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Melatonin is an important endogenous hormone thatmodulates homeostasis in

the microenvironment. Recent studies have indicated that serum melatonin

levels are closely associated with the occurrence and development of

osteoporosis in postmenopausal women. Exogenous melatonin could also

improve bone mass and increase skeletal strength. To determine the

underlying mechanisms of melatonin in the prevention and treatment of

postmenopausal osteoporosis, we performed this review to analyze the role

of melatonin in bone metabolism according to its physiological functions.

Serum melatonin is related to bone mass, the measurement of which is a

potential method for the diagnosis of osteoporosis. Melatonin has a direct effect

on bone remodeling by promoting osteogenesis and suppressing

osteoclastogenesis. Melatonin also regulates the biological rhythm of bone

tissue, which benefits its osteogenic effect. Additionally, melatonin participates

in the modulation of the bone microenvironment. Melatonin attenuates the

damage induced by oxidative stress and inflammation on osteoblasts and

prevents osteolysis from reactive oxygen species and inflammatory factors.

As an alternative drug for osteoporosis, melatonin can improve the gut ecology,

remodel microbiota composition, regulate substance absorption and maintain

metabolic balance, all of which are beneficial to the health of bone structure. In

conclusion, our review systematically demonstrates the effects of melatonin on

bone metabolism. Based on the evidence in this review, melatonin will play a

more important role in the diagnosis, prevention and treatment of

postmenopausal osteoporosis.
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1 Introduction

Postmenopausal osteoporosis is a common disease of bone metabolism occurring in

women after amenorrhea (Farlay et al., 2022). The onset of osteoporosis is insidious

without specific symptoms. It is usually diagnosed after the occurrence of serious

complications, including pain, spinal deformity and fracture (Chow et al., 1989).
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Osteoporotic fracture is the main factor threatening the health of

patients with osteoporosis. Previous studies have indicated that

20% of women suffer from osteoporosis and 10% of these women

have fractures in different sites (Wang et al., 2021). Early

diagnosis and treatment are essential to prevent osteoporosis

complications. At present, dual energy X-ray absorptiometry

(DXA) is the gold standard for the detection of bone mineral

density. However, DXA test results have obvious limitations for

the diagnosis and treatment of osteoporosis. In terms of

localization, DXA generally detects the bone density of the

waist and hip, but it cannot determine the distribution and

heterogeneity of the bone (Silva et al., 2013; Cataño Jimenez

et al., 2020). Additionally, DXA is unable to detect the trabecular

bone microstructure and predict the risk of fractures (Nazarian

et al., 2009). More importantly, DXA testing equipment is

expensive, and it is difficult to apply to the whole population,

resulting in the omission of patient screening. The development

of complementary assays to assess systemic bone mass and

fracture risk is essential.

Postmenopausal women are the main high-risk group for

osteoporosis (Liu et al., 2022a). The core pathogenesis of

postmenopausal osteoporosis is estrogen deficiency. Hormone

replacement therapy has been applied in the treatment of

osteoporosis. However, exogenous hormones disrupt

endocrine homeostasis and increase the risk of breast cancer,

endometrial cancer and cholelithiasis (Zhang et al., 2021a). Drug

therapy for osteoporosis is divided into two types: promotion of

osteogenesis and inhibition of osteoclasts, with the latter being

the mainstay (Zhou et al., 2020a). Due to the limitations of

detection methods and the lack of awareness during a physical

examination, patients with osteoporosis often undergo drug

intervention after serious complications occur. Drugs for

inhibiting osteoclasts only prevent further bone loss but do

not fundamentally improve bone mass. Osteogenesis drugs

such as teriparatide can cause endocrine disturbances,

gastrointestinal irritation and central nervous system lesions.

The development of mild osteogenic drugs is an effective

measure to address the limitations of current drug treatments

for osteoporosis. In addition, revealing the pathophysiological

changes induced by estrogen decline will contribute to

determining the pathogenesis and clinical treatment of

postmenopausal osteoporosis.

Melatonin is a hormone secreted by the pineal gland. Its

functions include adjusting biological clock rhythm, eliminating

free radicals, delaying aging and enhancing immunity (Zhang

et al., 2020; Guo et al., 2021a; Li et al., 2021a; Zhang et al., 2021b).

