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Neferine (Nef) might possess anti-depressive properties; however, its

therapeutic effects are yet to be elucidated. Therefore, in this study, we

aimed to explore the anti-depressant property of Nef using a mouse model

of chronic stress-induced depression. Fifteen depression-prone mice were

randomly selected and divided into three groups, namely, the model, Nef, and

fluoxetine (Flu) groups. We observed that in tail suspension and forced

swimming tests, the Nef and Flu treatments significantly decreased the

immobility time of the depressed mice, and increased their sucrose

preference indices. Moreover, both Nef and Flu treatments induced

significant increases in the levels of anti-depressant neurotransmitters,

including dopamine (DA), serotonin (5-HT), and norepinephrine (NE), and

also reduced pathological damage to the hippocampus of the depressed

mice. Incidentally, Illumina MiSeq sequencing analysis demonstrated that the

relative abundance of Lactobacillus in the intestinal microbiota of depressed

mice was restored after Nef/Flu treatment. Moreover, colonic Lactobacillus

abundance was positively correlated with the levels of DA, 5-HT, and NE in the

hippocampus of the mice. In conclusion, Nef improved monoamine

neurotransmitter secretion and modulated the intestinal flora structure,

particularly the abundance of Lactobacillus. Hence, it showed considerable

anti-depressant potential, and might be a prospective anti-depressant

therapeutic agent.
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Introduction

In recent years, the incidence of depression, especially among

children and adolescents, has been on the rise. In fact, depression

has become the second most common cause of death among

young (Patton et al., 2009; Johnson et al., 2018; Christ et al., 2020;

Arzola et al., 2022). Therefore, conducting research to determine

effective treatment options for depression is of great social

significance.

Based on the “monoamine hypothesis,” a decrease in

monoamine neurotransmitter levels in the synaptic cleft is

recognized as the major factor related to the pathogenesis of

depression in clinical settings (Zhang et al., 2019). Most classical

antidepressants, such as tricyclic antidepressants (TCAS),

tetracyclic antidepressants (HCA), monoamine oxidase

inhibitors (MAOI), and selective serotonin (5-HT) reuptake

inhibitors (SSRIs), which are all commercially available, are

based on this theory (Zhang et al., 2019). However, despite

using adequate doses of these drugs as well as maintenance

therapy, 30%–40% of patients remain unresponsive, leading to

significant treatment resistance and unsatisfactory outcomes

(Cipriani et al., 2018).

In both human and animal experimental models, stress has

been widely recognized as an independent risk factor for the

occurrence of major depressive disorder (MDD) (Yirmiya et al.,

2015; Cruz-Pereira et al., 2020). Additionally, stress-related

factors, such as infection, inflammation, hypoxia, or

psychological stress can lead to depression via the activation

of the hypothalamic-pituitary-adrenal axis or the autonomic

nervous system, the inhibition of afferent vagus nerve fibers,

and leading to consequently, inflammation and tryptophan

metabolism dysregulation (Herselman et al., 2022). Stress may

also lead to functional deficits in certain brain regions, three of

which, including the prefrontal cortex, hippocampus, and

amygdala, have received the most attention in depression-

related studies (Arzola et al., 2022). The notable hallmarks of

MDD include apparent structural and functional deficits in the

hippocampus, a brain region that is linked to mood regulation

and memory (Yun et al., 2018). Depressed humans and

chronically-stressed animals have reduced hippocampal

activity and volumes, and show decreased expression of

activity-dependent genes and processes, including reduced

adult neurogenesis in the hippocampus (Kronmüller et al.,

2008; Rosa and Lisanby, 2012; Chevalier et al., 2020; Liu et al.,

2021). Therefore, these hippocampal deficits have long been the

target of depression treatments in an effort to ameliorate

depression symptoms (Miller and Hen, 2015; Yun et al., 2016;

Chevalier et al., 2020; Liu et al., 2021).

