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Malignant tumor is a major killer that seriously endangers human health. At

present, the methods of treating tumors include surgical resection,

chemotherapy, radiotherapy and immunotherapy. However, the survival rate

of patients is still very low due to the complicated mechanism of tumor

occurrence and development and high recurrence rate. Individualized

treatment will be the main direction of tumor treatment in the future.

Because only by understanding the molecular mechanism of tumor

development and differentially expressed genes can we carry out accurate

treatment and improve the therapeutic effect. MicroRNA (miRNA) is a kind of

small non coding RNA, which regulates gene expression at mRNA level and

plays a key role in tumor regulation. Ferroptosis is a kind of programmed death

caused by iron dependent lipid peroxidation, which is different from apoptosis,

necrosis and other cell death modes. Now it has been found that ferroptosis

plays an important role in the occurrence and development of tumors and drug

resistance. More and more studies have found that miRNAs can regulate tumor

development and drug resistance through ferroptosis. Therefore, in this review,

the mechanism of ferroptosis is briefly outlined, and the relationship between

miRNAs and ferroptosis in tumors is reviewed.
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Introduction

Malignant tumors are a major killer of human life and health. Currently, there are

surgical resection, chemotherapy, radiotherapy, immunotherapy and other treatment

methods (Dasari and Tchounwou, 2014; Yang, 2015; Bradley and Mendenhall, 2018), but

the patient mortality is still very high. In particular, some malignant tumors have

developed resistance to traditional treatment methods, making the treatment effect

poor (Szakács et al., 2006; Du and Shim, 2016; Sharma et al., 2017; O’Donnell et al.,

2019). Therefore, the new way of tumor cell death is of great significance to the treatment

of tumor and to improve the sensitivity of traditional therapy.
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The concept of ferroptosis was first defined by Dixon in 2012.

It is a new programmed cell death mode that is different from

apoptosis and necrosis in morphology, biochemistry and

genetics. Its important feature is iron dependent lipid

peroxidation (Dixon et al., 2012; Proneth and Conrad, 2019;

Yan and Zhang, 2019; Li Y. et al., 2020). Before the concept of

ferroptosis was put forward, it was found that erastin was lethal to

human foreskin fibroblasts expressing mutant Ras oncogene in

2003 (Dolma et al., 2003). However, no target of cell death

induced by erastin was found in subsequent studies (Yagoda

et al., 2007). Until 2012, this cell death mode was officially named

ferroptosis, and it was found that erastin blocked the uptake of

cystine of cells by inhibiting the cystine/glutamate antiporter

(system xc−), so that the reducing substances were exhausted,

resulting in cell death (Dixon et al., 2012). At present, ferroptosis

has been found to be involved in the development of

neurodegenerative diseases (Hambright et al., 2017), ischemia-

reperfusion injury (Li et al., 2019), malignant tumors (Zhang

et al., 2021b; Sun J. et al., 2021), and other diseases.

MicroRNA (miRNA) is a kind of small non coding RNA,

which can directly combine with the 3′- untranslated region (3’ -

UTR) of the target mRNA to inhibit the translation of the target

mRNA, thus regulating a series of cellular biological processes

(Bartel, 2004; Esteller, 2011; Rupaimoole and Slack, 2017). It has

been found that miRNA can conduct through the ferroptosis

signal pathway, and then play a crucial role in the occurrence and

development of tumors (Cai et al., 2022; Pan et al., 2022; Zhang

N. et al., 2022).

This article mainly reviews the recent research on microRNA

targeting ferroptosis signaling pathway in tumors, and provides

new ideas for tumor diagnosis, treatment and improving

treatment sensitivity.

MicroRNA targeting iron metabolism

Iron is an indispensable substance for cells to maintain

physiological and biochemical functions. Under normal

conditions, iron is strictly regulated in cells and maintains a

relatively stable level (Aisen et al., 2001; Zhang, 2014; Morales

and Xue, 2021). Extracellular Fe3+ can be endocytosed by binding

with transferrin (TF) and then binding with transferrin receptor

1 (TFR1, TFRC) on the cell membrane to form endosomes, thus

transferring extracellular Fe3+ into cells (El Hout et al., 2018). Fe3+

in the acidic endosomes is reduced to Fe2+ under the action of

prostate six transmembrane antigen protein 3 (STEAP3), and

then transferred to the cytoplasm by divalent metal ion

transporter 1 (DMT1, SLC11A2) or zinc transporter 8/14

(ZIP8/14), and introduced into the labile iron pool (LIP)