Melatonin is used as a component of nutraceuticals to maintain

body health due to its limited side effects. At present, melatonin is

mainly applied to people with sleep disorders and insomnia (da

Silveira Cruz-Machado et al., 2021). Melatonin effectively

shortened the time to fall asleep, reduced the time of light

sleep, increased the time of deep sleep, improved sleep quality,

and helped people stay awake after waking up. Additionally,

there is good evidence that melatonin can be used to treat

ischemia-reperfusion injury, primary headache, and

fibromyalgia and can control blood sugar and blood pressure

(Leelaviwat et al., 2022). Melatonin is increasingly valued by

patients and clinicians due to its antioxidant and antiaging

properties. In our previous study, we determined that serum

melatonin levels were obviously decreased in postmenopausal

women with osteoporosis (Cao et al., 2022). Changes in serum

melatonin were significantly correlated with bone metabolism

markers in the development of postmenopausal osteoporosis

(Ostrowska et al., 2001a). This evidence indicated the

potential role of melatonin in the evaluation of bone mass

and strength. Additionally, our previous studies also revealed

the positive effect of melatonin on osteoblasts and its therapeutic

effect in postmenopausal osteoporosis in animals (Da et al., 2020;

Wen et al., 2020). Oral administration of melatonin could

increase the serum level of melatonin to improve bone mass

(Guan et al., 2022). Melatonin decreased the relative ratio of

serum osteoclasts and osteoblasts to improve bone balance

(Kotlarczyk et al., 2012; Maria et al., 2018). It is obvious that

melatonin plays an important role in bone metabolism. In

addition to the direct effect on bone cells, some studies also

indicated that melatonin could regulate bone homeostasis in

different indirect ways (Xu et al., 2018; Zhou et al., 2019).

Melatonin is a mild osteogenic drug with few complications

and has the potential and prospect of being an effective drug for

the treatment of osteoporosis. Clarification of the role of

melatonin in resisting the pathological changes caused by

estrogen deficiency and the optimization of the drug

formulation of melatonin for the treatment of osteoporosis are

promising research directions. Therefore, we aim to review the

studies that investigated the role of melatonin in the development

of postmenopausal osteoporosis, elucidate the mechanism by

which melatonin improves bone metabolism, and provide

insights into the application of melatonin in osteoporosis

treatment.

2 Methods

2.1 Search strategy

The PubMed, Web of Science, Ei Compendex and Wiley

databases were used to search the research literature on

melatonin and postmenopausal osteoporosis. We searched any

identified studies including reviews, articles, early access,

editorial materials, and letters. The results comprised papers

available from the inception of the database to July 2022. Search

terms included Osteoblast, Osteoclast, Melatonin, Osteogenesis,

Osteogenic differentiation, Osteoclast differentiation, Biological

rhythms, Antioxidant effect, Anti-inflammation,

Immuomodulation, Gut, Gut microbiota, and Postmenopausal

osteoporosis. The abstract or full text of these studies was

Frontiers in Pharmacology frontiersin.org02

Yang et al. 10.3389/fphar.2022.975181

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.975181


reviewed to check whether they matched the corresponding

section.

2.2 Melatonin promotes osteoblast
differentiation and inhibits osteoclast
activity

2.2.1 Molecular mechanism and signaling
pathway in vitro

Osteoblasts differentiate from the mesenchymal stem cells in

bone marrow (BMSCs) (Sun et al., 2022). Previous studies have

indicated that there are two opposite trends of BMSC

differentiation that result from the balance between

osteogenesis and adipogenesis (Wang et al., 2022a; Suo et al.,

2022). Melatonin could increase the expression of osteogenic

markers of mesenchymal stem cells and contribute to the

mineralization of the bone matrix (Guan et al., 2022).

Melatonin promotes the osteogenic differentiation of BMSCs

via the Wnt/β-catenin pathway and inhibits the adipogenic

differentiation of BMSCs via the PPARγ pathway (Zhang

et al., 2010; Han et al., 2021). In pathological conditions,

melatonin could also resist cell damage and prevent osteoblast

function (Zhao et al., 2020; Gong et al., 2022). As mentioned

above, melatonin is a potential osteogenic promoter in bone

metabolism. Melatonin combined with the MT2 receptor could

induce signaling transduction in osteogenesis and promote

ossification (Zhang et al., 2021c). However, MT2 activation

also suppresses osteoclastogenesis activity by inactivating the

NF-kappaB pathway (Zhou et al., 2020b). In coculture

conditions, exogenous melatonin promotes the osteogenesis of

mesenchymal stem cells and inhibits the osteoclastogenesis of

peripheral blood monocytes via the MT2-mediated MEK1/2 and

MEK5 pathways (Maria et al., 2018). Additionally, melatonin

decreased the expression of RANKL and further suppressed the

activity of osteoclasts via the receptor-independent MARK and

NFATc1 pathway (Kim et al., 2017; Kim et al., 2022) (Figure 1).

