction are also important causes for increased
senescence. Various signaling pathways are involved in the promotion of senescence in CKD, mainly include factor-erythroid 2-related factor 2
(NRF2), Wnt/β-catenin, NF-κB, andmTOR. AGEs, advanced glycation end products; RAGE, AGE-receptor for advanced glycation end products; ROS,
reactive oxygen species.

Frontiers in Pharmacology frontiersin.org06

Zhao et al. 10.3389/fphar.2022.974361

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.974361


replicative senescence (Wills and Schnellmann, 2011). Studies

have shown that the telomere lengths of T cells in patients with

end stage renal disease are shorter than those in healthy group

(Hirashio et al., 2014), the telomerase activities of peripheral

blood mononuclear cells (PBMC) increase with the progression

of CKD (Kidir et al., 2017), and Poly (A)-specific ribonuclease

(PARN) mutation, a key cause of telomere abnormality-related

diseases, is prevalent in CKD patients (Lata et al., 2018), which

indicating that CKD is closely related to telomere dysfunction.

4.2.2 Oxidative stress and inflammatory burden
Systemic oxidative stress and inflammatory burden, caused

by over-activation of renin-angiotension-aldosterone system

(RAAS), reduction of antioxidant factors, hyperphosphatemia,

or other various factors, is prevalent in CKD, which has been

considered to be one of the key mechanisms leading to renal

senescence (Qaisar et al., 2018). It is reported that the burden of

inflammation in CKD children seems to be much higher than

that in general children (Lambert et al., 2004). Increased

metabolic rate and ATP consumption trigger mitochondrial

dysfunction, consequently leading to reactive oxygen species

(ROS) over-production (Tamaki et al., 2014), which is the

basis of increased oxidative stress, even in the early stage of

CKD. The nuclear factor-erythroid 2-related factor 2 (NRF2) is a

key regulator of antioxidant enzymes. Senescence markers, such

as p16, p21 and SASPs, are increased in NRF2-deficient mice

(Fulop et al., 2018). In the PBMC of CKD, the decreased

expression of NRF2 is accompanied by mitochondrial

dysfunction (Liu et al., 2019) and up-regulation of pro-

inflammatory factors, such as NF-κB (Stockler-Pinto et al.,

2018). On the contrary, the NRF2 agonist bardoxolone

inhibits senescence in the CKD mouse model (Nagasu et al.,

2019).

4.2.3 Uremic toxins
Uremic toxins, such as advanced glycation end products

(AGEs), are accumulated in CKD due to increased generation

and decreased clearance (Stinghen et al., 2016). Children with

CKD also shows high circulating levels of AGEs (Misselwitz et al.,

2002). AGE/AGE-receptor for advanced glycation end products

(RAGE) axis activates the NF-κB pathway (Sanajou et al., 2018),

induces endoplasmatic reticulum stress (Liu et al., 2014), inhibits

autophagy (Shi et al., 2019), and promotes p16 (Liu et al., 2015)

and p21 (Liu et al., 2014) expression, resulting in increased renal

senescence. On the contrary, reduced senescence is observed in

rodents over-expressing the AGE-detoxifying enzyme Glo-1

(Hirakawa et al., 2017).

4.2.4 Klotho defect
Klotho, an anti-senescence single-pass transmembrane

protein, is primarily expressed in the proximal and distal

tubules of kidney (Zou et al., 2018). Klotho regulates cellular

senescence mainly by attenuating p53/p21 and Wnt/β-catenin

pathways (Kuro-o., 2019). In addition, klotho is involved in

regulating the activity of many other pathways, such as TGF-

β, NRF2, FGF23, and IGF-1 (Sopjani et al., 2015), thereby

inhibiting cellular senescence. Studies have shown that klotho

begins to decline in very early stages of CKD (Wang et al., 2021),

and the TGF-β signaling plays a crucial role in down-regulating

klotho in CKD (Zhou et al., 2013). Klotho defect leads to the

increased cellular senescence and secretion of SASPs (Castilho

et al., 2009), aggravates renal fibrosis and promotes a variety of

systemic phenotypes.

