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Gliomas are extremely debilitating malignant brain tumors with very limited

response to therapies. The initiation and progression of gliomas can be

attributed to several molecular abnormalities, such as mutations in important

regulatory networks. In this regard, the mitogen-activated protein kinases

(MAPKs) arise as key signaling pathways involved in cell proliferation, survival,

and differentiation. MAPK pathway has been altered in most glial tumors. In

glioma cells, the activation of p38 MAPK contributes to tumor invasion and

metastasis and is positively correlated with tumor grade, being considered a

potential oncogenic factor contributing to brain tumorigenesis and

chemotherapy resistance. Hence, a better understanding of glioma

pathogenesis is essential to the advancement of therapies that provide

extended life expectancy for glioma patients. This review aims to explore the

role of the p38MAPK pathway in the genesis and progression ofmalignant brain

tumors.
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Introduction

Malignant brain tumors are rapidly growing cancer with high invasion potential to

surrounding healthy brain structures, which include gliomas and neuronal or mixed

neuronal-glial tumors (Lapointe et al., 2018). Gliomas are the most common central

nervous system (CNS) cancers, comprising approximately 80% of all brain malignancies

in adults (Hanif et al., 2017; Morrone et al., 2021). The heterogeneity and high
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invasiveness are hallmarks implicated in the poor prognosis of

these tumors (Colquhoun, 2017; Reni et al., 2017).

The initiation and progression of gliomas can be attributed to

several molecular abnormalities, such as mutations in important

regulatory networks (Morrone et al., 2016; Pandey et al., 2016).

The mitogen-activated protein kinases (MAPKs) are key

signaling pathways involved in the regulation of cell

proliferation, survival, and differentiation (Gao et al., 2005).

In this regard, the MAPK pathway has been widely studied

and is altered in most glial tumors. In gliomas, this pathway

has been associated with poor prognosis, and resistance to

radiotherapy, and appears to regulate, directly and indirectly,

its genesis and progression through crucial signaling mediators

(Patil et al., 2013; Pandey et al., 2016).

Among the MAPK pathways, p38 mitogen-activated protein

kinase (p38 MAPK) signaling was identified as a mediator of

stress and inflammation responses (Ono and Han, 2000). This

pathway is involved in the biology of different types of cancer,

and plays an extremely significant role in cancer progression,

such as proliferation, invasion, and survival, and has been widely

studied as a potential pharmacological target (Wagner and

Nebreda, 2009; Roche et al., 2020). Originally described as a

tumor suppressor kinase, p38 has a dual role in tumorigenesis,

also acting as a tumor promoter (Koul et al., 2013; Martínez-

Limón et al., 2020). In gliomas, phosphorylated p38 MAPK has

been considered a potential biomarker of progression once its

activation contributes to tumor invasion and metastasis and is

positively correlated with the tumor grade (Glassmann et al.,

2011; Pandey et al., 2016).

Considering the importance of the signaling pathways

involved in the genetic and molecular alterations in the onset

of cancer, describing the role of the p38MAPK pathway in tumor

microenvironment and in the progression of gliomas becomes a

key strategy to comprehend and propose new treatments for

malignant brain tumors.

The glioma microenvironment

Malignant brain tumors are aggressive and impact directly

patients’ life quality (Omuro, 2013). Gliomas are representative

of around 25% of CNS cancers and are classified according to

their similarities with glial cells from which arise, and

astrocytomas are the most frequent type. Their classification

includes both molecular and histological parameters and

encompasses two principal subgroups: diffuse and non-diffuse

gliomas. Diffuse gliomas reveal a massive infiltrative growth in

the surrounding parenchyma and are more genetically

heterogenic in their composition and difficult to treat when

compared to non-diffuse gliomas (Omuro, 2013; Perry and

Wesseling, 2016; Ostrom et al., 2018).

Glioblastoma (GBM) is the highest grade of diffuse

astrocytoma and is considered incurable (DeAngelis, 2001;

Omuro, 2013; Perry and Wesseling, 2016; Ostrom et al.,

2018). Despite the improvements in therapeutic research,

maximal surgical resection followed by radiotherapy and

chemotherapy remains the main standard of treatment.

Tumor recurrence and therapeutic resistance are frequent, so

the median survival rate is around 15 months. Hence,

treatments of malignant brain tumors remain challenging

(Lin et al., 2017).