2.2.2 In vivo experiments
Melatonin also modulated the estrogen receptor on

osteoclasts to maintain the inhibitory effect on osteoclast

differentiation (Suzuki and Hattori, 2002). In vivo

experiments, estrogen-deficient mice were obtained by

bilateral ovariectomy (OVX). Melatonin feeding could

improve bone mass and relieve bone loss in OVX mice

(Gürler et al., 2019). Histological detection of bone tissues

indicated that melatonin increases the expression of Collagen

I and BMP2 but decreases the expression of PRMT1 and TRAP

(Choi et al., 2021; Huang et al., 2021). These data demonstrate

that melatonin has positive effects on osteogenesis and negative

effects on osteoclastogenesis in animal models, which is

consistent with the results at the cellular level. In conclusion,

melatonin plays an important role in bone balance through direct

regulation.

The direct mechanism of melatonin in regulating bone

metabolism is summarized and listed in Table 1.

FIGURE 1
Signaling pathways of bone remodeling regulated by melatonin.
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2.3 Biological rhythms

Biorhythm plays an important role in the development of

postmenopausal osteoporosis. A recent study showed that the

endochondral bone formation process exhibits a biological

rhythm characterized by rapid DNA replication and active

cellular mitosis during the day, followed by matrix synthesis

at night (Yu et al., 2022). The circadian clock regulates the

biological cycle of mammalian physiological functions.

Biological regulation maintains energy metabolism in bone

tissue, including the metabolism of glucose, amino acid and

fat (Luo et al., 2021).

2.3.1 Clinical data
Bone metabolism markers were secreted in a special

circadian rhythm (Zheng et al., 2021). Rhythmic regulation

of bone metabolism hormones, such as parathyroid hormone

and growth hormone, maintains the homeostasis of calcium,

phosphate, Collagen I peptide and 1,25-dihydroxyvitamin D

in bone tissue (Joseph et al., 2008). Circadian clock

disturbance led to the disorder of bone metabolism when

clock-related genes were knocked out or sleep restriction

occurred (Song et al., 2018). As the circadian clock was

disturbed in postmenopausal women, the process of bone

formation, energy metabolism and the expression of

turnover markers in bone tissue, as well as the secretion of

bone metabolic hormones were disordered (Kruijver and

Swaab, 2002). Melatonin is a type of rhythmic hormone. Its

secretion increases with weak light stimulation at night but

decreases in the daytime (Carstensen et al., 2022). The

rhythmic regulation of melatonin affected the metabolism

of nutrients, including carbohydrates, lipids and proteins,

indicating the important role of melatonin in maintaining

body functions (Kent et al., 2022; Qian et al., 2022). A previous

clinical study demonstrated the protective effect of melatonin

in rhythmic secretion on bone metabolism in postmenopausal

women (Ostrowska et al., 2001b).

2.3.2 Modulatory mechanism of melatonin in the
biological rhythm of bone metabolism

The circadian levels of Collagen I biomarkers were suppressed

when melatonin concentrations were altered during the day in

postmenopausal women. In addition, serum carboxyterminal

telopeptide of type I collagen (ICTP) together with urinary

hydroxyproline and Ca was negatively correlated with the

serum melatonin level (Ostrowska et al., 2001a). Melatonin also

improved bone mass in a rhythmic regulatory method by

exogenous supplementation in addition to its relationship in

physiological and pathological conditions. Circadian clock genes

were closely associated with bone metabolism (Table 2). CLOCK

gene mutations inhibit the combination of 1,2,5(OH)2D3 and the

PDIA3 receptor, which is involved in bone remodeling (Yuan et al.,

2017). Melatonin increased the expression of CLOCK (Wan et al.,

2020). As the downstream target of CLOCK, BMAL1 also led to

the occurrence of osteoporosis when the factor was defective (Chen

et al., 2020a). Inactivation of BMAL1 suppressed the

differentiation of osteoblasts and enhanced the function of

osteoclasts. Melatonin induced AMPKβ1 phosphorylation to

increase BMAL1 expression by activating melatonin receptor 1

(Yu et al., 2022). REV-ERB/ROR is a group of response elements

that modulate the expression of BMAL1 (Lee et al., 2016).