4.2.5 Sirtuins deficiency
Sirtuins (SIRTs) are a group of NAD+-dependent

deacetylases (Morigi et al., 2018), which has a deep impact on

a variety of cytokines and signaling pathways related to cellular

senescence, such as FOXO, p53 (Li et al., 2019), NF-κB, NRF2/
ARE pathway (Zhuang et al., 2021), PTEN-induced putative

kinase 1 (PINK1)/parkin axis (Liu et al., 2020), signal

transducer and activator of transcription 3 (STAT3) (Sun

et al., 2021), and hypoxia inducible factor (HIF)-2α (Li et al.,

2021). SIRT1 is widely expressed in normal renal tubular cells

and podocytes, but decreases with renal diseases or ageing (Lim

et al., 2012). Decreased SIRT1 activity leads to reduced

production of peroxisome proliferator activated receptor γ
coactivator-1a (PGC-1a) and autophagy (Lim et al., 2012),

loss of resistance to ROS, suppression of FOXO, inhibition of

AMPK, and activation of p53, resulting in cellular senescence and

renal injuries (Goligorsky, 2020). Podocyte-specific reduction of

SIRT1 promotes glomerulosclerosis and podocyte loss in mice

(Chuang et al., 2017). Besides, capillary rarefaction is also related

to the lack of SIRT1 in renal endothelial cells (Kida et al., 2016).

4.2.6 Abnormality of immune system
For children with CKD, they show accelerated immune

maturation and impaired immune function, and are forced

into a state of premature immune senescence (George et al.,

2017). Their CD4/CD8 ratio seems to be inverted, and CD57, a

marker of senescence, is significantly increased, indicating the

existence of immune senescence (George et al., 2017). Under the

continuous stimulation of chronic inflammation in CKD, the

replicative ability of T cells is impaired, leading to replicative

senescence (Hayflick, 1965).

5 Targeting renal senescence in
therapy of CKD

At present, the treatments of CKD are mainly focused on the

etiology, symptoms and complications. When CKD progresses to

end-stage renal disease (ESRD), renal replacement therapy, such

as hemodialysis and peritoneal dialysis, is needed. However, the

mortality of CKD patients is still high, and their life quality is low.

Since senescence plays an important role in CKD, it could be
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assumed as a new target for CKD treatment (Tan et al., 2022).

The approach of targeting senescence is known as senotherapy,

which mainly includes senolytics, senomorphics, and

rejuvenating agents (Goligorsky, 2020). The common agents

are listed in Table 2. In recent years, numerous studies have

confirmed their great potentials in ameliorating CKD and its

complications (Knoppert et al., 2019; Wang et al., 2021).

5.1 Nonpharmacologic approaches

CR mitigates senescence-associated renal changes by

activating SIRT1 and AMPK, blocking mTOR and NF-κB
signaling pathways, and inhibiting the activity of endothelin-1

(ET-1) (Wang et al., 2021), thereby promoting autophagy and

reducing oxidative stress (Ning et al., 2013).

5.2 Senolytics

Senolytics eliminate senescent cells by promoting the pro-

apoptotic pathways, inhibiting the SCAPs or activating the

immune system (Sturmlechner et al., 2017). Preclinical studies

have shown the exciting potential of multiple senolytics in

reversing renal senescence (Knoppert et al., 2019). Dasatinib

is a tyrosine kinase inhibitor that disturbs EFNB-dependent

suppression of apoptosis, and quercetin is a natural flavonol

that restrains PI3K and serpins (Wang et al., 2021). These two

agents are often used in combination, and referred as “D + Q”

(Wang et al., 2021). They are reported to alleviate senescence-

related dysfunction in cell cultures and animal models (Xu

et al., 2018). They can also significantly decrease the levels of

p16, p21, SA-β-gal and SASPs in the adipose and skin tissues

of patients with diabetic kidney diseases (Hickson et al., 2019).

As the first generation senolytic in mice, ABT-263 inhibits the

BCL-2 family, resulting in extensive apoptosis of senescent

cells (Chang et al., 2016). FOXO4-DRI induces selective

apoptosis of senescent cells by competitively inhibiting the

FOXO4-p53 interaction, thus protecting renal function in

aged mice (Zhang et al., 2020).

5.3 Senomorphics

Senomorphics are a group of SASP regulators, which can

alleviate renal senescence in CKD (Schroth et al., 2020) by

modulating a variety of pathways, such as MAPK, mTOR, NF-

κB and NRF2 pathways (Iwasa et al., 2003). Metformin, an

AMPK activator, has been proved to inhibit the induction of

p16, p21, and SASPs, improve the function of mitochondrial

complex I, activate autophagy (Piskovatska et al., 2019),

reduce the production of ROS in cultured podocytes and

prevent diabetes-induced renal hypertrophy (Lee et al.,

2007; Piwkowska et al., 2010). A recent study showed that

metformin exerts its anti-senescence effect by targeting

senescent mesenchymal stem cells (MSC) in CKD (Kim

et al., 2021). Since the side effects of metformin are

minimal and are likely to be reversible, it is expected to be

applicated in healthy individuals to block senescence-related

renal changes (Barzilai et al., 2016). At present, the mTOR

inhibitors mainly include rapamycin and its analog rapalog.

