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Natural substances originating from plants have long been used to treat

neurodegenerative disorders (NDs). Parkinson’s disease (PD) is a ND. The

deterioration and subsequent cognitive impairments of the midbrain nigral

dopaminergic neurons distinguish by this characteristic. Various pathogenic

mechanisms and critical components have been reported, despite the fact that

the origin is unknown, such as protein aggregation, iron buildup, mitochondrial

dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like

dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B

inhibitors and anticholinergics are used to replace DA in the current

treatment model. Surgery is advised in cases where drug therapy is

ineffective. Unfortunately, the current conventional treatments for PD have a

number of harmful side effects and are expensive. As a result, new therapeutic

strategies that control the mechanisms that contribute to neuronal death and

dysfunction must be addressed. Natural resources have long been a useful

source of possible treatments. PD can be treated with a variety of natural

therapies made frommedicinal herbs, fruits, and vegetables. In addition to their

well-known anti-oxidative and anti-inflammatory capabilities, these natural

products also play inhibitory roles in iron buildup, protein misfolding, the

maintenance of proteasomal breakdown, mitochondrial homeostasis, and

other neuroprotective processes. The goal of this research is to

systematically characterize the currently available medications for

Parkinson’s and their therapeutic effects, which target diverse pathways.

Overall, this analysis looks at the kinds of natural things that could be used

in the future to treat PD in new ways or as supplements to existing treatments.

We looked at the medicinal plants that can be used to treat PD. The use of

natural remedies, especially those derived from plants, to treat PD has been on

the rise. This article examines the fundamental characteristics of medicinal
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plants and the bioactive substances found in them that may be utilized to

treat PD.
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Highlights

1. Parkinson’s disease (PD) is a chronic progressive

neurodegenerative disorder.

2. It can be treated with a variety of natural products and

bioactive compounds.

3. Extra care should be provided to patients with PD tominimize

the risk of infection.

4. Future perspectives like PD vaccine, cell transplantation, gene

therapy, and surgical methods are highlighted.

1 Introduction

James Parkinson wrote the first description of Parkinson’s

disease (PD) and published it in 1817. PD, also known as

idiopathic paralysis agitans, is a frequent ND of the central

nervous system (CNS). PD affects about 1% of those over the

age of 65. It seldom occurs before the age of 20 and it generally

begins between the ages of 40 and 70. Young-onset Parkinson’s

disease is a kind of Parkinson’s disease that appears before the age

of 20. Parkinsonian symptoms can be observed in other

pathologies such as Wilson’s Disease and Huntington’s

Disease (Snyder and Wolozin, 2004; Klein and Westenberger,

2012; Postuma et al., 2015). According to the Global Burden of

Disease (GBD) survey, there were 1.02 million new cases of

Parkinson’s disease in 2017 (Sengupta et al., 2016). Globally,

6.1 million PD patients were recorded in 2016, and the age-

standardized prevalence rate (ASR) rose by 21.7% between

1990 and 2016 (Feigin et al., 2016). Years lived with disability

(YLDs) is a measure of both the handicap brought on by that

status and the average time it takes for incident instances to

recover or pass away. YLDs is a popular metric for measuring the

health damage brought on by PD. Age-standardized rates of PD-

related young life deaths rose sharply from 1990 to 2007, rising

8.9%, and then increased 1.0% from 2007 to 2017 (Global, 2018).

According to studies, the burden of PD would significantly

increase in the coming decades (Kowal et al., 2013;

Wanneveich et al., 2018). For instance, it was predicted that

4.94 million PD patients, or 50% of all PD patients worldwide,

will reside in China by 2030 (Dorsey et al., 2007). However, this

has not yet been conclusively demonstrated. Variables including

overwork, trauma, exposure to cold, rigid personalities and stress

are thought to be the predisposing factors (Rahman et al., 2020).

Parkinson’s disease is the world’s second most common

neurological condition. The etiology of this disease is
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unknown, but mutations in some genes described in familial PD

could help to better understand the role of some proteins and the

mechanisms involved in the development of this disorder. PD is

triggered by a complex interplay of genetic, environmental, and

epigenetic influences. The corresponding risk of developing PD

was 2.0% for men and 1.3% for women (ratio = 1.5) (Elbaz et al.,

2002; Schneider et al., 2017; Sharma et al., 2018).

Changes in a significant number of other genes were thought

to be PD-causative and were discovered by linkage analysis or a

candidate gene approach, in addition to the genes responsible for

the six monogenic types of PD. Some of these

genes—UCHL1 [PARK5], GYGYF2 [PARK11], OMI/

HTRA2 [PARK13], PLA2G6 [PARK14], and

FBXO7 [PARK15]—even received the “PARKI” designation. A

higher risk of developing PD has been linked to variants in a

number of PARK-designated (SNCA, UCHL1, LRRK2, PARK

16, GAK) and a few additional genes (MAPT, GBA, NAT2,

INOS2A, GAK, HLA-DRA, and APOE) (Postuma et al., 2015).

Parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-

L1), nuclear receptor-related factor 1, and α-synuclein are genes

linked to either Parkinson- or Parkinson-related diseases.

Because it rapidly aggregates and forms the majority of Lewy

bodies (LBs), α-synuclein is particularly noteworthy. The α-
synuclein that has accumulated interacts to the proteasome

and effectively suppresses proteasomal action. Proteasomal

dysfunction is believed to play a role in the pathogenesis of

PD because ubiquitin builds up in LBs and interacts with the

proteasomal system through interactions with parkin and UCH-

L1. Numerous studies suggest that neurotoxins may interact with

α-synuclein or other proteins connected to Parkinson’s disease to

influence the etiology of the disease (Klein and Westenberger,

2012).

PD is a complex neurodegenerative disorder (ND). LBs and

the loss of dopaminergic neurons in the substantia nigra have

long been connected to the motor symptoms of Parkinson’s

disease (Rahman et al., 2020; Cassotta et al., 2022; Lv et al., 2022).

Although oxidative stress, mitochondrial dysfunction, and

aberrant protein aggregation have been associated with

Parkinson’s disease, the exact origins of the disease remain

unclear. Until recently, dopamine replacement therapy was

the primary treatment for Parkinson’s disease. Even though

many researchers have tried to find a way to stop the

neurodegenerative process of Parkinson’s disease, no medicine

has been found to protect neurons or change the course of the

disease in clinical PD patients. Surprisingly, a wide range of

natural chemicals are being used as alternative medicines to treat

Parkinson’s disease (Sharma et al., 2018; Li et al., 2019). The most

prevalent symptoms of Parkinson’s disease include dyskinesias,

muscle tremors, rigidity and anomalies in body posture and

movement. Parkinson’s disease causes dopaminergic neurons in

the substantia nigra pars compacta to get worse, and the number

of transmitters in dopaminergic neurons in the striatum drops by

a lot. As a result, nigrostriatal dopaminergic neuron function

declines and cholinergic neuron the function rises, resulting in

movement problems (Phani et al., 2012).