Melatonin suppressed osteoclastogenesis by increasing the

expression of REV-ERB (Tian et al., 2021). As mentioned

above, the melatonin level is closely related to the expression of

bonemetabolism biomarkers. Disruptions in the circadian rhythm

of melatonin secretion lead to an imbalance in bone remodeling,

and exogenousmelatonin plays a positive role in bone homeostasis

by modulating circadian clock genes and factors.

2.4 Antioxidant effect

Estrogen is a type of antioxidant hormone that regulates the

function of mitochondria to maintain the activity of oxidase and

the production of oxidants (Miyazaki-Akita et al., 2007; Yung

TABLE 1 The mechanism of melatonin regulating bone remodeling.

Biological function Targets and signaling
pathways

Citation

Promotion of osteogenesis Wnt/β-catenin pathway, MT2 receptor Han et al. (2021), Zhang et al. (2021c)

Suppression of adipogeneis PPARγ pathway Zhang et al. (2010)

Suppression of
osteoclastogenesis

NF-kappaB pathway, MT2 receptor, MEK1/2 andMEK5 pathway, MARK and
NFATc1 pathway

Zhou et al. (2020b), Maria et al. (2018), Kim et al. (2022),
Kim et al. (2017)

Increase of osteoblast
markers

Collagen I and BMP2 Huang et al. (2021)

Decrease of osteoclast
markers

PRMT1 and TRAP Choi et al. (2021)

aOsteoporosis is a commonmetabolic disease of bone tissue characterized by bone resorption of osteoclasts over bone formation of osteoblasts.MT2 receptor, melatonin receptor 2; PPARγ,
peroxisome proliferators-activated receptor gamma; NF-kappaB, nuclear transcription factor-kappaB; MARK, mitogen-activated protein kinase; NFATc1, Nuclear factor of activated

T cells 1; BMP2, Bone morphogenetic protein 2; PRMT1, protein arginine methyltransferase 1; TRAP, triiodothyronine receptor auxiliary protein.
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et al., 2011). Disturbances in the antioxidant systems lead to

imbalances in bone metabolism (Yang et al., 2022a).

Postmenopausal osteoporosis is a disease caused by oxidation-

reduction disorders due to estrogen deficiency (Yang et al., 2021).

On the one hand, oxidative stress weakens the function of

osteogenesis (Lian et al., 2021). On the other hand, reactive

oxygen species (ROS) signals could activate RANKL-mediated

osteoclastogenesis (Li et al., 2022). Both effects resulted in bone

mass loss in bone tissue.

2.4.1 Effect and molecular mechanism
Melatonin is the most powerful endogenous free radical

scavenger. Its main antioxidant mechanism acts through its

binding to oxidative substances (Lu et al., 2022). Additionally,

melatonin binds to its cellular receptor and activates the

transduction signals that induce the synthesis of antioxidant

enzymes, including superoxide dismutase, catalase, glutathione

peroxidase, and glutathione reductase (Bantounou et al., 2022).

To prevent oxidative damage, melatonin suppresses the cellular

senescence induced by oxidative stress in bone marrow

mesenchymal stem cells to maintain the osteogenic

differentiation (Chen et al., 2022). Melatonin also increases

the expression of SIRT1, which is a deacetylase that is closely

involved in mitochondrial biosynthesis to improve oxidative

damage in osteoblasts (Chen et al., 2020b; Liu et al., 2022b).

In addition, melatonin promotes SIRT3-mediated antioxidase

production to hydrolyze free radicals and thereby protect

osteoblasts against apoptosis (Zhou et al., 2019; Xiao et al.,

2020). For the regulation of osteoclast activity, melatonin

could suppress ROS-induced osteoclast differentiation and

aging-mediated bone loss (Zhou et al., 2017; Tao et al., 2020).

The nuclear factor Nrf2 plays an important role in oxidative-

reductive signaling pathway-mediated bone remodeling (Han

et al., 2022). Activation of Nrf2 not only maintains the survival of

osteoblasts and mesenchymal stem cells but also inhibits

osteoclast differentiation (Su et al., 2021; Wang et al., 2022b).