They have attracted high attention in the treatment of renal

diseases for their positive effect on renal senescence and

fibrosis (Shavlakadze et al., 2018). However, their side

effects are also significant, such as immunosuppression,

infection and metabolic disorders (Fang et al., 2020).

Therefore, they are not the best choice for healthy people

to prevent renal senescence. Administration of pyrrolidine

dithiocarbamate, an NF-κB inhibitor, alleviates renal

interstitial fibrosis in rats (Okabe et al., 2013). Besides,

inhibiting the activation of NF-κB at 24 h after AKI

improves recovery of renal function and attenuates renal

fibrosis (Johnson et al., 2017). The NRF2 agonist

bardoxolone showed promising efficacy in CKD patients,

TABLE 2 Therapeutic approaches against cellular senescence.

Senotherapy Agents

Senolytics dasatinib and quercetin Hickson et al., (2019), ABT-263 Chang et al., (2016), FOXO4-DRI Zhang et al., (2020), ABT-737 Lisowska
et al., (2012), fisetin Zhu et al., (2017), 17-DMAG Litjens et al., (2006), A1331852 Zhu et al., (2017), A1155463 Zhu et al., (2017),
panobinostat Samaraweera et al., (2017), BPTES Johmura et al., (2021), EGCG Kumar et al., (2019)

Senomorphics metformin Kim et al., (2021), rapamycin Shavlakadze et al., (2018), bardoxolone Nagasu et al., (2019), pyrrolidine dithiocarbamate
Okabe et al., (2013), methionine Wang et al., (2019), mitoq Xiao et al., (2017), SkQ1 Anisimov et al., (2011), ruxolitinib Griveau
et al., (2020), flavonoids Lim et al., (2015)

Rejuvenating agents resveratrol He et al., (2016), SRT1460 Zhao and Yu., (2021), SRT1720 Ren et al., (2017), SRT2183 He et al., (2010), D-Pinitol Koh
et al., (2018), Isoliquiritigenin Huang et al., (2020), Rutin Khajevand-Khazaei et al., (2018), klotho Zou et al., (2018), PPAR-γ
agonists Xu et al., (2020)

Others calorie restriction Wang et al., (2021), exercise Kim et al., (2020), TA-65 Salvador et al., (2016), ACEI/ARB Jacobi et al., (2011),
DHA Forman et al., (2020), immunomodulation Schroth et al., (2020)

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; DHA, dehydroascorbic acid; EGCG, epigallocatechin gallate; FOXO4-DRI, Forkhead box O-4-D-

Retro-Inverso; PPAR-γ, peroxisome proliferator-activated receptor-γ.
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but it was later discontinued because of the high rate of heart

failure in patients randomly treated with it (de Zeeuw et al.,

2013). Additionally, the potential oncogenic risks of

NRF2 activators also need attention (Vega et al., 2018).

5.4 Rejuvenating agents

As an example of rejuvenating agent, resveratrol can

improve senescence-related renal injury by activating

SIRT1, reducing oxidative stress and inhibiting the pro-

inflammatory SASPs (Wang et al., 2017). Besides, a variety

of SIRT1 activators have been used to prevent and treat

senesence-related renal deficiency (Han et al., 2021), such

as SRT1460 (Zhao and Yu., 2021), SRT 1720 (Ren et al., 2017),

SRT2183 (He et al., 2010), D-Pinitol (Koh et al., 2018),

Isoliquiritigenin (Huang et al., 2020), and Rutin

(Khajevand-Khazaei et al., 2018). Klotho expression can be

stimulated by reactivation of endogenous klotho or

supplement of exogenous klotho, so as to improve renal

fibrosis and reduce senescence (Zou et al., 2018).

Demethylation of the klotho gene promoter, klotho gene

delivery and inhibition of histone deacetylase are potential

strategies for the up-regulation of klotho (Zou et al., 2018).