Gut microbiota play an important role in regulating host

brain development and behavior (Mcguinness et al., 2022; Tian

et al., 2022). Several studies have demonstrated that gut

microbiota dysbiosis is closely related to host’s depression

symptoms (Jiang et al., 2015; Petra et al., 2015; Feng et al.,

2022; Ortega et al., 2022). Interestingly, a previous study revealed

that regulating the composition of intestinal flora might be

effective for preventing as well as treating depression (Yarandi

et al., 2016). This may be because intestinal flora can influence the

absorption and bioavailability of oral drugs (Klünemann et al.,

2021; Shang et al., 2021). Other recent studies have suggested that

stress can also contribute to MDD by affecting gut microbiota

(Herselman et al., 2022). This is because stress can lead to

impaired gut barrier integrity and reduced gut mucus, as well

as gut microbial dysbiosis, which in turn increases

neuroinflammation-induced depression- and anxiety-like

behaviors (Guolan et al., 2018; Amini-Khoei et al., 2019; Oh

et al., 2020; Deng et al., 2021; Gao et al., 2022). Therefore,

improving gut dysbiosis may become a new strategy for the

treatment of stress-induced MMD.

Recently, attempts have been made at using traditional

Chinese medicine to treat MDD by altering gut microbiota

structure (Li et al., 2022; Song et al., 2022; Tan et al., 2022).

For example, the antidepressant, Shuganjieyu Capsules can alter

gut microbiota structure and function in stress-induced

depressed rats, and improve depressive symptoms (Tan et al.,

2022). Interestingly, in addition to its use as treatment for

nervous disorders, high fever, agitation, and insomnia, the

seed embryo of lotus, a common traditional Chinese

medicine, has anti-hypertensive and sedative properties

(Kumarihamy et al., 2015). Specifically, neferine (Nef), derived

from the seed embryo of lotus, is a unique bisbenzylisoquinoline

alkaloid (Marthandam Asokan et al., 2018). A previous study on

diabetic mice revealed that Nef exerts neuroprotective effects as

well as ability to improve memory and overcome cognitive

impairment (Wu et al., 2020). It has also been reported that

Nef can be used to reverse cognitive impairment in Alzheimer’s

disease in rats (Yin et al., 2020). Additionally, Nef has affinity for

δ- and μ-opioid receptors (Kumarihamy et al., 2015). Moreover,

it has also been demonstrated that opioid peptides and their

receptors are potential candidates for developing novel

antidepressant therapies; their effects are mediated by three

receptor subtypes, namely δ-, μ-, and κ-receptors (Berrocoso

et al., 2009). Previous studies have also shown that Nef has

sedative and anxiolytic effects and can significantly reduce

locomotor activity in mice in the forced swimming test

(Sugimoto et al., 2008; Sugimoto et al., 2010); thus, it has

been speculated that it may have antidepressant effects.

Studies have shown that Nef shows anti-inflammatory activity

(Jung et al., 2010; Deng et al., 2021), and inflammatory response

is an important mechanism for the pathogenesis of depression

(Liu et al., 2017). Other studies have demonstrated that it exerts

antioxidant stress effects to reduce inflammatory response

(Bharathi Priya et al., 2021), and the regulatory pathways in

this regard include the ROS/NLRP3/Caspase-1 (Takahashi et al.,

2019; Tang et al., 2019), NF-κB (Zhong et al., 2020; Chiu et al.,

2021), and PI3K/AKT/mTOR (Qi et al., 2021) signaling

pathways. Further, given that several studies on the use of Nef
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to regulate oxidative stress and inflammatory response in other

models have been reported, in this study, our desire was to

investigate the therapeutic effect of Nef on depression from

another perspective, such as the monoamine hypothesis and

intestinal flora structure.