2.4.2 Signaling pathway
Melatonin increases the expression of Nrf2 to promote

osteogenic differentiation via the Wnt/β-catenin pathway and

inhibits osteolysis by enhancing the activity of catalase (Vriend

and Reiter, 2016; Zhu et al., 2020). Heme oxygenase 1 (HO-1) is

an essential downstream target of Nrf2 in the process of

regulating the oxidation-reduction response (Ma et al., 2019).

HO-1 was regarded as the potential target for postmenopausal

osteoporosis based on its physiological function of controlling

carbon monoxide and ferritin iron to prevent cell apoptosis in

bone tissue (Zhou et al., 2021). Melatonin is an agonist of the

Nrf2/HO-1 signaling pathway (Yang et al., 2022b; Zhou et al.,

2022). Melatonin also exerted antioxidant functions by activating

the Nrf2/HO-1 signal to enhance intracellular antioxidant

reactions (Guo et al., 2021b). In conclusion, melatonin plays

an important role in the protection of bone metabolism from

oxidative damage by enhancing the activity of antioxidase and

scavenging free radicals via the Nrf2/HO-1 signaling pathway.

Targets and signaling pathways modulated by melatonin are

listed in Table 3 to reveal the antioxidant effect of melatonin in

bone balance.

2.5 Anti-inflammation and
immunomodulation

2.5.1 Pathogenesis
Estrogen has potential anti-inflammatory properties. Studies

have demonstrated that estrogen receptor participates in the

activation and proliferation of T lymphocytes, and estrogen also

suppressed the production of proinflammatory cytokines by

activating the NF-κB signaling pathway (Mohammad et al.,

2018; Harding and Heaton, 2022). Therefore, postmenopausal

osteoporosis has been regarded as a type of inflammatory disease

(McLean, 2009). Immunological homeostasis also played an

important role in the maintenance of bone balance. First,

mononuclear macrophages are the precursors of osteoclasts.

After combining with estrogen receptor α (ERα), estrogen

inhibits the differentiation of mononuclear macrophages into

osteoclast by inhibiting the secretion of IL-1β, TNF-α and IL-6

(Riggs, 2000). Estrogen could also reduce the secretion of IL-17

and RANKL, which promote osteoclast differentiation from

CD4 T cells (Okamoto et al., 2017). Estrogen deficiency

decreased the production of TGF-β, which could suppress

osteoclasts with the inhibitory effect of IFNγ and TNF-α in

T cells. Additionally, estrogen promoted the production of

efficient B lymphopoiesis in bone marrow and reduced

osteoclast differentiation by increasing OPG expression

(Masuzawa et al., 1994; Fujiwara et al., 2016). The systemic

TABLE 2 Circadian clock genes and mechanism regulated by melatonin in bone metabolism.

Circadian clock genes Mechanism in regulating
bone metabolism

Citation

CLOCK Activating the PDIA3 receptor of 1,2,5(OH)2D3 Yuan et al. (2017)

BMAL1 Promoting osteogenesis and suppressing osteoclastogenesis Chen et al. (2020a)

REV-ERB/ROR Suppressing osteoclastogenesis Tian et al. (2021)

aMelatonin is a circadian rhythm-regulating hormone secreted by pineal gland. BMAL1, Basic helix-loop-helix ARNT, like 1; PDIA3, protein disulfide isomerase family A member 3.
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immune-inflammation index is an important index for the

prediction and diagnosis of bone mass disorders in

postmenopausal women (Du et al., 2021).

2.5.2 Molecular mechanism of anti-
inflammation

Melatonin was revealed to inhibit the inflammatory response

in recent studies (Xi et al., 2021; Zakria et al., 2021). Its anti-

inflammatory mechanism mainly acts through the inhibition of

inflammasome formation and the abolishment of

proinflammatory factor expression (Liu et al., 2022c; Xiong

et al., 2022). Melatonin promotes osteogenic differentiation

via the Wnt/β-catenin pathway and suppresses the inhibitory

effect of NF-κB on osteogenesis in an inflammatory environment

(Li et al., 2019). Melatonin also overcame the IL-1β-induced
weakening of the osteogenic capacity of mesenchymal stem cells

and tumor necrosis factor-alpha (TNF-α) by increasing bone

resorption of osteoclasts to improve inflammation-related

osteoporosis (Liu et al., 2013; Lian et al., 2016).