Several drugs have been reported to increase endogenous

klotho (Zou et al., 2018), such as intermedin, and further

alleviate senescence-related renal changes. In addition, direct

administration of exogenous soluble klotho is also effective in

improving the level of circulating klotho and preventing CKD.

5.5 Immunomodulation

Immunomodulatory therapy for senescence may be achieved

by enhancing the tolerance to acute injury, inhibiting the pro-

inflammatory state of senescent immune cells, and promoting the

clearance of senescent cells. Peripheral tolerance is mainly

controlled by dendritic cells (DCs) by inducing Tregs and

T cell anergy. In a IRI model, the treatment of adenosine 2A

receptor agonist in vitro can induce tolerogenic DCs, which

further inhibit the activation of natural killer T (NKT) cells,

thereby protecting the kidney (Li et al., 2012). Suppressing p38/

MAPK in senescent CD8+ T cells improves their telomerase

activity and mitochondrial function (Henson et al., 2014).

Immunotherapies may also be used to eliminate senescent

cells, such as reinfusion of ex vivo derived DCs, vaccines, and

chimeric antigen receptor (CAR) T cells (Qudrat et al., 2017). By

blocking the interaction between the non-classical major

histocompatibility complex (MHC) molecule human leukocyte

antigen-E (HLA-E) and the inhibitory receptor NKG2A

expressed by NK and highly differentiated CD8+ T cells, the

immune clearance of senescent cells can be improved (Pereira

et al., 2019).

6 Future prospects

Renal senescence and CKD share common characteristics

and mechanisms, and there is a complex interactive relationship

between them (Figure 4). Renal senescence is a promising target

for therapeutic intervention of CKD, as preclinical data have

shown the efficacy of senotherapies (Tan et al., 2022). In the

future, more effective senotherapies and their judicious

implementation are expected to fight against the progression

of CKD or even reverse CKD, however, several challenges

remained.

6.1 A deeper understanding of the
pleiotropic effects of senotherapy

How to avoid the influence of senotherapy on the beneficial

biological function of senescence and its potential toxicity to

non-senescent cells and the whole organism? How to optimize

dosing and limit adverse effects? These are remained major

challenges. Therefore, it is necessary to conduct extensive

researches on the pleiotropic effects of senotherapy.

6.2 Combing senotherapy with
immunomodulation

On the one hand, senotherapy may enhance the dysregulated

immune function in CKD, but immune-mediated CKD may

deteriorate due to excessive immune activation (Schroth et al.,

2020). On the other hand, the down-regulation of SASP caused

by senotherapy will not only reduce cellular senescence, but also

lead to the failure of recognizing SASP-inhibited senescent cells

by immune cells and the reduction of SASPmediators involved in

immune cell recruitment (Schroth et al., 2020), which will hinder

immune-mediated clearance and further lead to the excessive

accumulation of senescent cells. Therefore, it may be necessary to

combine immunomodulation with senotherapy to achieve the

triple therapy of specifically eliminating senescent cells, blocking

their SASPs signaling, and promoting their immune targeting for

CKD intervention (Schroth et al., 2020).

6.3 Heterogeneity identification of cellular
senescence

Whether SASPs and SCAPs have specificity in different types

of senescent cells? How to distinguish the short-term and long-

term effects of senescent cells? Is there any difference between the

response of primary senescence and secondary senescence to the

current senotherapy? All these issues need further study. Another

important point is the need for cell type-specific or tissue-specific

identification of senescent cell markers. Single cell RNA
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sequencing can characterize and identify senescence on a single

cell basis, which may help us to understand the dynamics and

heterogeneity of senescent cells in affected organs. Targeted drug

delivery to the kidneymay further enhance the therapeutic effects

of senotherapy on renal diseases and reduce its potential off-

target effects.

6.4 Determination of the burden of
senescent cells

The burden of senescent cells in the kidney may be a

useful index for predicting renal prognosis (Liu et al., 2012).

The problem is how to determine it. None of the current

senescent markers are specific and unique. Besides, not all of

the cells with these markers show senescent pathologies

(Kirkland and Tchkonia, 2020), and different senescent

subtypes are displayed when cells respond to the same

stimulus (Chen et al., 2020). Limited by the detection

methods, especially in vivo, the actual burden of senescent

cells in CKD is still unclear. Additionally, whether the

increase of senescent cells in renal biopsy can better

predict CKD progression than existing markers requires

prospective studies. It seems urgent to identify unique

markers and convenient methods to detect and quantify

senescence.
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