It is well known that molecular characteristics inside the

tumor microenvironment (TME) indicate the sensitivity of

tumors to therapy. Initially, tumorigenesis is related to the

gain of numerous genetic mutations, which provide malignant

cells resistant to the growth-inhibitory and apoptotic signals

(Hanahan and Weinberg, 2011; Kelly and Strasser, 2011). All

GBM have common oncogenes likely to carry a growth

advantage, which are considered driver mutations for their

pathogenesis. As pointed in the literature, well characterized

oncogenes and tumor suppressor genes perform critical roles in

several signaling pathways, being great influencers in biological

behaviors and in glioma heterogeneity (Eder and Kalman,

2014).

In general, tumors are complex tissues composed of distinct

cell types that interact with each other forming an intense

signaling network (Hanahan and Weinberg, 2011). The

glioma microenvironment includes non-neoplastic cells, GBM

stem cells (GSCs), fibroblasts, immune cells, tumor-associated

macrophages (TAMs), endothelial cells, and vascular pericytes.

In addition, TME also includes proteins and non-protein

biomolecules produced by all of these distinct cell types,

supporting the various processes of tumor promotion (Schiffer

et al., 2018). Numerous interrelated pathways are frequently

mutated in the glioma microenvironment, typically those

controlling cell-cycle, cellular survival, invasion, and

angiogenesis. These alterations result in tumor self-sufficiency

with growth signals, cell death resistance, growth suppressors

evasion, sustained angiogenesis, and tissue invasion (Pojo and

Marques, 2011; Nørøxe et al., 2017).

Hypoxia is considered a hallmark of GBM, and a critical

factor associated with mutations in multiple signaling

pathways that affect the tumor landscape (Oliver et al.,

2009; Schiffer et al., 2018). Solid tumors grow fast,

surpassing vascular supply and consequently, inhibiting

oxygen diffusion. Several hypoxia-mediated signaling

pathways play a role in angiogenesis, tumor proliferation,

and immunosuppression (Mohan et al., 2021; Scheffel et al.,

2021). Glioma cells, under hypoxic conditions, secrete

interleukins and chemokines, which provide proliferative

signals and have been implicated in the stimulation of

angiogenesis. Likewise, extracellular adenosine increases in

hypoxic conditions and is associated with tumor cell

proliferation through a variety of pathways including

MAPK signaling and the upregulation of cyclin proteins

(Zhou et al., 2017; Scheffel et al., 2021).
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The mitogen-activated protein
kinases pathway

Protein kinases are enzymes that have the property to

catalyze protein phosphorylation through the transfer of a

phosphoryl group from ATP and GTP to threonine, serine

(Ser-/Thr-specific protein kinases; S/T PKs), tyrosine (Tyr-

specific protein kinases; T PKs), both serine/threonine and

tyrosine (dual-specificity protein kinases) (Cohen, 2002; Baier

and Szyszka, 2020). The phosphorylation of these amino acids

residues triggers extra and intracellular stimuli, orchestrating a

highly efficient mechanism for the control of protein activity

(Bononi et al., 2011). About 30% of all human proteins can be

altered by kinases activity, which can regulate most cellular

pathways, particularly those related to signal transduction

(Ardito et al., 2017).

MAPKs are Ser/Thr kinases ubiquitously expressed, that

regulate cellular mechanisms in response to a wide range of

stimuli including cytokines, growth factors, antigens, toxins,

drugs, osmolarity, temperature, oxygen radicals, ultraviolet

light, changes in cell shape, adherence, and cell-cell

interactions (Pearson et al., 2001; Cuevas et al., 2007; Lee

et al., 2020). In mammals, 14 MAPKs have been described

so far, characterized in seven groups. The conventional MAPKs

include the extracellular signal-regulated kinases 1/2 (ERK1/2),

c-Jun amino (N)-terminal kinases 1/2/3 (JNK1/2/3),

p38 isoforms (α, β, γ, and δ), and ERK5. Atypical MAPKs

have nonconforming particularities and consist of ERK3/4,

ERK7, and Nemo-like kinase (NLK) (Cargnello and Roux,

2011).

The activation of MAPKs and their downstream targets plays

a pivotal role in different signaling cascades involved in

transcription, development, differentiation, migration, cell

death, and many other critical cellular functions (Geest and

Coffer, 2009; Yue and Lopez, 2020). Detriment in MAPKs

signaling due to mutation or altered expression of proteins

regulating MAPKs cascades can lead to pathological

conditions such as cancer, neurodegeneration, inflammation,

and developmental defects (Johnson et al., 2005; Kim and

Choi, 2015).