2.5.3 Molecular mechanism of
immunomodulation

Immune function is a necessary factor in the regulation of the

inflammatory state of the body. Osteoimmunology is becoming

the focus of research on bone metabolic diseases (Xu et al., 2021;

Fischer and Haffner-Luntzer, 2022). Melatonin plays an

important role in immune organs homeostasis and maturation

of immunocytes. Melatonin regulated the immune network

composition of hematopoietic lineage cells in bone marrow

(Maestroni, 1998). The survival of T cells in the thymus and

B cells in bone marrow depended on melatonin regulation (Yu

et al., 2000). The immune response was also affected by

melatonin. Melatonin combined with the membrane receptor

MT1 in the spleen to increase immune parameters such as the

spleen mass and lymphocyte and leukocyte counts (Vishwas and

Haldar, 2013). The most direct effect of melatonin on immune

function was to modulate the response of immune cells in

peripheral lymph nodes, especially T cells (Álvarez-Sánchez

et al., 2015). Melatonin inhibited the immune response of

effective T cells and enhanced the function of regulatory

T cells. As the precursors of osteoclasts, monocyte-derived

macrophages are the direct link between the immune and

skeletal systems (Yang and Liu, 2021). Melatonin inhibits the

osteoclastogenesis and migration of macrophages to suppress

inflammation-mediated bone resorption (Markus et al., 2021;

Kim et al., 2022). Melatonin also acted on other immunocytes to

modulate bone metabolism indirectly. First, melatonin inhibited

the proliferation and differentiation of Th1 and Th17 cells,

reducing the secretion of IFNγ, IL-17 and TNF-α to improve

bone mass (Srivastava et al., 2018; Huang et al., 2022). Immature

B cells were associated with bonemass by increasing the RANKL/

OPG ratio, but melatonin could promote B cell activation (Luo

et al., 2020; Titanji et al., 2020). The mechanisms of immune cells

and inflammatory factors mentioned above are summarized in

Table 4. Therefore, clarifying the role of melatonin in the

modulation of the immune-bone link could improve the

inflammatory state and bone mass loss in postmenopausal

women with osteoporosis.

2.6 Gut-bone axis

2.6.1 Pathogenesis
The “gut-bone axis” is a new concept that has been proposed

in recent studies. If refers to the influence of the gut microbiota

on the absorption of nutrients, which alters the blood

metabolism factors involved in bone remodeling (Fernández-

Murga et al., 2020; Gobron et al., 2020). The gut microbiota play

an important role in bone homeostasis (Li et al., 2021b).

Detection of the intestinal flora abundance in OVX mice

indicated that the ratio of Firmicutes to Bacteroidetes was

higher than that of normal female mice (Wen et al., 2020).

Disorders in the composition of the gut microbiota led to

changes in substance metabolism that resulted in bone

imbalances (Greenbaum et al., 2022). In addition, the gut

microbiota can also improve bone mass by promoting

osteogenesis and inhibiting osteoclasts (Ding et al., 2020).

Special microbiota such as Bifidobacterium longum could

TABLE 3 Targets and signaling pathways of melatonin exerting antioxidant effects in bone metabolism.

Targets and signaling
pathways

Effect and function Citation

SIRT1 Maintaining mitochondrial biosynthesis to improve oxidative damage Liu et al. (2022b), Chen et al. (2020b)

SIRT3 Promoting antioxidase production to hydrolysis free radicals Zhou et al. (2019), Xiao et al. (2020)

Nrf2 maintaining the survival of osteoblasts and mesenchymal stem cells, inhibiting osteoclast
differentiation

Wang et al. (2022b), Su et al. (2021)

Nrf2/HO-1 signaling
pathway

enhance intracellular antioxidant reaction Guo et al. (2021b)

aMelatonin is the strongest endogenous free radical scavenger. SIRT1, Sirtuin 1; SIRT3, Sirtuin 3; Nrf2, NFE2 like bZIP, transcription factor 2; HO-1, Heme oxygenase 1.
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also enhance the immunomodulatory potential of regulatory

B cells to improve bone mass (Sapra et al., 2022).