However, the pathogenic factors discovered in themajority of

Parkinson’s disease patients have yet to be verified. The majority

of contemporary opinions believe that fibrillation and aberrant α-
synuclein aggregation are the primary components in the PD

clinical occurrences. Many factors, including oxidative stress and

intermediate oligomer conformation, play important roles in the

pathogenesis of Parkinson’s disease in different metabolic

pathways. Furthermore, the existence of Lewy bodies (LBs)

made up of α-synuclein is a significant pathological marker of

PD. As a result, α-synuclein may be linked to PD (Stefanis, 2016;

Zhang et al., 2017a; Zhang et al., 2017b; Sharma et al., 2019a;

Rahman et al., 2022a). Furthermore, a growing body of evidence

suggests that many common molecular signaling pathways are

linked to the development and progression of Parkinson’s

disease, thanks to recent and updated developments in life

sciences technologies, as well as ongoing in-depth research on

proteomics and molecular biology. The phosphoinositide 3-

kinase/protein kinase B pathway is the most important of

them (Nakaso et al., 2008; Quesada et al., 2008), the nuclear

factor erythriod2-related factor2 (Williamson, 2012; Wang et al.,

2014), the P38 mitogen activated protein kinase (Wilms et al.,

2003; Corrêa and Eales, 2012), the glycogen synthase kinase-3b

(Wu et al., 2007; Duka et al., 2009; Golpich et al., 2015), the c-jun-

N-terminal kinase (Hunot et al., 2004; Kuan et al., 2005), the

nuclear transcription factor-κB (NF-κB) (Uberti et al., 2004;

Noda et al., 2005), the Want signaling pathway (Berwick and

Harvey, 2012; Arenas, 2014), and the autophagy lysosome

pathway (Xilouri et al., 2008; Xilouri and Stefanis, 2011). This

article discusses newly identified natural compounds having

substantial anti-PD capabilities, as well as the current state of

research into their medicinal chemistry.

2 Etiology of PD

In the past, the cause was completely random, but now both

environmental and genetic factors are thought to play a role

(Schapira, 2006; Schapira and Tolosa, 2010; Schapira, 2011), and

understanding of etiological elements in Parkinson’s disease has

altered substantially. However, age or the aging process is the

single most important predictor of the beginning of PD. Despite

the certainty of age’s significance, little effort appears to have

been made to investigate how age and the aging process interact

(Obeso et al., 2010; Sharma and Martins, 2020; Sharma and

Prajapati, 2020). The most widespread explanation is that as

normal cellular physiological and biochemical processes fail

more frequently, dopaminergic neurons become more

sensitive to toxic assault. Dopaminergic cells aging linked with

L-type calcium channels (Surmeier et al., 2010) is a recent

example. In reality, most models of cell death in PD disregard

the role of age or aging, and young animals are used to represent
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the disease process in the great majority of experimental research

(Hindle and Ageing, 2010). When looking at the prevalence of

PD, the same might be said about men outnumbering women

(Shulman, 2007). This must also provide insight into the etiology

of the illness, especially given men’s shorter life expectancy.

Despite evidence that estrogen plays a role in determining the

age at which women develop PD and its effect on dopaminergic

neuron function, no explanation for the disparity has emerged.

Industrialization, rural areas, well water, plant-derived toxins,

bacterial and viral infection, and exposure to organic solvents,

carbon monoxide and carbon disulfide are some of the broad

environmental factors on the prevalence of PD (Tellier et al.,

2022). Despite inconsistent results from various research and the

difficulty of identifying specific pesticide compounds that may be

connected to an increased risk of PD, pesticide exposure has

recently attracted interest (Richardson et al., 2009). Paraquat and

rotenone are two specific agrochemicals that have been shown to

cause dopaminergic cell death in the nigral area of mice (Berry

et al., 2010; Chia et al., 2020). Some of these will be discussed later

while discussing pathogenic mechanisms. Factors that reduce the

risk of developing Parkinson’s disease can also provide important

information about the disease’s progression. Exercise, anti-

inflammatories, antihypertensives (mostly calcium antagonists)

and antilipidemic all seem to lower the risk, but the role of some,

like anti-inflammatories, exercise, antihypertensives (mostly

calcium antagonists) and antilipidemic, is still unknown

(Ascherio et al., 2001; Warner and Schapira, 2003). Even

though there are many different factors that have been linked

to the pathogenesis of Parkinson’s disease, it was the discovery of

the neurotoxic effects of MPTP that got the most attention and

started a new era of research (Burns et al., 1983; Langston et al.,

1983; Jenner et al., 1984). When MPTP was found, it led to

research into how it works and how it might be related to the

cause of Parkinson’s disease. But perhaps more importantly, it

gave us the first model of Parkinson’s disease motor deficits in

primates and a predicted test bed for therapeutic action in people

(Jenner, 2003). However, MPTP-induced parkinsonism differs

from typical PD in that it does not develop in humans, there is no

LB development and there is no pathology in other parts of the

brain that are damaged in human illness. As a result, despite its

significance, MPTP may fail to send the critical information

required to answer the genesis of the Parkinson’s disease enigma

(Noyce et al., 2016).

3 Pathogenesis of PD

PD is a neurological, progressive condition that causes a

number of motor and crippling abnormalities, including as

bradykinesia, resting tremor, muscle stiffness and imbalance.

Dopamine levels in the striatum, tailed nuclei and putamen are

reduced as a result of the slow, progressive degeneration of

dopaminergic neurons in the SN compacta, which is a

pathological hallmark of PD. The most significant pathogenic

finding in the brains of PD patients is the progressive loss of

dopaminergic neurons in the basal complexes. Dopamine

neurotransmitter levels in this region are decreased as a result

of the destruction of these neurons. The disease’s symptoms start

to show up when 50%–60% of dopaminergic neurons have been

destroyed and dopamine levels in the striatum have dropped by

about 80%–85%. However, studies have shown that oxidative

stress and mitochondrial dysfunction probably play a key role in

the pathogenesis of PD; the loss of nigrostriatal dopaminergic

neurons and the presence of intracellular cytoplasmic proteins,

i.e., Lewy bodies, are also involved. The precise molecular

mechanism of the degradation of dopaminergic neurons and

the incidence of PD is unknown. The cells are transmitted to the

putamen from the nigrostriatal neurons in the SN pars compacta

(SNpc). Depigmentation of SNpc results from the absence of

these neurons, which normally contain modest levels of melanin

(Lees, 2012). PD, the most prevalent form of Multiple Sclerosis

(MS), results from the progressive degeneration of dopaminergic

neurons along the nigrostriatal pathway (Hacker et al., 2012; Luo

et al., 2014; Prodoehl et al., 2014). Magnetic resonance diffusion

tensor imaging revealed signs of neurodegeneration in the

nigrostriatal circuits (Wang et al., 2015). Early-onset

Parkinson’s disease was shown to have frontal and parietal

lobe microstructural damage, which was connected to postural

and walking issues (Gattellaro et al., 2009; Gu et al., 2014; Auning

et al., 2015). Furthermore, radial alterations in nigrostriatal fibers

have been associated with the degree of movement impairments

in Parkinson’s disease patients (Zhang et al., 2015). PD is caused

by a variety of causes that cause neurodegeneration.

3.1 Mitochondrial dysfunction in PD

Recently some researcher found missing of the substantial

nigra of the PD patients, investigators also revealed abnormalities

of the mitochondria in skeletal muscle, platelets and lymphoblast

that basically indicate direct link between mitochondrial

dysfunction and PD (Schapira et al., 1989; Schapira et al.,

1990; Schapira, 1994). PD patients with mitochondrial

dysfunction confirmed by pathologically especially in sporadic

PD, against a backdrop of increased oxidative stress and elevated

brain iron levels, this helps us to understand how mitochondrial

abnormalities interconnected in PD pathogenesis (Dexter et al.,

1992; Mann et al., 1994; Olanow et al., 1995; Schapira, 1995;

Schapira, 2011). The discovery of specific mutations in genes that

cause dopaminergic cell death and familial PD have confirmed

the role of mitochondria in the development and

pathophysiology of PD. Many instances of PD with PINK1 or

LRRK2 mutations, on the other hand, are clinically

indistinguishable from spontaneous PD. Several knockouts or

expression models of these mutations have been discovered to

exhibit mitochondrial function abnormalities (Moon, 2007).
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Parkin is a ubiquitously transcribed protein that has been linked

to the endoplasmic reticulum, synaptic vesicles, Golgi apparatus,

and mitochondria in intracellular investigations (Shimura et al.,

1999; Kubo et al., 2001; Mouatt-Prigent et al., 2004).