MAPKs signaling cascades present recurrent contributions to

oncogenesis, tumor progression, and drug resistance, which

suggests that its pharmacological modulation can be a

promising strategy in the development of cancer therapies

(Chaikuad et al., 2018; Braicu et al., 2019; Wittlinger and

Laufer, 2021). It is well known that MAPKs can regulate

cellular events directly related to tumor development, such as

proliferation, apoptosis, inflammation, and immunity (Kim and

Choi, 2015). JNK, ERK1/2, and p38 have been described as the

most involved in the carcinogenesis processes (Sebolt-Leopold

and Herrera, 2004; Lei et al., 2014; Kim and Choi, 2015; Peluso

et al., 2019).

The p38 MAPK pathway and cancer

Discovered on a pharmacological screen in 1994, p38 MAPK

is a signal transduction pathway that plays a key role in cellular

adaptation to extracellular stimuli (Han et al., 1994; Yong et al.,

2009; Zou and Blank, 2017). Its activation is often in response to

various environmental and cellular stresses, inflammation, and

other signals such as UV irradiation, oxidative stress, and

exposure to DNA damaging agents, as well as growth factors

and cytokines (Loesch and Chen, 2008; Keshet and Seger, 2010).

After extracellular signals, activation of the p38 pathway

usually proceeds through a classical phosphorylation cascade,

where a MAPKKK (ASK1, TPL2, MEKK3) phosphorylates and

activates the MAPKKs specifics of p38 MAPK, MKK3, and 6,

which in turn, mediate the activation of the different p38 MAPK

isoforms (Cuadrado and Nebreda, 2010; Stramucci et al., 2018).

The p38 sometimes can also be phosphorylated by MKK4, a

kinase well known as a JNK activator (Brancho et al., 2003). Once

activated, p38 can phosphorylate many cytosolic proteins as Bcl-

2 family and tau proteins. Besides the phosphorylation of

cytosolic proteins, p38 can be translocated from the cytosol to

the nucleus, where it phosphorylates, among other, the MSK

1 and 2, which in turn can phosphorylate histone H3 and the

related transcription factors CREB and ATF1. This

p38 phosphorylation cascade regulates cellular responses

ranging from apoptosis to cell division, cell invasion, and

inflammatory response (Deacon et al., 2003; Cuadrado and

Nebreda, 2010; Reyskens and Arthur, 2016).

The p38 MAPK family compromises four isoforms: p38α
(also known as MAPK14 or SAPK2a), p38β (MAPK11,

SAPK2b), p38γ (MAPK12, SAPK3, ERK6), and p38δ
(MAPK13, SAPK4) (Zou and Blank, 2017). The four isoforms

share more than 60% homology and are widely expressed;

however, each isoform has different tissue-specific expression

patterns (Cuenda and Sanz-Ezquerro, 2017; Mai et al., 2020). The

isoform p38α is expressed in most cell types and is widely cited

(Wagner and Nebreda, 2009). In contrast, p38β is expressed at

very low levels, being restricted to the brain and lung. The p38γ
and p38δ have more limited expression and are likely to have

specialized functions. While p38γ is mostly detected in skeletal

muscle and nervous system, the p38δ is enriched in uterus and

pancreas (Ono and Han, 2000; Cuenda and Rousseau, 2007).

In recent years, the involvement of p38 MAPK in cancer has

been widely described (Zou and Blank, 2017; Martínez-Limón

et al., 2020; Lee et al., 2020; Anton et al., 2021). This pathway, as

well as several other signaling cascades, regulates the balance

between cell survival and death in response to stress, which

impacts directly on tumorigenesis (Hanahan and Weinberg,

2011; Grossi et al., 2014). This regulation, depending on the

type and strength of stress, cell type, and the interference among

other signaling pathways can lead to opposite cell fates of survival

or death (Dhillon et al., 2007; Wagner and Nebreda, 2009).
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Some studies have suggested a role for p38 MAPK in

mediating pathways that lead to cell apoptosis and growth

inhibitory signals, particularly in promoting cell cycle arrest

and differentiation, which supports the idea that the stress-

activated kinase is a tumor suppressor (Bulavin and Fornace,

2004; Olson and Hallahan, 2004; Koul et al., 2013). However,

other studies have shown that activation of this signaling

pathway can produce exactly the opposite effect such as anti-

apoptotic and proliferative effects, enhancing cell survival

pathways, migration, or resistance to stress and

chemotherapeutic agents in tumor cells (Wada and Penninger,

2004; Wagner and Nebreda, 2009; Martínez-Limón et al., 2020).