Therefore, our aim in this study was to explore the anti-

depressive effects of Nef via behavioral analyses, hippocampal

neurotransmitter level assessment, and the investigation of the

structural changes in the intestinal flora of mice. We also

performed a preliminary exploration of the intestinal flora

targets for the anti-depressive functions of Nef. Thus, we

demonstrated the regulatory mechanism of the “microbiota-

gut-brain” axis in depression.

Materials and methods

Experimental animals and study groups

We purchased 30 C57BL/6J mice (6-week-old, male) from

Chengdu Dasuo Biotechnology Co., Ltd. (Sichuan, China), of

which 25 were randomly selected for the establishment of the

depression model, while the remaining five served as the control

group (control). All the mice were housed and maintained under

a 12-h/12-h light-dark cycle at 20–24°C. The depression model

was established using a protocol in which the mice were raised

alone and exposed to chronic unknownmild stress (CUMS) daily

for 8 weeks, as described in a previous study (Kim et al., 2020).

The specific methods are shown in Tables 1, 2. After 8 weeks, the

mice were then subjected to behavioral tests, and the ones with

significant depressive symptoms were considered successful

depression models. Subsequently, 15 depression-prone mice

were randomly selected and divided into three groups, namely

the model, Nef, and fluoxetine (Flu) groups (n = 5 per group).

The mice in the Nef group were intraperitoneally administered

Nef injections at 20 mg/kg/d for 4 weeks, while those in the Flu

group were intraperitoneally administered Flu injections at

20 mg/kg/d for 4 weeks. Nef (CAS. 2292-16-2, purity ≥98%)

was purchased from Sichuan Weikeqi Biological Technology,

Co., Ltd. (Sichuan, China), while Flu was purchased from Sigma

Aldrich (St. Louis, MO, United States). Moreover, the mice in the

control and model groups were intraperitoneally administered

equal amounts of normal saline for 4 weeks. All the procedures

involving the animals were approved by the ethics committee of

West China Hospital (WCH) of Sichuan University (approval

number 20211707A).

Behavior test

Sucrose preference test (SPT)
A day before sampling, SPTs were performed. As previously

described (Liu et al., 2020), the SPTs were performed in two

phases, i.e., the adaptation training phase, followed by the test

phase. During the first phase, all the mice were trained to

become adapted to drinking sucrose water. Thereafter, the mice

were deprived of this water as well as food for 24 h. Then in the

test phase, the mice were allowed to choose between two bottles,

one containing 1% (W/V) sucrose solution and the other

containing pure water. Both bottles were weighed in

advance. After 12 h, both bottles were removed from the

experimental set-up and reweighed. The total liquid, sucrose

solution, and pure water consumptions of the mice were then

recorded. The SPT results thus obtained were then used to

measure anhedonic responses.

The formula for calculating sugar preference (SP) index was

as follows:

Sp index(%) � [Sucrose solution consumption/

(Sucrose solution consumption

+ Pure water consumption)] × 100

(1)

Tail suspension test (TST)
On the second day after the SPT, the TST, a behavioral

despair-based test, was performed. As previously described

(Steru et al., 1985; Rosa et al., 2019), the mice were

suspended 15 cm above the floor using an adhesive tape,

TABLE 1 Chronic unknown mild stress (CUMS).

Number Treatments (duration)

1 Continuous overnight illumination (12 h)

2 Intermittent illumination (light on and off every 1 h; 3 h)

3 Paired cage (2–3 animals in each cage; 3 h)

4 Empty cage housing (18 h)

5 Physical restraint (2 h)

6 45° cage tilt (3 h)

7 Water deprivation (24 h)

8 Food deprivation (24 h)

9 Tail nip (1 min)

10 White noise overnight (80–85 dB; 3 h)

11 Wet bedding (400 ml water in 200 g sawdust bedding; 18 h)

TABLE 2 Chronic unknown mild stress (CUMS) schedule.