3.2 LBs and microgliosis

The alternative method to investigating PD etiology has been to

look at the pathological components of the disease process. The

formation of LBs and the existence of a reactive microgliosis, which

may contribute to disease progression, are two characteristics of PD.

The LB has long been regarded as the distinguishing hallmark of PD,

although its significance in the disease process has been debated. It

has been alternately described as a pathogenesis marker and a

graveyard for dead and dying neurons. In PD α-synuclein
mutations is common and in sporadic PD LBs strongly

immunoreactive for wild-type α-synuclein with many other

protein in their normal or damaged condition (Spillantini et al.,

1998). The discovery of parkin and UCH-L1 mutations, as well as

their involvement in the ubiquitin-proteasomal system, ushered in a

new age of research into changes in protein processing in

dopaminergic cells via both proteasomes and lysosomes (Eldeeb

et al., 2022; Kumar et al., 2022). The argument has been fanned by

postmortem tests and toxicology research. In the substantia nigra,

there is a decrease in proteasomal enzyme activity that is unique to

PD and does not occur in other parts of the brain (McNaught et al.,

2003; Tofaris et al., 2003).

3.3 Neuroinflammation in PD

McGeer et al. discovered that post-mortembrains of people with

PD exhibit elevated human leucocyte antigen, which was the first

indication of neuroinflammation’s role in PD pathogenesis in 1988.

Microglia with DR positivity (McGeer et al., 1988). Furthermore,

elevated pro-inflammatory mediators such as TNF, ILβ, IL6, iNOS,
and COX two have been found in the striatum and substantia nigra,

according to this study (Tansey et al., 2007). Microglia are one of the

most important kinds of cells in the central nervous system’s

inflammatory response (Saijo et al., 2009). As previously

mentioned, PD is linked to aberrant α-synuclein aggregation,

which activates microglia even more (Su et al., 2008).

Neuroinflammation is characterized by the activation of

microglia and reactive astrocytes in the brain, as well as the

production of inflammatory mediators such as cytokines (TNF-α,
IL-1, and IL-6), chemokines, complement cascade proteins, reactive

oxygen species, and reactive nitrogen species (RNS). Several factors

have been shown to reduce the permeability of the blood-brain

barrier (BBB) (da Fonseca et al., 2014) (Figure 1). The degeneration

of the nigral dopaminergic neurons in PD is caused mainly by

inflammasome-induced neuroinflammation. Baicalein, a flavonoid

derived from the Scutellaria baicalensis Georgi plant used in

traditional Chinese medicine, has been shown to have anti-

inflammatory and neuroprotective effects in animal models of

NDs, including PD. In a PD mice model induced by MPTP,

baicalein inhibits the NLRP3/Caspase-1/GSDMD Pathway to

decrease neuroinflammation (Rui et al., 2020).

FIGURE 1
Different types of pathway for neurodegeneration in PD by LB, caspase activation and releasing different types of inflammatory cytokine.
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4 Role of natural products

4.1 Herbal products

4.1.1 Baicalein
Baicalein is a chemical compound derived from the dried

root of the Scutellaria baicalensis plant (Labiatae) (Amro et al.,

2018). Baicalein prevented the buildup of ROS, apoptosis, ATP

depletion and mitochondrial membrane rupture in PC12 cells

when tested for rotenone-induced neurotoxicity (Li et al., 2012).

Baicalein treatment prevents Dopamine levels in the basal ganglia

from dropping and boosts Dopamine and 5-hydroxytryptamine

levels (Cheng et al., 2008; Mu et al., 2011). In Hela and SH-SY5Y

cells, Baicalein inhibited the aggregation of α-synuclein and the

production of α-synuclein oligomers (Lu et al., 2011).

4.1.2 Erythrina velutina
The ethanol extract of this plant (Fabaceae) has a

neuroprotective effect. It has been shown to reduce the

neurotoxicity caused by 6-OHDA in SH-SY5Y cells and to get

rid of free radicals, which suggests it could be used to treat

Parkinson’s disease (Silva et al., 2016).

4.1.3 Resveratrol
Resveratrol is a polyphenolic compound present in a variety

of plants, including grapes and berries (Frémont, 2000; Rahman

et al., 2021a). Resveratrol has been found to help with motor

deficits, oxidative stress, and the loss of TH neurons in animal

models of Parkinson Disease (Lu et al., 2008). Resveratrol inhibits

mitochondrial enlargement and chromatin condensation while

also lowering COX-2 and TNF-α gene expression (Jin et al.,

2008).

4.1.4 Peganum harmala
Peganum harmala (Nitrariaceae) made muscles less stiff,

stopped oxidation of fats and proteins in the brain and

stopped dopaminergic neurons from dying off (Rezaei et al.,

2016). It is thought that this herb’s neuroprotective properties

come from its ability to reduce the activity of angiotensin II. This

reduces oxidative stress and protects dopaminergic neurons

(LopezReal et al., 2005).

4.1.5 Curcuma longa
Curcuma longa (Zingiberaceae) has been shown to have

anti-inflammatory, chemotherapeutic, anti-oxidant, wound-

healing, anti-proliferative and antiparasitic properties. The

active component polyphenolic fraction, curcumin, is

probably to blame (Gupta et al., 2012). Curcumin protects

MPTP-induced loss of TH-positive neurons and DA depletion

in the striatum of MPTP-induced mouse models, as well as a

reduction in cytokines, total nitrite, and inflammatory

markers such inducible nitric oxide synthase (Ojha et al.,

2012).

4.1.6 Carthamus tinctorius L. (Safflower)
Safflower (Asteraceae) has been discovered to contain

flavonoids and is widely used as a conventional treatment for

cerebrovascular disorders in China (Amro et al., 2018). It

increased DA transporter and DJ-1 protein expression as well

as DA levels (Ren et al., 2016). Overexpression or aggregation of

α-synuclein, as well as reactive astrogliosis, may be inhibited by

safflower (Ren et al., 2016).

4.1.7 Pueraria lobata
Puerarin (Fabaceae) has been shown to inhibit proteasomal

malfunction as well as the buildup of ubiquitin-conjugated

proteins and other potentially hazardous proteins (Amro

et al., 2018). On the other hand Puerarin, lowers the ratio of

bcl-2/bax and caspase-3 activity (Cheng et al., 2009). Puerarin

protects tyrosine hydroxylase (TH)-positive neurons from 6-

OHDA-mediated injury, recovers DA and its metabolites (Zhu

et al., 2010).

4.1.8 Juglandis semen
The neuroprotective effects of aqueous Juglandis semen

(walnut) extract have been demonstrated. The walnut extract

was reported to reduce reactive oxygen species (ROS) and nitric

oxide (NO) formation as well as restrict the depletion of striatal

DA and its metabolites, resulting in a considerable improvement

in PD movement abnormalities in a mouse model of Parkinson’s

disease (Choi et al., 2016). Walnut is thought to have

neuroprotective effects because it can block the monoamine

oxidase B (MAO-B) enzyme, which increases oxidative stress

in people with Parkinson’s disease. Walnut also has antioxidant

and mitochondrial protection properties (Essa et al., 2015).

4.1.9 Ginkgo biloba
Ginkgo biloba (Ginkgoaceae) is a Chinese tree that has long

been used to treat symptoms related to heart and lung problems.