2.6.2 Effect of melatonin on the gut
Melatonin is an essential factor in the regulation of the gut

microenvironment. Melatonin primarily protects against gut

barrier defects to control substance absorption and improves

the microbiome to influence substance metabolism (Jing et al.,

2022). In terms of substance absorption, melatonin altered

intestinal permeability by regulating the expression of the

intestinal tight junction proteins ZO-1, occludin and claudin-1

(Liu et al., 2022d). For substance metabolism, melatonin also had

a positive effect on the diversity of the gut microbiome (Zhang

et al., 2022). Additionally, melatonin protected the intestinal tract

from pathological damage. Melatonin increased the activity of

antioxidases, such as SOD, GSH-Px and CAT, and prevented the

expression of oxidative damage-induced gastrointestinal

apoptosis factors. (Khan et al., 2017). Melatonin also

improved intestinal inflammation by increasing the

production of anti-inflammatory cytokines (IL-10 and IFN-γ)
and reducing the production of proinflammatory cytokines (IL-

6 and TNF-α) (Wang et al., 2022c).

2.6.3 Regulatorymechanism ofmelatonin on the
“gut-bone axis”

It was found that melatonin could modulate the microbiota-

dependent butyrate metabolism that prevents bone loss (Wu

et al., 2021). Butyrate combined with its receptor GPR109A to

alleviate osteolysis. In addition, increasing the absorption of Ca

with the stimulation of melatonin directly contributes to the

formation of the bone matrix (Areco et al., 2015). Melatonin

improves the pathological state of the gut intestine by promoting

Ca transportation through the transcellular and paracellular

pathway (Diaz de Barboza et al., 2015). Melatonin adjusted

gut metabolism and prevented gastric inflammation in OVX

rats, which improved drug absorption for the treatment of

osteoporosis (Gürler et al., 2019). Based on the evidence

mentioned above, melatonin could improve the intestinal

microenvironment, remodel the microbiota composition,

regulate metabolism and absorption, and maintain the balance

of bone tissue.

3 Discussion

Osteoporosis is characterized by decreases in bone quality

and bone mass loss, which mainly occurs in postmenopausal

osteoporosis (Lim et al., 2021). Estrogen deficiency weakens the

inhibitory effects on osteoclasts by activating estrogen receptor

(Cheng et al., 2022). Bone resorption of osteoclasts is enhanced

beyond the bone formation ability of osteoclasts, resulting in the

development of osteoporosis (Heubel and Nohe, 2021). To make

matters worse, the onset of osteoporosis is insidious and it is

usually detected when serious complications occur instead of

during routine physical examination (Salamanna et al., 2015).

Although many drugs have been designed for the treatment of

osteoporosis that mainly targeting osteoclasts, their effect is not

satisfactory. In addition, the bone mass of the patient is

significantly reduced, and the bone quality has typically been

significantly decreased when osteoporosis is diagnosed.

Therefore, optimizing diagnostic criteria, improving treatment

plans, and developing more effective drugs are of great benefit to

the early diagnosis, prevention and treatment of osteoporosis.

Melatonin is an endocrine hormone that is secreted by the

pineal gland. With its rhythmic secretion characteristics,

melatonin regulates many physiological functions of the body.

In recent years, researchers have paid more attention to the

regulatory effects of melatonin on bone tissue. Neuropathological

changes such as sleep disturbance and depression often appeared

and were thought to be highly related to melatonin in women

after amenorrhea (Yardimci et al., 2021). Previous studies have

indicated that melatonin could act on GnRH neurons to inhibit

estrogen synthesis by influencing the PKA, PKC, and MAPK

pathways (Roy and Belsham, 2002). Melatonin is also regarded as

a selective estrogen enzyme modulator (Gonzalez et al., 2008).

Although serum melatonin levels appear to be inversely

correlated with estrogen levels under physiological conditions,

nocturnal melatonin levels were significantly lower in

TABLE 4 Mechanism of melatonin-regulated immune cells and inflammatory factors involved in bone metabolism.