The p38 MAPK has also been related to cell death by apoptosis,

which led us to consider this pathway as a key factor in the

response to chemotherapy (O’Callaghan et al., 2015; García-

Cano et al., 2016).

Malignant brain tumors and p38 MAPK
signaling

MAPKs are expressed in various types of malignant brain

tumors (Jones, et al., 2012; Soeda et al., 2017). Besides, p38 is

upregulated GBM cell lines as well as in GBM patients (Demuth

et al., 2007; Pandey et al., 2016). This protein is shown to be

involved in the response of diverse molecules, it is mainly

implicated in inflammation, proliferation, migration, invasion,

and ROS signaling been involved in GBM initiation, progression,

metastasis, and chemotherapy response (Yeung et al., 2013;

Pandey et al., 2016).

Among diverse brain tumor types, glioma presents one of the

worst patients’ prognostics. GBMs are hard to treat and avoid

recurrence due to its infiltrative pattern. The involvement of

p38 MAPK in the GBM migration and invasion has been

extensively described (Park et al., 2006; Yoshino et al., 2006;

Demuth et al., 2007; Chen et al., 2020). Demuth et al. (2007) have

identified the MKK3 as a key activator of GBM invasiveness

through p38 activation, both in vitro and in vivo. Irradiation is

often part of the GBM treatment scheme, although, in cells that

present mutant PTEN it was described that irradiation can

activate p38/Akt and PI3K/Akt signaling pathways, increasing

MMP-2 expression and intensifying invasiveness (Park et al.,

2006).

Long noncoding RNAs (lncRNAs) are transcripts with more

than 200 nucleotides that commonly do not encode proteins,

many of them have been characterized as oncogenes or tumor

suppressors in cancer (Ma et al., 2018). The MRCCAT1 is an

oncogenic lncRNA that promotes proliferation and migration of

GBM cells via p38 MAPK signaling activation. Moreover,

lncRNA-ATB promotes invasiveness mediated by tumor

growth factor-β (TGF-β) which activates the p38 MAPK

pathway (Tang et al., 2019).

Nowadays it is known that, in tumor progression, gliomas

orchestrate the immune system to a protumoral phenotype.

The p38 MAPK is also correlated with immune and

inflammation signaling, being responsible for the

FIGURE 1
Summary of protumoral (yellow) and antitumoral (orange) p38 MAPK activation effects on glioma cells.

Frontiers in Pharmacology frontiersin.org04

Grave et al. 10.3389/fphar.2022.975197

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.975197


production of cytokines in the TME (Choi et al., 2001;

Schieven, 2009; Kühnöl et al., 2013; Wang et al., 2019).

Wang et al. (2019) have been shown that MXB (also named

MX2) protein, a component of the innate immune response, is

downregulated in GBM cells. This fact corroborates to tumor

progression once MXB overexpression decrease the cell

proliferation, invasion, and migration due to the decrease

in ERK1/2 and p38 phosphorylation/activation, and Nf-κB
levels (Wang et al., 2019).

In this context, it is well known that angiogenesis is essential

for tumor progression, T98G, U373, and U87 glioma cell lines

have been revealed the p38 MAPK and JNK constitutively

activated contributing angiogenesis induced by the vascular

endothelial growth factor (VEGF) release (Yoshino et al.,

2006). Other studies have shown that MAPKs and hypoxia

can control VEGF expression in cell model (Berra et al.,

2000). Besides, VEGF, p38 still contributes to the basic

fibroblast growth factor (bFGF), epidermal growth factor

TABLE 1 Use of p38 MAPK inhibitors in pre-clinical studies on glioma cell lines.

Agent/p38 MAPK
inhibitor structure

Cell line Outcome Reference

BIRB796 U87 Autophagy reduction: lower fluorescence intensity and
the lower number of autophagic vacuoles per cell treated.

Xu et al. (2020)

U87 e U251 Blocked the G1 phase cell cycle and decreased S and
G2 phases; And inhibited the proliferation, migration,
and invasion of GBM cell lines.