Flavonoids, ginkgolic acid and terpenoids are three of the most

common constituents in G. Biloba (DeFeudis and Drieu, 2000).

In a PD rat model treated with 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), long-term use of

EGb761 prevented the loss of dopaminergic nerve terminals

caused by MPTP (Ramassamy et al., 1990). EGb761 was

shown to protect against dopaminergic neurotoxicity caused

by MPTP whether it was given before or after the treatment

(Sharma et al., 2019b). Also, EGb761 decreased the neurotoxicity

of levodopa in the 6-hydroxydopamine (6-OHDA) Parkinson’s

disease (PD) model. This suggests that levodopa is neurotoxic

and that EGb761 may reduce this toxicity (Fei et al., 2003).

4.1.10 Ginseng
Ginsenosides (Araliaceae) Rb1 and Rg1 are regarded to be the

primary molecules responsible for ginseng’s therapeutic

properties. A previous study found that the ginsenosides

Rb1 and Rg1 both decreased MPTP-induced cell death in SN-
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K-SH cells (a neuroblastoma cell line) (Rudakewich et al., 2001).

Rg1 protects cells against apoptosis caused by MPTP by

increasing Bcl-2 and Bcl-xl expression, decreasing Bax and

iNOS expression and blocking caspase-3 activation (Chen

et al., 2002). Ginsenosides protect by lowering intracellular

reactive oxygen species (ROS), boosting antioxidant activity,

maintaining complex I activity, and raising intracellular

Adenosine triphosphate (ATP) levels, according to research.

Mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) had better motor function and more dopaminergic

neurons in the substantia nigra (SN) and striatum when they

were given Rg1 (Jiang et al., 2015). In addition, the ginsenoside

Rb1 has the ability to disaggregate fibrils and inhibit α-synuclein
polymerization (Ardah et al., 2015; Rahman et al., 2021b).

4.1.11 Flavonoids
Flavonoids are a type of natural polyphenol phytochemical

that has been used as a medicinal agent for many years. Baicalin,

a flavonoid derived from Scutellaria baicalensis, is the major

metabolite of baicalein (Lamiaceae). In an in vivo model of

Parkinson’s disease with the neurotoxin 6-OHDA, which

showed protective effects on dopaminergic dysfunction and

lipid peroxidation, the neuroprotective effects of baicalein

were shown to be real (Im et al., 2005). Lutein and apigenin,

two flavones, protect dopaminergic neurons against

inflammatory neurotoxicity. (Chen et al., 2008).

4.1.12 Valeriana officinalis
Valeriana officinalis (Valerian) is a sedative and

antispasmodic herb that has long been used for sleeplessness,

anxiety, and restlessness. In SH-SY5Y cells, valerian has been

shown to inhibit rotenone-induced cell death (Amaral de Brito

et al., 2020). Furthermore, valerian extract was effective in

reducing rotenone toxicity in Drosophila melanogaster, as

evidenced by the normalization of superoxide dismutases-SOD

and catalase mRNA expression, implying that valerian’s effects

are, at least in part, due to the plant’s antioxidant properties due

to its phenolic and flavonoid constituents (Sudati et al., 2013).

4.1.13 Passion flower
Flavonoids, glycosides, alkaloids, and phenolic chemicals

are all found in passion flowers, also known as Passiflora

incarnata (Passifloraceae). Anxiety, epilepsy, sleeplessness,

muscle spasms, and other disorders have all been treated

with it (Dhawan et al., 2004). As a result, the biological

effects of passion flowers on people with Parkinson’s disease

have been investigated. The quantity of jaw movements

produced by tacrine, a typical animal model of Parkinson’s

disease tremors, was reduced by passionflower extract. The

animal’s cognitive abilities improved as well, with haloperidol-

induced catalepsy lasting significantly less time. As evidenced

by its strong scavenging ability, the passionflower has

antioxidant activity (Ingale and Kasture, 2017).

4.1.14 St. John’s Wort
St. John’s wort (Hypericaceae) contains naphthodianthrones,

phloroglucinols, flavonoids as well as essential oils, have all been

found as active ingredients. As a result, the active ingredients

have antioxidative and neuroprotective properties (Barnes et al.,

2001). We looked at how two standardized extracts of St. John’s

Wort affected neurodegeneration in rats caused by long-term

rotenone treatment. St. John’s wort, through lowering Bax levels,

decreased neuronal damage and prevented the apoptotic process

(Kiasalari et al., 2016). Furthermore, rats with intrastriatal 6-

hydroxydopamine (6-OHDA) lesions were given a St. John’s

wort extract, which resulted in lower striatal malondialdehyde

levels, increased catalase activity, decreased glutathione (GSH)

content, normalized Glial fibrillary acidic protein (GFAP) and

tumor necrosis factor alpha or TNF-α expression, reduced

Deoxyribonucleic acid (DNA) fragmentation, and prevented

dopaminergic neuron damage (Kiasalari et al., 2016).

4.1.15 Terpenoids
Centella asiatica is a medicinal herb that appears to help with

rheumatoid arthritis, inflammation, and mental and physical

weariness. Bornyl acetate, α-pinene, β-pinene and δ-terpinene
are all monoterpenes found in the leaves of this plant (Asakawa

et al., 1982; Brinkhaus et al., 2000). Acetylcholinesterase (AChE)

activity was shown to be inhibited by these monoterpenes. C.

paniculatus ethanolic plant extract exhibited sedative and

antidepressant properties (in vivo) (Sakina and Dandiya,

1990). Compound 5 reduced Ab formation in neuroblastoma

cells transfected with amyloid precursor protein (APP)

constructs. Toxiigenin also reduced the activity of

b-proteolytic secretase on its substrate. In the same way, a

pharmacological study found that P. tenuifolia (BT-11) dried

root extract (80% ethanol-water) could help rats with

scopolamine-induced amnesia learn and remember better (Jia

et al., 2004).

4.1.16 Phenolics
Curcuma longa has been used for anti-aging in Ayurvedic

medicine for thousands of years. Curcumin, an antioxidant and

anti-inflammatory substance, is found in the rhizomes of

Curcuma longa (Arshad et al., 2017; Shah et al., 2021;

Memarzia et al., 2022; Salem et al., 2022). The compound also

showed neuroprotective properties when it came to ethanol-

induced brain damage. Curcumin reduced lipid peroxide levels

while increasing glutathione levels when taken orally (Kim et al.,

2001). Curcumin, demathoxycurcumin, bis-demethoxycumin,

and calebin-A, all extracted from Curcuma longa, have been

shown to protect PC12 cells from β-amyloid assault (Maurer

et al., 1997; Park and Kim, 2002). The stem bark of Knema

laurina was used to isolate compounds 18–22. The most

significant Acetylcholinesterase (AChE inhibitory activity was

found in compound 22, which had an IC50 of 0.573 mM (Akhtar

et al., 2011). In vitro experiments showed that a fruit extract from
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Styraxagrestis suppressed AChE. Three novel

egonoltypebenzofurans were isolated using a bioassay-guided

fractionation and isolation method: egonol-9(Z),12(Z)

linoleate, 7-demethoxyegonol9(Z),12(Z) linoleate and 7-

demethoxyegonol oleate (IC50 = 1.4–3.1 mM) (Liu et al., 2011).