Cycle Treatments

Cycle 1 1 2 3 4 5 6 7 8 9 10 11

Cycle 2 3 1 10 5 11 8 4 7 2 6 9

Cycle 3 2 10 11 5 4 8 7 6 9 1 3

Cycle 4 8 4 3 6 10 1 11 2 7 5 9

Cycle 5 11 6 4 3
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which was placed approximately 1 cm from the tip of the tail.

Thereafter, the duration of immobility of the mice in the 4 min

test was recorded.

Forced swimming test (FST)
Three hours after the TST, the FST, another behavior

despair-based test, was performed. As previously described

(Liu et al., 2020), the mice were placed in a cylindrical

container with clean water. The water depth was 30 cm, and

the temperature was 25 ± 1°C. The mice were forced to swim, and

the durations of their immobile states within the last 4 min of an

8 min test period were recorded.

Sample collection

After behavior assessment, the mice were intraperitoneally

anesthetized with 30 mg/kg sodium pentobarbital and

sacrificed. Hippocampal tissue samples and colon contents

were then collected for subsequent analyses. A portion of the

hippocampal tissue was fixed in 4% paraformaldehyde for

pathological examination, while the rest was preserved in

liquid nitrogen for enzyme-linked immunosorbent

assay (ELISA). The colon contents were stored in liquid

nitrogen and sent to Shanghai Personal Biotechnology Co.,

Ltd. (Shanghai, China) for 16S rRNA high-throughput

sequencing.

Hematoxylin and eosin (H&E) staining

Hippocampal tissue samples from the mice were subjected to

H&E staining according to the standard procedure. In brief, the

hippocampal tissue samples were fixed with 4%

paraformaldehyde, embedded in paraffin blocks, dehydrated,

and sliced. Subsequently, the sections were stained with

hematoxylin for 10–20 min, followed by eosin for 3–5 min.

The staining results were then observed

(at ×100 and ×400 magnification) using the Motic

BA210 digital tri camera microscope (Xiamen, China).

Nissl staining

Hippocampal tissue samples were also analyzed via Nissl

staining according to the standard procedure. In brief, the

hippocampal tissue sections were placed in 1% toluidine blue

solution (50°C) at 56°C for 20 min. After differentiating and

dehydrating in different concentrations of alcohol, staining

was then observed (at ×400 magnification) using the Motic

BA210 digital tri camera microscope (Xiamen, China). The

average optical density of five sections for each region was

recorded as the final value for that region.

ELISA

The levels of hippocampal dopamine (DA), serotonin (5-

HT), and norepinephrine (NE) were determined using ELISA

kits according to the manufacturer’s instructions. These ELISA

kits for DA (ml002024), 5-HT (ml001891), and NE (ml063805)

were purchased from Shanghai Enzyme-linked Biotechnology

Co., Ltd. (Shanghai, China).

16S rRNA Illumina MiSeq sequencing

The colonic contents, which were stored in liquid nitrogen

and sent to the Shanghai Personal Biotechnology Co. Ltd., were

subjected to paired-end sequencing using the 16S rRNA Illumina

MiSeq platform for gene sequencing (Illumina, San Diego, CA,

United States). After denoising, QIIME2 (2019.4) software was

used for taxonomic annotation. The “Qiime taxa Barplot”

command was launched, and the feature table was generated,

after singleton data removal, to visualize the distribution of the

microbiota composition for each sample at both the phylum and

genus levels. Further, the analysis results were presented using

histograms.

Statistical analyses

Data were analyzed using GraphPAD software version 8

(GraphPad Software Inc., San Diego, CA, United States), and the

results were expressed as the mean ± standard deviation (SD).

Statistical differences among the control, model, Nef, and Flu

groups were determined by performing one-way analysis of

variance (ANOVA). If the data fitted the homogeneity of

variance, then the least significant difference (LSD) analysis

was performed; otherwise, Tamhane’s T2 analysis was

performed. Additionally, Pearson correlation analysis

were performed using SPSS software version 19.0 (IBM,

Armonk, NY, United States). Statistical significance was set at

p < 0.05.