Zhao et al.
(2021)

SB203580 F98 Decreased ROS production and the cell number in early
apoptosis.

Li et al. (2018)

SB203580 (and TMZ) U87 and U251 Increased the sensitivity of glioma cells to TMZ. Ma et al. (2015)

SB203580 (plus Anisomycin and TMZ) U87 and U251 SB203580 reduced anisomycin and TMZ antitumoral
effects promoting migration and invasion.

Chen et al.
(2017)

SB203580 (and Vandetanib) SF767 and U251 Synergism on antitumoral effect against glioblastoma
cells.

Sooman et al.
(2013)

SB203580 (and Anisomycin) GBM: X01, X02, X04, X05, X06, 08–322,
08–387; X07 Gliosarcoma; and X03Anaplastic
oligoastrocytoma

Decreased proliferation. Increased the undifferentiated
GSC population and apoptotic events.

Soeda et al.
(2017)

SB203580 (plus Arenobufagin and
Hellebrigenin)

U87 and primary mouse glial cells SB203580 decreased cell viability and enhanced the
cytotoxicity of arenobufagin and of hellebrigenin.

Han et al.
(2018)

LY2228820/Ralimetinibe (and PD-L1
antibody)

GL261-C57BL/6 mice Enhanced survival of mice with temozolomide-resistant
glioma-bearing with reduction of the accumulation of
macrophages/microglia.

Dang et al.
(2021)

069A U251 Inhibited migration, invasion and the antitumoral
inflammatory response.

Yeung et al.
(2012)

Abbreviations: GBM, glioblastoma; MK2, kinase MAPK-activated protein kinase 2; TMZ, temozolomide.
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(EGF), IL-6, and another proangiogenic cytokine secretion (Tate

et al., 2013). The p38 MAPK inhibition on glioma cells showed

decreased VEGF secretion (Yoshino et al., 2006) and enhanced

immune responses in vitro (Kühnöl et al., 2013). Figure 1

summarizes the p38 activation effects on glioma cells.

The p38 MAPK inhibitors in gliomas

Several small-molecule protein kinase inhibitors have been

tested for cancer treatment, demonstrating interesting effects on

the immune system. Among these, there is the EGFR tyrosine

kinase inhibitor gefitinib, and other inhibitors focusing on

multiple targets, like imatinib, sorafenib, and sunitinib (Ott

and Adams, 2011). Regardless of p38 MAPK dual role as a

possible oncogene or tumor suppressor, this signaling pathway

has attracted much attention as a promising drug target for

cancer therapy based on small inhibitory compounds (Borst

et al., 2013; Koul et al., 2013; Haller et al., 2020). Since its

first inhibitor, a pyridinylimidazole compound, described in

1994, numerous inhibitors against p38 MAPKs have been

reported with diverse chemical structures (Han et al., 1994;

Zhang et al., 2007; Yong et al., 2009; Borst et al., 2013; Haller

et al., 2020). These inhibitors are divided into two groups,

depending on their mode of binding: the direct inhibitors,

such as SB203580, and the majority of the p38 inhibitors,

which binds competitively to the ATP-binding site; and the

indirect inhibitors such as BIRB-796, which inhibits

p38 MAPK activity by conformational change (Zhang et al.,

2007; Yong et al., 2009; Haller et al., 2020). Regarding GBM

proliferation, a study has shown that the p38γ is correlated with

the grade of glioma malignancy and promotes proliferation and

progression (Yang et al., 2013). Cycloartenal is an important

triterpenoid prevalently found in plants. This compound inhibits

p38 MAPK activation and demonstrated antiproliferative effects

in U87 human glioma cells (Niu et al., 2018).

Once p38MAPK is involved in glioma proliferation, researchers

have investigated the potential of p38 MAPK inhibitors in inducing

cell death in GBM by itself or in association with other treatments

(Table 1). The LY479754 p38 inhibitor increased temozolomide anti-

glioma effects in U87 and SNB19 spheroids when used in

combination for 5 days (Demuth et al., 2007). The

SB203580 p38 MAPK inhibitor potentialized the antiproliferative

effects of temozolomide when U87 and U251 cells were treated for

24 h via Nrf2 signaling inhibition, indicating that p38 MAPK/

Nrf2 activation is a network involved in temozolomide glioma

cells resistance (Ma et al., 2015). Curiously, a study has shown

that the circadian clock has an important role in the activation of

the p38 MAPK pathway, which means that the treatment with

p38MAPK inhibitorsmay bemore effective and less toxic depending

on the time the therapy is administered (Goldsmith et al., 2018).