4.1.17 Alkaloids
In vitro and in vivo, the lycopodium alkaloid huperzine A

(structurally similar to quinolizidine) obtained fromH. serrata is

a reversal inhibitor of AChE (Small et al., 1997; Shu, 1998; Wang

et al., 2000; Zhou et al., 2001). It stopped acetylcholinesterase

from working (IC50 = 0.08 mM) (Xiao et al., 2002). The alkaloid

leonurine, derived from Leonurus heterophyllus Sweet, inhibited

ROS, protectedmitochondrial integrity, and reduced cytochrome

c levels in vivo (Kuribara et al., 2000). The rhizomes of Coptis

chinensis have yielded numerous alkaloids, including berberine,

groenlandicine, palmatine, jateorrhizine, coptisine, and

epiberberine. These compounds can stop AChE from doing its

job. In addition, the compounds groenlandicine and epiberberine

inhibited beta-secretase enzymatic activity (Karakida et al.,

2007). The marine Streptomyces sp. Strain LB173 produced a

novel phenazine natural product called geranylphenazinediol.

With an IC50 value of 2.62mM, compound 91 inhibited the AChE

enzyme (Ohlendorf et al., 2012).

4.1.18 Mucuna pruriens
Mucuna pruriens (Mp) has therapeutic qualities in all of

its components. They are said to have anti-inflammatory,

analgesic, anti-epileptic, anti-neoplastic and anti-microbial

properties (Adepoju and Odubena, 2009). They showed

that Mp is a better way to treat Parkinson’s disease over

the long term than standard L-DOPA therapy, which

causes severe dyskinesia when used for a long time. MP’s

seed, leaf, and stem all have significant neuroprotective

properties. Because seeds have more L-DOPA than other

parts of the plant, they are often used as anti-PD drugs

(Benfica et al., 2020).

4.1.19 Withania somnifera
Environmental poisons Maneb (MB) and paraquat (PQ)

have been used in tests to generate selective damage to

dopaminergic neurons, leading to the development of

Parkinson’s disease (PD). When an ethanolic root extract

of Withania somnifera (Ws) was given to a mouse model

of Parkinson’s disease caused by MB-PQ, it was shown to

significantly improve classic Parkinson’s disease symptoms

like slow movement, less dopamine in the substantia nigra and

different types of oxidative damage (Ahmad et al., 2005; Yadav

et al., 2012).

4.1.20 Tinospora cordifolia
T. cordifolia is classified as “Rasayana” in Ayurveda and is

used to combat infections due to its general adaptogenic and

prohost immunomodulatory effect. It has antiandrogenic and

anti-inflammatory properties, is effective against throat cancer,

stress, and promotes learning and memory. In an acute toxicity

investigation, T. cordifolia was shown to be nontoxic. It has

recently been intensively researched and shown to have

significant antioxidant action. Because antioxidants are known

to prevent or protect neurodegeneration, the current study was

designed to assess the anti-Parkinson’s efficacy of T. cordifolia

ethanol extract (TCEE) (Kosaraju et al., 2014).

4.1.21 Bacopa monnieri
In vitro and in animal models of neurodegenerative illness, B.

monnieri’s antiparkinsonian efficacy has been studied in vitro. B.

monnieri’s antioxidant and neuroprotective properties confer

anti-Parkinsonian action, which is related to decreased-

synuclein protein aggregation and the selective death of

dopaminergic neurons. In worms, B. monnieri reduced

synuclein aggregation, prevented dopaminergic

neurodegeneration, and restored lipid content, indicating that

this species may have anti-Parkinsonian effects (Hosamani,

2009).

4.2 Marine derived compound

Natural marine-derived chemicals might have several

pharmacologic effects and could be extremely beneficial for

the creation of novel medicines (Corona, 2018).

4.2.1 Archaea
Many superheats may produce Zwitterionic organic products

to avoid thermal denaturation and protein aggregation under

severe circumstances like as extreme temps and osmolarity

(Empadinhas and da Costa, 2011). In a hot environment,

hyper thermophilic bacteria produce mannosylglycerate (MG)

as a suitable solute. In a PD yeast model, MG inhibited the

development of α-synuclein aggregates. Mannosylglycerate may

help α-synuclein fold properly, preventing abnormal

aggregation. MG is a promising therapy for PD (Faria et al.,

2013).

4.2.2 Bacteria
Ancillary marine compounds provide a rich pharmacological

source with new chemical structures and a wide range of

biological activity (Nikapitiya, 2012; Monciardini et al., 2014).

NP7 is a marine Streptomyces sp. Compound (NP7) is an anti-

oxidant and could cross The BBB. H2O2, caused Apoptosis and

H2O2 in nerves and Microglia cells NP7 at 5–10 μMmight avoid

(Koppula et al., 2012). Piloquinones, marine-derived chemicals

isolated from Streptomyces sp. Have been found to have

inhibitory action of MAO-B (Takeuchi et al., 1973). The

Streptomyces sp. CNQ-027 isolated piloquinones A, and B

(Nam et al., 2011).
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4.2.3 Fungi
Many marine fungus metabolites can have neuroprotective

anti-PD actions. Neoechinulin A is an isoprene quinone alkaloid

produced by the reddish algae-based fungi Aspergillus sp. and

Microsporum sp (Li et al., 2004). Neoechinulin A might protect

PC12 cells from the neuronal mortality of MPP+ and

peroxynitrite through the reversal of mitochondrial complex I

malfunction (Kimoto et al., 2007; Kajimura et al., 2008). The

natural substance is Aspergillus ochraceous and Paecilomyces sp,

secalonic acid A derived from marine fungal (Kurobane et al.,

1987). The suppression of p38 phosphorylation and JNK and

reducing Calcium entry and caspase-3 activation have

dramatically reduced the induced colchicine apoptosis of

cortical nerve cells at 3–10 μM (Zhai et al., 2011).

4.2.4 Algae
Marine algae have a strong antioxidant supply (Meenakshi et al.,

2011). Carotenoids, notably astaxanthin, produced by marine

micro-organisms, have proved to be a useful adjuvant therapy in

preventing and/or delays of NDs, for example, Haematococcus

pluvialis and Chlorella zophingiensis (Yuan et al., 2011; Galasso

et al., 2017). Astaxanthin may generate mouse anti-PD effects

(Grimmig et al., 2017a). Astaxanthin has been proven to

decrease microglial activation in the mouse brain (Grimmig

et al., 2017b). The marine carotenoid of Fucoxanthin that comes

from edible brown seaweeds has demonstrated antioxidant and anti-

inflammatory effects (Gammone et al., 2015). By stimulating the

PI3-K/Akt cascade, Fukoxanthin might reduce H2O2 neuro

substances and block the ERK route (Lin et al., 2017).

4.2.5 Mollusk
A kinase inhibitor called staurosporine (AM-2282) was first

discovered in the actinomycete Streptomyces staurosporeus

(Karaman et al., 2008). Additionally, flatworm and marine sea

squirt contained staurosporine (AM-2282) (Schupp et al., 2001).

Staurosporine (AM-2282) at 10 nM might promote DA neurite

outgrowth by activating the AMP-activated protein kinase

(AMPK)/mammalian target of rapamycin (mTOR) signaling

pathway in mesencephalic primary cultures (Wakita et al.,

2014). Additionally, staurosporine (AM-2282) may shield

neurons from damage brought on by ischemia (Hara et al.,

1990). Staurosporine is extremely poisonous, nevertheless.

Staurosporine analogues have been generated by structural

alteration to reduce toxicity (Bharate et al., 2013).