Immune cells Inflammatory
factors

Effect and mechanism
in bone remodeling

Citation

T cells (Th1, Th17 and T
regulatory cells)

IFNγ, IL-17 and TNF-α Inhibiting the immune response of effective T cells and enhancing the
function of T regulatory cells to suppress bone resorption

Álvarez-Sánchez et al. (2015), Huang et al.
(2022), Srivastava et al. (2018)

B cells Promoting B cell maturation to decrease RANKL/OPG ratio Titanji et al. (2020), Luo et al. (2020)

Monocyte-derived
macrophages

Suppressing inflammation-mediated bone resorption Kim et al. (2022), Markus et al. (2021)

IL-1β, TNF-α Inhibiting inflammatory factors-induced weakening of the
osteogenic capacity and increasing bone resorption

Lian et al. (2016), Liu et al. (2013)

aNeuroendocrine and immune systems are interconnected. IFNγ, interferon gamma; IL-17, Interleukin 17; TNF-α, tumour necrosis factor alpha; IL-1β, interleukin 1 beta; RANKL, TNF,

superfamily member 11; OPG, TNF, receptor superfamily member 11b.
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postmenopausal osteoporosis (Toffol et al., 2014). Additionally,

serum melatonin levels also show a close relationship with

osteogenic markers (Ostrowska et al., 2002). Imbalances in the

circadian clock that are mediated by disturbances in melatonin

secretion increase the risk of osteoporotic fractures in

postmenopausal women (Feskanich et al., 2009). Therefore,

serum melatonin measurements might become a new

diagnostic standard for the prediction of the risk of

postmenopausal osteoporosis. In fact, they could replace

conventional dual energy X-rays, which would reduce

economic costs and improve detection efficiency.

In addition to early diagnosis, melatonin also plays a

potential role in the treatment of osteoporosis. Melatonin

treatment positive affected the increase in bone mineral

density and the improvement in body mass index (Treister-

Goltzman and Peleg, 2021). However, oral estrogen could inhibit

nocturnal melatonin release in postmenopausal women (Okatani

et al., 2000). The therapeutic effect of melatonin mainly included

a direct effect on bone and an improvement in the pathological

state after estrogen deficiency, rather than improvement in

estrogen levels. As we demonstrated in this review, melatonin

directly promotes osteogenesis and inhibits osteoclastogenesis.

Melatonin regulated the differentiation of BMSCs toward

osteogenesis but not adipogenesis via the Wnt/β-catenin
pathway and PPARγ pathway. In animal experiments,

melatonin markedly improved bone mass in ovariectomized

mice (Cao et al., 2022). Additionally, melatonin improves the

microenvironment of bone tissue in postmenopausal women. As

shown in Figure 2, estrogen synthesized by the ovaries intervenes

in the expression of OPG and RANKL between osteoblasts and

osteoclasts to maintain the balance of bone formation and bone

resorption. Estrogen deficiency reduces the ratio of OPG/

RANKL and promotes osteoclast proliferation and

differentiation. Estrogen deficiency changes the daynight

rhythm (Blattner and Mahoney, 2014). Biological rhythm

disorder results in pathological states, including oxidative

stress and an inflammatory storm (Sehirli et al., 2021;

Yoshitane et al., 2022). Circadian disturbances mediate

oxidative and inflammatory damage that lead to an imbalance

in bone metabolism (Ostrowska et al., 2003; Oršolić and

Jazvinšćak Jembrek, 2022). Melatonin could correct the

circadian rhythm by regulating CLOCK and BMAL1, prevent

oxidative stress by increasing the activity of antioxidant enzymes

and reducing ROS production, and inhibit inflammation by

reducing the secretion of inflammatory factors from

immunocytes in bone tissue (Lee et al., 2018; Ren et al., 2018;

Lu et al., 2021; Sadaf et al., 2021). Finally, melatonin remodels the

gut ecology to promote the absorption of Ca and osteogenic

substances, which also benefits the formation of the bone matrix

and the strength of the bone structure. Based on these positive

effects on bone metabolism, melatonin is an alternative drug that

could be effective for the treatment of osteoporosis.

FIGURE 2
The role of melatonin in bone metabolism (Created with BioRender.com).
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At present, more than one-third of postmenopausal women

are at risk of osteoporosis and its complications, which seriously

affect their life and health. Current diagnostic modalities and

known treatments have limited effectiveness in improving the

situation. The exploration of new diagnosis and treatment

options is imminent. As an endogenous hormone, melatonin

has been shown to be closely related to the occurrence and

development of osteoporosis. In addition, melatonin has

considerable prospects in the treatment of osteoporosis

because of its limited side effects. Rational use of the

advantages of melatonin will contribute to the diagnosis,

prevention and treatment of postmenopausal osteoporosis.
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