Results

Effects of Nef on depressed mice behavior

As shown in Figure 1, in both the TST (p < 0.0001) and FST

(p < 0.001), the model mice showed significantly increased

immobility durations, while their SP indices decreased

significantly (p < 0.01) relative to those of the control mice.

These observations indicated the successful establishment of the

mouse model of depression. Additionally, the immobility

durations of the Nef- and Flu-treated depressed mice in the

TST (Nef, p < 0.01; Flu, p < 0.001) and FST (Nef, p < 0.05; Flu, p <
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0.01) were significantly decreased, while their SP indices were

significantly increased (Nef, p > 0.05; Flu, p < 0.01) relative to

those of the model mice.

Effects of Nef on depression-related
factors in the hippocampus of depressed
mice

As shown in Figure 2, the hippocampal levels of anti-

depression factors, namely DA (p < 0.01), 5-HT (p < 0.001),

and NE (p < 0.0001), were significantly reduced in the model

mice compared with their levels in the hippocampus of the

control mice. Incidentally, the Nef and Flu treatments led to

a significant increase in the hippocampal levels of DA (Nef,

p < 0.05; Flu, p < 0.05), 5-HT (Nef, p < 0.05; Flu, p < 0.05),

and NE (Nef, p < 0.05; Flu, p < 0.05) in the depressed

mice, compared with their corresponding levels in the

model mice.

Effects of Nef on pathological damage of
hippocampal tissue in depressed mice

As shown in Figure 3, relative to the control mice, the

hippocampus of depressed mice showed significantly

increased pyramidal cell necrosis, while the number of

Nissl bodies (p < 0.0001) decreased significantly. However,

both the Nef and Flu treatments significantly reduced

pyramidal cell necrosis and increased the number of Nissl

bodies in the depressed mice (Nef, p < 0.01; Flu, p < 0.001)

relative to the model mice.

Effects of Nef on gut microbiota of
depressed mice

The results of Illumina MiSeq sequencing of the colonic

content of the mice are presented in Figure 4. At the phylum

level, compared with the control group, the model group showed

FIGURE 1
Nef improves behavioral depression symptoms inmicemodels of depression. TST, tail suspension test; FST, forced swimming test; SPT, sucrose
preference test; Nef, neferine; Flu, fluoxetine. Nef and Flu both improved the depressed behavior of depressed mice. Data are presented as mean ±
standard deviation (SD; n = 5 per group). **p < 0.01, ***p < 0.001, ****p < 0.0001 vs control; &p < 0.05, &&p < 0.01, &&&p < 0.001 vs model.

FIGURE 2
Hippocampal expression of anti-depression factors in depressed mice restored by Nef treatment. DA, dopamine; 5-HT, serotonin; NE,
norepinephrine; Nef, neferine; Flu, fluoxetine. Nef and Flu both increased the levels of DA, 5-HT, and NE in the hippocampus of depressedmice. Data
are presented as mean ± standard deviation (SD; n = 5 per group). **p < 0.01, ***p < 0.001, ****p < 0.0001 vs control; &p < 0.05 vs model.
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a decrease in the relative abundance of Firmicutes and an increase

in that of Bacteroidetes. Furthermore, both Nef and Flu

treatments reverted these changes in the relative abundances

of Firmicutes and Bacteroidetes in the depressed mice.

Additionally, at the genus level, Lactobacillus was the most

dominant microflora in all the groups; however, compared

with the control group, the model group showed a decrease in

the relative abundance of this genus. Incidentally, both the Nef

and Flu treatments restored the relative abundance of

Lactobacillus in the depressed mice.