4.2.6 Sea cucumber
Amarine mollusc called the sea cucumber has vital nutrients.

In many Eastern nations, sea cucumber is recognized as a tonic

and a traditional therapy for neurodegenerative illnesses. Whole

body-ethyl acetate (WBEA), whole body-butanol (WBBU), and

body wall-ethyl acetate are extracts of the sea cucumber

Holothuria scabra (BWEA). These compounds can stop the

loss of DA neurons caused by 6-OHDA in Caenorhabditis

elegans by a large amount. Additionally, these extracts could

restore lipid content and prevent the aberrant aggregation of α-
synuclein (Chalorak et al., 2018). SCG-1, SCG-2 and SCG-3 are

significant sphingolipids found in Cucumaria frondosa’s sea

cucumber extract (Xu et al., 2013). SCG-1, SCG-2 and SCG-3

may promote neurite outgrowth in NGF-induced PC12 cells in a

FIGURE 2
Disorders associated with parkinsonian patient like supranuclear palsy, LB multiple system atrophy and corticobasal degeneration.
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dose-dependent and structure-specific manner, most likely

through boosting TrkA phosphorylation and upregulating

BDNF expression (Wang et al., 2018). These findings showed

that the active components in sea cucumber extracts and their

potential anti-PD capabilities.

5 Disorder associated with PD

Some disorders associated with PD are shown in Figure 2.

5.1 Supranuclear palsy

PSP and CBD are the two most frequent tauopathic PD. PSP

affects 6.4 persons out of 100,000 (Ikram et al., 2021). Initiating

age is an average of 63, males are most affected and survival time

is 6–7 years (Wenning et al., 1998). PSP is defined by the early

onset of widespread and stiff reverse dips, as well as supranuclear

vision paralysis with slow relative direction and difficulty staring

down (Litvan et al., 1996a). The NINDS-SPSP clinical diagnosis

for probable PSP are based on vertically supranuclear vision

paralysis and noticeable poor balance, which occur within the

first year of illness start and have the high selectivity (50–62)%,

specificity 100%, and positively useful predictions (Litvan et al.,

1996b; Litvan et al., 2003).

5.2 Multiple system atrophy

Sporadic progressive adult diseases, with an incidence of

around 4.4 instances per 100,000 population, are multiple

system atrophies (Schrag et al., 1999; Watanabe et al., 2002).

The existence of at least six of the following functions have

been consistently identified for MSA: Sporadic adult-onset,

self-representation, parkinsonism, cerebral characteristics,

pyramidal symptoms, there is a shortage of levodopa,

downward ocular paralysis and cognitive dysfunctions

(Litvan et al., 1998). Diagnosis of MSA is missed even at

tertiary reference centers, in 50%–75% of cases (Litvan et al.,

1997). Nigral and putamen degeneration and degeneration in

at least one region are part of pathological diagnostic criteria

(Ito et al., 1996).

5.3 Dementia with LBs or LB disease

The second most frequent kind of dementia in advanced

age is progressive dementia with LBs, typically accompanied

by parkinsonism, good visual hallucinations, and oscillations

in cognition, alertness, and concentration (McKeith et al.,

1996). DLB is dementia that affects the optical, perceptual,

and careful functions of the brain (Collerton et al., 2003). The

age at which the DLB begins is 60–68, with an average disease

duration of 6–7. Men are more impacted than women

(Gualtieri, 2004). DLB diagnostic criteria differ

substantially in their sensitivity and specificity and

improved criteria are needed (Lopez et al., 2000). Cases

with more substantial DLB disease have typical symptoms,

whereas cases with larger neurofibrillary tangles are likely to

show AD (Ballard et al., 2004). Continuing to work memory

issues, visual spatial difficulties, psychotic episodes,

melancholy, unconcern, and low mood are among early

signs of DLB (Simard et al., 2000).

5.4 Corticobasal degeneration or
degeneration of corticobasal ganglions

Degeneration of the corticobasal ganglion is gradual, with

unilaterally akinesia and rigidity responding badly to apraxia

(especially ideomotor apraxia) and levodopa. Myoclonus of the

cerebral reflex, limb rigidity, alien limb signs, and cortical sensory

loss is all symptoms (Riley et al., 1990; Stover and Watts, 2001).

Despite the fact that there are various requirements for diagnoses

were submitted, none were validated and their warnings were

explored elsewhere (Litvan et al., 2003). The estimated prevalence

per 100,000 individuals is 4.9–7.3 cases (Togasaki and Tanner,

2000).

5.5 PD and sleep disorders

5.5.1 Recurrent PD symptoms and sleep
fragmentation

Insomnia at night and daytime sleepiness are prevalent

among people with PD (Figure 3). 60 to 98 percent of PD

patients experience nighttime difficulties (Kales et al., 1971;

Lees et al., 1988; Larsen, 2003). 33% of individuals experience

moderate to severe sleep difficulties at night (Svensson et al.,

2012). The most prevalent complaint of PD patients in

nighttime sleep is many nightly awakes or fragmented sleep

(Factor et al., 1990). PD fragmentation of sleep A lot of

etiology including nightly recurrence of PD symptoms,

medicine, coexisting apnea of sleep, and regular limb sleep

movements (Comella et al., 2005). Patients with PD may

experience nocturnal waking and difficulty sleeping (Factor

et al., 1990; Happe et al., 2001). Levodopa medicament can

reduce the fragmentation of sleep owing to recurring

symptoms and enhance early-morning function (Askenasy

and Yahr, 1985; Juncos et al., 1987; Jansen and Meerwaldtt,

1990; Pahwa et al., 1993).

5.5.2 Sleep apnea
Obstructive sleep apnea was once thought to be a minor issue

in PD since it was generally associated with a high BMI. Sleep
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apnea, on the other hand, is more frequent in PD than previously

thought. Despite having a normal BMI, 20 to 50 percent of PD

patients tested by sleep study had significant apnea, according to

descriptive investigations (Ferini-Strambi et al., 1992; Maria

et al., 2003; Braga-Neto et al., 2004). People with multiple

system atrophy (MSA) have a high prevalence of respiratory

problems during sleeping. MSA patients may have difficulty

breathing during sleep due to vocal cord abductor paralysis

(Isozaki et al., 1996; Braga-Neto et al., 2004).

5.5.3 REM sleep behavior disorder
REM behavioral disorder is a sleep condition characterized

by muscular movement in REM sleep with dream activity

(Schenck et al., 1986; Schenck et al., 1987; Schenck et al.,

2002). REm atony-free sleep (RWA) displays aberrant muscle

activation without obvious behavioral behavior during REM

sleep (Gagnon et al., 2002). Though RBD’s clinical

characteristics seem distinct, sleep apnea can lead to a

comparable condition (Iranzo et al., 2005). In patients with

Basic RBD, a SPECT scan reveals a reduction in dopaminergic

transport which is midway among normal controls and

Parkinson patients (without parkinsonism) (Eisensehr et al.,

2003).

5.5.4 Excessive daytime sleepiness in PD
The typical complaint of PD-patient patients is excessive

daily drowsiness (EDS). This problem has been characterized as

sleep daily for PD patients on ropinirole or pramipexole, as well

as a result of motor vehicle accidents recorded in 1999 (Hobson

et al., 2002). Dementia and the fast advancement of parkinsonism

were related to the onset of EDS (Gjerstad et al., 2002). Since its

debut in the 1960s, levodopa has been known to produce

drowsiness. Levodopa monotherapy produced drowsiness in

the first round of 131 PD patients and restricted the dosage of

levodopa in 14% of patients (Lesser et al., 1979). Although

community studies indicated that almost any dopamine

agonist, particularly levodopa, may cause EDS, it was shown

that levodopa was the most closely connected to the disease

(Hauser et al., 2000; Hobson et al., 2002).