Glioma cells undergo metabolism reprogramming due to

high proliferation rates and elevated consumption of glucose in

this process. TGF-β participates in this mechanism, and an

interesting study showed that TGF-β activated

PFKFB3 expression and activity via activation of the

transcript factor Smad, p38 MAPK e PI3K/Akt signaling

pathways while p38 MAPK inhibition reversed TGF-β
stimulatory effects (Rodríguez-García et al., 2017).

Since p38 is a ubiquitous protein, treatment of gliomas with

p38MAPK inhibitorsmay be successful, however, the involvement

of this pathway in multiple cellular processes may result in

ambiguous effects. An interesting study showed that

temozolomide inhibited proliferation, migration, and invasion

in U87 and U251 cell lines, and these effects were associated

with a decrease in the levels of AQP4 dependent on p38 MAPK

activation.When the p38MAPK inhibitor (SB203580) was used in

combination with temozolomide, it reduced temozolomide

antitumoral effects (Chen et al., 2017). Besides, treatment with

SB203580 reduced proliferation but enhanced EGFR expression

and cancer stem-like cells self-renewal enhancing undifferentiated

state which could confer treatment resistance (Soeda et al., 2017).

Furthermore, the predominant association among p38 MAPK

activation (p-p38) with malignancy and progression in gliomas

could be explained, in part, because high p38 or p-p38 levels are

linked to increasing ROS, which is harmful to cancer cells and

confers antitumor responses (Liu et al., 2015; Thiyagarajan et al.,

2016; Liu et al., 2020).

Clinical studies targeting p38 MAPK in
cancer

Several clinical trials targeting p38 MAPK in cancer are

currently underway. Ralimetinib (LY2228820), for example, is

a potent and selective inhibitor of p38α and p38β and has been

tested as a single agent and in combination with

chemotherapeutic agents for the treatment of ovarian cancer,

GBM, and metastatic breast cancer (Campbell et al., 2014;

Vergote et al., 2020). An important clinical trial

NCT02364206, including the ralimetinib, has been conducting

to determine the recommended dose of the p38 inhibitor in

combination with temozolomide and radiotherapy during

chemoradiotherapy period (phase I) in patients with newly

diagnosed GBM and to estimate the 6-month progression free

survival (PFS) rate of patients when administered at the

recommended dose in combination with radiotherapy and

concomitant temozolomide (phase II).

Because of the wide-ranging controlling role of p38 in

different cellular processes, the possibility of side effects

resulting from an undesired pharmacological activity is a

relevant concern for the p38 inhibitors. There are many

discontinued p38 inhibitors that failed due to safety concerns,

presenting adverse effects directed mostly to the hepatic system

and skin (Xu et al., 2008; Karcher and Laufer, 2009; Yong et al.,

2009). Other interesting approaches using CRISPR/Cas9 can
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allow the comparison of the altered gene expression profiles of

the MAPK pathway members and the response to specific cancer

treatments (Braicu et al., 2019). It is relevant to note that small

molecules targeting p38 can cause a significant delay in cancer

growth through multiple mechanisms, which becomes the

development of p38 MAPK inhibitors with therapeutic

benefits and reduced side effects a promising opportunity for

future clinical studies to treat cancer.

Conclusion

Malignant brain tumors are debilitating diseases with a

dismal prognosis and extremely limited response to therapies.

The aggressiveness of GBM has been marked by several signaling

pathway dysregulations that are implicated in cell proliferation,

survival, migration, and angiogenesis. Tumor cells are

heterogeneous, so it is also important to note that targeting a

mediator involved in multiple pathways would constitute a more

efficient therapy. MAPKs are shown to support numerous

processes of cell survival. The p38 MAPK pathway is a key

route capable to influence different frameworks of cellular

survival mechanisms such as inflammation, proliferation,

migration, invasion, and ROS signaling. Briefly, the

p38 MAPK is likely to be an oncogenic factor contributing to

GBM initiation, progression, and chemotherapy resistance.

Hence, a better understanding of the GBM tumor

microenvironment is essential to the advancement of therapies

that provide extended life expectancy for patients. Thus, targeting

key components of these signaling pathways using small-

molecule inhibitors, such as p38 inhibitors and antibodies,

could provide progress in the treatment of gliomas.
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