To further confirm the correlation between gut microbiota

and the improvement of depression symptoms, we performed

Pearson correlation analysis involving the top

20 dominant microflora at the genus level and the

hippocampal levels of anti-depressant factors. As shown in

Figure 5, the relative abundance of Lactobacillus was

significantly positively correlated with hippocampal levels

of the anti-depressant factors, DA, 5-HT, and NE, while

that of Oscillospira showed significantly negative

correlations in this regard.

Discussion

In view of the current situation that existing treatments for

MDD still lack satisfactory efficacy, it is of great practical

significance to continuously explore new and better treatment

options. In this regard, studies on the antidepressant effects of

FIGURE 3
Nef alleviates pathological damage in the hippocampus of depressedmice. H&E, hematoxylin and eosin; Green arrow, necrotic pyramidal cells;
Nef, neferine; Flu, fluoxetine. Both Nef and Flu both reduced pyramidal cell necrosis and increased Nissl body count in the hippocampus of
depressedmice. Data are presented asmean ± standard deviation (SD; n = 5 per group). ****p < 0.0001 vs control; &&p < 0.01, &&&p < 0.001 vsmodel.
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FIGURE 4
Nef treatment improves gut microbiota in depressed mice. The figure depicts gut microbiota composition in mice at phylum and genus levels
(n = 5 per group). Nef, neferine; Flu, fluoxetine. At the phylum level, both Nef and Flu treatments reverted the changes in the relative abundances of
Firmicutes and Bacteroidetes in the depressed mice. At the genus level, Nef as well as Flu treatments also restored the relative abundance of
Lactobacillus in depressed mice.
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traditional Chinese medicine represent one of the possible

research directions in this regard.

In this study, Nef treatment reduced the immobility

durations of depressed mice in TST and FST and increased

their SP indices, suggesting that Nef played an anti-depressant

role in a state of depression. In fact, Nef has been studied for its

anxiolytic and antidepressant effects. In an elevated plus maze

test, Sugimoto et al. (2008) observed that Nef exerts anxiolytic

effects in mice. Based on FST results, they also indicated that Nef

exhibits antidepressant-like antidepressant effects in mice,

similar to typical antidepressants, and these effects were found

to be mediated by 5-HT1A receptors (Sugimoto et al., 2010; Shi

et al., 2019). Similar to these previous studies, our findings

reconfirmed the antidepressant effect of Nef.

Our results also revealed that Nef improved depression by

reducing hippocampal pyramidal cell necrosis and alleviating

hippocampal lesions. Reportedly, pyramidal cell damage is

associated with depression and memory decline (Salim, 2017).

Several treatment approaches like Tuina, which affect the

activation and functional connectivity of the hippocampus are

thought to improve depressive symptoms (Tao et al., 2022).

Therefore, the reason why Nef can protect hippocampal cells

against lesions may be that it exerts anti-oxidative stress effects or

inhibits the excessive release of the neurotransmitter glutamate,

thereby exerts a protective effect on nerve cells (Marthandam

Asokan et al., 2018; Yeh et al., 2020). However, given that related

studies are limited, the specific mechanism by which Nef exerts

its protective effect on nerve cells needs to be further studied.

The results of this study also demonstrated that Nef

treatment restored the hippocampal levels of 5-HT, NE, and

DA, thereby indicating that Nef exerts an anti-depressive effect

via 5-HT/NE/DA triple reuptake. Given the critical roles of 5-

HT, NE, and DA in the pathogenesis of MDD (Maletic et al.,

2007; Liu et al., 2020; Rominger et al., 2015; Zhong et al., 2020), it

is reasonable to think that this should be an important

mechanism for the antidepressant efficacy of Nef. Zhao et al.

(2022) also reported that another herbal medicine, Xiebai

glycosides, can significantly improve the levels of NE and DA

in brain homogenate from depressive model rats. Studies have

also confirmed that the antidepressant effect of Nef is mediated

by the 5-HT1A receptor. Specifically, Nef may enhance the

activity of 5-HT neurons by inhibiting 5-HT reuptake or

activating 5-HT metabolism (Sugimoto et al., 2010; Sugimoto

et al., 2015). However, the mechanisms by which it affects DA

and NE function are still unclear, hence require further in-depth

studies.