5.6 Depression

Epidemiological studies are regarded as a common non-

motor discovery in PD and prevalence calculations range

from 2.7 percent to 70 percent. The degree of depression

(moderate to serious) and the definition of depression

FIGURE 3
PDwith different types of sleep disorder like sleep fragmentation, REM (Rapid EyeMovement), Breathing problem during sleep (Apnea), increase
daytime sleep and finally depression.
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TABLE 1 Summary of some natural herbs and their mechanism of action for PD.

Compound
name

Chemical structure Plant extract Mechanism of action Ref

Baicalein Roots of Scutellaria
baicalensis and
Scutellarin lateriflora

Reducing oxidative stress, inhibiting aggregation
of amyloid proteins

Amro et al. (2018)

Curcumin Curcuma longa They have anti-inflammatory,
chemotherapeutic, anti-oxidant, anti-
proliferative, wound healing, and antiparasitic
properties, as well as

Gupta et al. (2012)

Resveratrol Polygonum cuspidatum Improve motor impairments, oxidative stress Lu et al. (2008)

Ginkgolides Ginkgo biloba Antioxidant, reduce oxidative stress Amro et al. (2018)

Ginsenoside Panax ginseng Antitumor, anti-inflammatory, anti-oxidation
and inhibit cell apoptosis

Li et al. (2017)

L-DOPA Mucuna pruriens Converts to dopamine in both the CNS and
periphery

Paravati et al.
(2018)

Gastrodin Gastrodia elata Parkinson’s disease (PD), the most common
type of Multiple Sclerosis (MS), is caused by the
gradual death of dopaminergic neurons along
the nigrostriatal pathway

Liu et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Summary of some natural herbs and their mechanism of action for PD.

Compound
name

Chemical structure Plant extract Mechanism of action Ref

Nicotine Nicotiana tabacum In neural cells and brain tissue, nicotine
decreases the amount of SIRT6

Nicholatos et al.
(2018)

Triptolide Tripterygium wilfordii Anti-inflammatory and immunosuppressive
effect

Yuan et al. (2019)

Paeoniflorin Paeonia lactiflora Ca2+/calmodulin/PI3K/Akt/TNF/apoptosis
signaling pathway connection, neuroactive
ligand-receptor interaction, and apoptosis
signaling pathway

Singh et al. (2020)

Naringenin Tomatoes, grapefruits Suppressing oxidative stress via antioxidant
mechanism

Sugumar et al.
(2019)

Terpenoids Tea, thyme, citrus food Anti-inflammatory and neuroprotective activity Kiyama, (2017)

Passiflora Passion flower Reduced catalepsy caused by haloperidol and
tacrine, indicating that it has antiparkinsonian
properties

Ingale and Kasture,
(2017)

Peganumharmala Seeds of rue Inhibit the oxidative stress Ingale and Kasture,
(2017)

Safflower Carthamus tinctorius lowered the plasma concentration of
inflammatory substances and inhibited the
activation of nod-like receptor protein 3
(NLRP3)

Lei et al. (2020)

(Continued on following page)
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undoubtedly influence these figures. Estimates dispute PD age

and depresence, as well as the period of disease, severity of

disease, and gender problems (Olanow et al., 20012001; Burn,

2002). Neurochemical and neuroimaging approaches have been

appraised in the functions of dopamine, norepinephrine and

serotonin, although no definite pathophysiological mechanism is

recognized. A function was proposed for an allelic variant in the

serotonin transporter (Mössner et al., 2001).

6 How natural product works on PD

6.1 Cellular development and apoptosis

The Bax (BCL2 associated X apoptosis regulator)/Bcl-2

(B-cell lymphoma 2) ratio, as well as caspase-3 activity, are

important in apoptosis and cellular development. In this way,

Bax may stop apoptosis from happening while Bcl-2 helps it

happen and both caspase-3 and caspase-9 can stop Bcl-2 from

doing its job. By forming the TP53-HIPK2-AXIN1 complex,

HIPK2 (Homeodomain-interacting protein kinase-2) can

control the creatine kinase and transcriptional activation of

TP53 (Tumor protein 53). This slows down cell growth and

speeds up cell death (Li et al., 2019). In cells exposed to MPP (+),

Pedicularioside A inhibited the production of the caspase-3 gene

as well as the cleavage of poly (ADP-ribose) polymerase (PARP)

(Li et al., 2008). Pedicularioside A exerts a protective effect on

mesencephalic neurons, increasing their longevity.

6.2 Anti-inflammatory pathway

Pathogenesis of PD is exacerbated by neuroinflammation

and oxidative stress (Li et al., 2019). Some transcription

factors, for instance MAFG, can promote nNOS by raising

NRF1 expression. Nuclear factor erythroid-2-related factor 2

(Nrf2) protein levels and transcriptional activity, as well as

overexpression of Nrf2-dependent genes, were shown to rise

following therapy. A ligase modulatory component is seen in

SH-SY5Y cells (Jing et al., 2016).

6.3 Dopamine transmission

The dopamine transporter (DAT) is in charge of DA re-

uptake by altering the PP2A kinase pathway, α-synuclein
inhibits VMAT2 but enhances DAT function (Dorsey et al.,

2007). NURR1 expression was shown to be considerably

lower in Parkinson’s sufferers, according to research,

NURR1 has the ability to induce differentiation, maturity,

and growth of dopaminergic neurons, protection of

dopaminergic neurons, and reduction of inflammation-

induced necrosis (Li et al., 2019; Rahman et al., 2022b).

Immunohistochemistry results showed that treatment with

ME (dried mulberry fruit extract) greatly reduced the

overexpression of SNCA (Synuclein Alpha) and ubiquitin,

which are two of the most important parts of LBs (Gu et al.,

2017).

TABLE 1 (Continued) Summary of some natural herbs and their mechanism of action for PD.

Compound
name

Chemical structure Plant extract Mechanism of action Ref

St. John’s wort Hypericum perforatum Have antioxidant effect and give antidepressant
effect

Altun et al. (2013)

Fraxetin Fraxinus bungeana Inhibit rotenone-induced apoptosis Molina-Jiménez
et al. (2004)
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7 Herb derived Anti-Parkinson
compound

The herb derived Anti-Parkinson components may produce very

good activity. Some of these components are displayed in Table 1.

8 Clinical trials

8.1 Mucuna pruriens (L.) DC

Numerous laboratories are investigating the remarkable

properties of the tropical legume M. pruriens for the

treatment of PD. For the first time, a multicentric preclinical

trial described the efficacy of the herbal preparation (HP-200)

derived from the tropical legume for the treatment of the disease,

which was administered to 60 PD patients for 12 weeks

(Sengupta et al., 2016). The Hoehn and Yahr (H&Y) scale

scores decreased statistically significantly, while the United

Parkinson’s Disease Rating Scale (UPDRS) scores improved

from the baseline level.

8.2 Hyoscyamus niger L

H. niger has been utilized for a variety of ailments in the

traditional medical systems of many cultures, including Indian,

Chinese, Roman, and Byzantine. No reference is made in the

literature to its independent usage for the treatment of

parkinsonism in either human patients or any animal model.

However, a clinical research has confirmed its efficacy when

combined with three additional Ayurvedic herbs. H. niger

contains little L-DOPA (Nagashayana et al., 2000), but it is

abundant in tropane alkaloids including hyoscine and

hyoscyamine that are well known for their anticholinergic

properties (Brown and Taylor, 2006). A relative excess of the

neurotransmitter acetylcholine exists in the striatum due to the

depletion of DA in PD, which is thought to be one of the causes

of the many motor impairments linked to PD. Anticholinergics are

therefore used to treat PD, especially tremor (Mirahmadi et al., 2016).