In recent years, a large number of studies have confirmed that

the gut microbiota composition and the associated metabolites

are related to the pathogenesis, clinical phenotype, and treatment

effect of depression (Mayneris-Perxachs et al., 2022), and even

FIGURE 5
Pearson correlation analysis of the correlation between the top 20 dominant microflora at the genus level and the hippocampal levels of anti-
depressant factors in mice (n = 5 per group). Nef, neferine; Flu, fluoxetine; DA, dopamine; 5-HT, serotonin; NE, norepinephrine. The relative
abundance of Lactobacilluswas significantly positively correlated with the hippocampal levels of DA, 5-HT, andNE, while that ofOscillospira showed
significantly negatively correlations in this regard.
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the structure of the brain (Lee et al., 2022). Colonization by gut

microbiota from patients with depression can lead to depression-

like behaviors in mice (Kelly et al., 2016; Zheng et al., 2016).

However, probiotics, exercise, and diet can affect gut microbiota

structure and also show antidepressant potential (Donoso et al.,

2022). Additionally, both animal and human studies have shown

that alterations in gut microbial composition and metabolic

function may be associated with differential responses to

antidepressants in depression (Duan et al., 2021; Zhang et al.,

2021; Dong et al., 2022). In a particular study, it was observed that

polyphenols in an edible herbal medicine can alter the abundance

of flora associated with neuroinflammation by reversing

intestinal microbiota dysbiosis and that intestinal flora-

mediated chemical modification of polyphenols can result in

their conversion into active secondary metabolites that improve

depression (Hao et al., 2022). Another study showed that

resveratrol markedly increases brain derived neurotrophic

factor (BDNF) expression in the hippocampus, and this can

help to improve depression and anxiety symptoms (Yu et al.,

2019). Our study demonstrated that both Nef and Flu treatments

increased the relative abundances of species belonging to phylum

Firmicutes, but decreased those of species belonging to phylum

Bacteroidetes in the depression mouse model. Additionally, they

increased the relative abundance of Lactobacillus at the genus

level. These results suggested that Nef and Flu treatments might

improve depression via intestinal flora. Further, Pearson

correlation analysis indicated that the relative abundance of

Lactobacillus was significantly positively correlated with the

levels of DA, 5-HT, and NE in the hippocampus, while that

ofOscillospira showed significantly negatively correlations in this

regard, suggesting that Nef improved depression via the brain-

gut-microbial axis. Hence, Lactobacillus and Oscillospira

might be the key microbial species associated with anti-

depression.

Reportedly, Lactobacillus can mediate anti-depressant

effects by promoting the functions of various

neurotransmitters, such as 5-HT, DA, NE, and gamma-

aminobutyric acid (GABA) (Yong et al., 2019; Yunes et al.,

2020). The hypothalamic–pituitary–adrenal (HPA) axis is

another target of Lactobacillus for treating depression

symptoms (Johnson et al., 2021). Specifically, Lactobacillus

rhamnosus can alter the expression of central GABA

receptors, increase GABA expression level, and downregulate

the HPA axis through the vagus nerve pathway, thereby

functioning as an anti-depressant (Bravo et al., 2011; Janik

et al., 2016). Therefore, the anti-depressant effects of Nef and

Flu might be mediated through Lactobacillus, which is part of

the intestinal flora of depressed mice; however, this requires

further investigation.

In conclusion, this study revealed that Nef exerts therapeutic

effects on depressed mice owing to its ability to improve

hippocampal nerve damage, alleviate anti-depressant

neurotransmitter secretion, and enrich the gut microbiota

structure. Specifically, Lactobacillus might be the gut microbial

target of Nef in treating the symptoms of depression.
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