8.3 Nardostachys jatamansi DC

In a 6-OHDA-rat model of PD, an ethanolic extract of the

Ayurvedic plant N. jatamansi roots can reduce neuronal damage

(Ahmad et al., 2006). The extract effectively decreased the

neurotoxin-induced lipid peroxidation, increased GSH

content, the activities of GT, GR, GP, SOD, and catalase,

attenuated the loss of catecholamines, increased DA-ergic D

2 receptor binding, and increased TH-immunoreactivity in the

animals before 6-OHDA lesioning. N. jatamansi extract also

dose-dependently reversed the dopaminomimetics-induced

rotations and deficits in locomotor activity and muscular

coordination brought on by nigrostriatal degeneration.

8.4 Bacopa monnieri L

Ayurveda makes extensive use of this plant as a brain booster.

Recent preclinical studies have demonstrated its effectiveness in

treating PD. B. monnieri extract was found to have significant

preventive action in the paraquat-induced PD model in

Drosophila and mice, principally through antioxidant

capabilities and restoration of the mitochondrial ETC

complexes activities (Ravikumar and Muralidhara, 2010;

Hosamani et al., 2016). The ability of the plant’s alcoholic

extraction to shield 6-OHDA-lesioned rats from behavioral

and biochemical abnormalities were demonstrated to be

significantly influenced by similar antioxidant effect (Shobana

et al., 2012).

9 Challenges with current synthesis

When several neurotoxic models of Parkinson’s disease are

put together, they make a good framework for finding anti-

Parkinsonian drugs. Herbal medicines can also be used to make

new Parkinson’s disease treatments. But in the future, real-world

studies should look into how well plant extracts and their active

parts work in PD models (Mercuri and Bernardi, 2005; Diaz and

Waters, 2009). Aside from the fact that the gold standard,

levodopa, does not operate on the cause, there is an additional

restriction in that the symptoms become exceedingly severe after

a lengthy period of therapy (Odin et al., 2008). Another

significant issue with L-dopa is that it promotes

neurodegeneration by causing oxidative stress (Pahwa and

Lyons, 2009). While levodopa has all of these side effects,

other PD medications might cause sleep difficulties and

cognitive issues such disorientation and psychosis, MAO-B

inhibitors, COMT inhibitors, and other similar drugs

anticholinergic medications (Yuan et al., 2010). Due to great

success, DBS (Deep brain stimulation) in the subthalamic

nucleus (STN) and globuspallidus internus (GPi) is currently

the most popular therapy (Rocchi et al., 2012; Doke et al., 2019).

However, DBS has the same drawbacks in that it does not stop

the disease from developing and does not prevent it from

deteriorating various signs and symptoms (Tsai et al., 2009).

Rehabilitative therapy is a type of treatment for PD that involves

daily exercises such as stretching and muscle strengthening,

exercises to strengthen and improve posture (Tomlinson et al.,

2013; Clarke et al., 2016). So overall it can be said that though PD

have many treatments but they have also some drawbacks that’s

why these treatments are not so ideal. Further research is

warranted to explore several folklore or traditional medicinal

herbs and their myriad of bioactive phytochemicals to develop
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new safe and effective anti PD drug agents (Sharma et al., 2022a;

Sharma et al., 2022b; Sharma et al., 2022c).

10 Conclusion and future
perspectives

We discovered that several organic substances and herbal

extracts display varied anti-Parkinsonian properties. When

numerous PD neurotoxic models are coupled, they give a

good framework for discovering anti-Parkinsonian drugs, and

herbal medications can be employed to develop novel PD

treatments. But in the future, real-world studies should look

into how well plant extracts and their active parts work in PD

models. Additionally, there is still a need for more thorough

explanations of the constituents and methods of action of herbal

extracts. To assure strong reproducibility, to boost therapeutic

benefit, and to lessen the possibility of harm, methodological

improvements must be made to upcoming clinical studies using

natural products for the treatment of PD. The study design

should include double blinded trials and the use of placebos.

Before beginning clinical trials, protocols must be established to

ensure the openness of the study findings.

10.1 PD vaccine

DC vaccination is a cell-based treatment. It uses antigen-loaded

or sensitized DCs as the vehicle for vaccination to cause an immune

response, and it is very important for getting early immune

responses. T-cells become activated when they are exposed to

antigen (Steinman, 1991; Boer et al., 2015). Also, peptide-

sensitized DC (PSDC) vaccines cause an antigen-specific immune

response that lasts longer than traditional vaccinations (Steinman,

2001). In some way, these DCs have become sensitized. They were

subsequently used as a vaccination to activate immunological

responses in Tg mice, which produce the 140-amino-acid full-

length protein α-synuclein (B6; C3-Tg (Prnp-SNCA*A53T)

human A53T variant 83Vle/J), which is controlled by the mouse

prion protein promoter (Ugen et al., 2015).

10.2 Cell transplantation

Researchers have looked at many different cell sources to

make dopaminergic neurons that can be transplanted into

Parkinson’s disease patients (Lindvall, 2016). Nevertheless,

current experimental and clinical evidence strongly imply that,

in order to deliver significant therapeutic effect, the clinical

candidate cell must be of human origin and possess the

following characteristics: A neuron in the substantia nigra

(Lindvall et al., 2012; Rahman et al., 2021c; Bhattacharya

et al., 2022). In the first experiment to show that human ES

cell-derived dopaminergic neurons can survive intrastriatal

implantation and give birth to dopaminergic neurons in a rat

Parkinson’s disease model, the behavior of almost all of the

people improved (Roy et al., 2006). After intrastriatal

transplanting, a large percentage of substantia nigra

dopaminergic neurons survived for a long time, there were no

tumors seen in the rodents. Furthermore, a large area of the brain

was re-innervated thanks to the transplants in a bigger

(nonhuman primate) brain, the striatum and behavioral

impairments that resemble symptoms have improved in PD

patients (Lindvall et al., 2012). Grealish and others found that

grafts of human ES cell-derived dopaminergic neurons placed in

a mouse were effective, axonal regeneration is possible in the rat

model of PD as well as functional growth and long-term survival

efficacy more than the human foetal mesencephalic

dopaminergic neurons (Grealish et al., 2014). Even if no

tumors have been found, safety is still an important

consideration when considering human transplantation,

Dopaminergic neurons generated from ES cells in patients

with PD (Kriks et al., 2011; Kirkeby et al., 2012; Grealish

et al., 2014; Rahman et al., 2022c).

10.3 Gene therapy

In 1972, gene therapy was first proposed as a way to replacing

bad DNA with good DNA (Friedmann and Roblin, 1972). There

are a variety of techniques, but the most common is the use of

designed non-replicating viral vectors, primarily recombinant

viruses of various serotypes lentivirus or adeno-associated virus

(AAV) (Lang et al., 2006). Treatments with non-disease

modifying medications aim to relieve the symptoms of PD by

attempting to restore aberrant firing of dopaminergic or GABA-

producing enzymes in the basal ganglia (Axelsen and Woldbye,

2018). So, we can expect that the gene therapy will be one the

most promising therapeutic technique.

10.4 Surgical method

Deep brain stimulation (DBS) or localized treatments may

help patients with PD enhance their quality of life and functional

independence (Weaver et al., 2009). Surgical lesions and deep

brain stimulation (DBS) improve medication and reduce

dyskinesia as compared to standard medical therapy (Vitek

et al., 2003; Weaver et al., 2009). New surgical and

stimulation approaches are reshaping the sector, and

technology improvements may enhance possible outcomes.

Surgical decision-making is difficult, as it involves determining

the best surgical candidates, among other things, such as

methodology, complication management, hardware, and code

changes, all of which necessitate a multidisciplinary team effort

(Mitchell and Ostrem, 2020).
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