(Bogdan et al., 2016). In addition, DMT1 and ZIP8/14 can

also directly transport extracellular free Fe2+ to intracellular

LIP (Liuzzi et al., 2006; Wang et al., 2012). Excessive Fe2+ in

lip can produce a large amount of reactive oxygen species (ROS)

through Fenton reaction, causing lipid peroxidation and cell

death (Stockwell et al., 2017). While poly (RC) binding

protein 1 (PCBP1) and poly (RC) binding protein 2 (PCBP2)

can load Fe2+, bind it to ferritin and store it in the form of Fe3+, so

as to reduce the content of free iron in cells and avoid oxidative

damage to cells (Shi et al., 2008; Leidgens et al., 2013). In the case

of intracellular iron deficiency, ferritin can also be transported to

autophagosome under the action of nuclear receptor coactivator

4 (NCOA4), and ferritin will release Fe3+ again due to autophagy;

When cells are not iron deficient, ferritin is degraded through

non autophagy (Asano et al., 2011; Mancias et al., 2014). Iron

response element binding protein 2 (IREB2) is anmRNA binding

protein that can bind to iron response element (IRE) on mRNA

and is the main regulator of iron metabolism related genes.

IREB2 can down regulate the expression of ferritin (FTH1 and

FTL), ferroportin (FPN, SLC40A1), up regulate the expression of

TFRC and SLC11A2, and finally increase the concentration of

intracellular free iron (Ooko et al., 2015; Cooper et al., 2019;

Chen X.et al., 2021). Ferroportin (FPN, SLC40A1) is a key

protein that can transport Fe3+ to the outside of cells and

plays a very important role in maintaining stable iron content

in cells (Ganz, 2005). In addition, prominin2, a protein encoded

by PROM2 gene, was found to drive the production of

multivesicular bodies (MVB). MVB ingests ferritin in cells

and fuses with plasma membrane to expel ferritin out of cells

in the form of secretory body (Belavgeni et al., 2019).

In HT-29 and HCT-116 human colorectal cancer (CRC) cells

treated with ferroptosis inducers erastin (SLC7A11 inhibitor) and

RSL3 (GPX4 inhibitor), the silencing of miR-545 could increase

the levels of intracellular ferroptosis biomarkers malondialdehyde

(MDA), reactive oxygen species (ROS) and Fe2+ and reduce the

viability of the cells, while the overexpression of miR-545 was the

opposite. In mechanism, miR-545 inhibits the progress of

ferroptosis by inhibiting the expression of TF, and promotes

the viability of CRC cells. When Erastin-treated CRC cells with

miR-545 knockdown were injected subcutaneously into nude

mice, Erastin reduced tumor volume, and inhibition of miR-

545 further reduced tumor volume (Zheng et al., 2021). In

addition, miR-19a has also been found to promote the

proliferation, invasion and metastasis of CRC cells, and its

mechanism is that miR-19a inhibits the expression of IREB2,

thereby inhibiting the ferroptosis process of cells (Fan et al., 2022).

MiR-4735-3p was found to be low expressed in clear cell

renal cell carcinoma (ccRCC). The inhibition of miR-4735-3p

reduced the level of lipid peroxidation and Fe2+ in ccRCC cells

and inhibited the progression of ferroptosis. Further research

found that miR-4735-3p can promote the ferroptosis process of

ccRCC cells by directly targeting SLC40A1, and ultimately inhibit

the development of tumors (Zhu et al., 2022).

In the process of exploring the effect of long-chain noncoding

RNA (lncRNA) RP11-89 on the development of bladder cancer,

it was found that RP11-89 could act as a “sponge” to adsorb miR-

129-5p and up regulate PROM2. The up regulation of PROM2 in
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cells can promote the formation of MVB, the output of iron and

the decrease of mitochondria, which weakens the effect of

ferroptosis. RP11-89 promotes cell proliferation, migration

and tumorigenesis through miR-129-5p/PROM2 axis, and

inhibits cell cycle arrest. This suggests that RP11-89 and mi-

129-5p can be used as potential targets for the treatment of

bladder cancer (Luo W. et al., 2021).

Curcumin is a natural product extracted from Curcuma

wenyujin. It can inhibit the proliferation of lung cancer cells

and induce cell death. The main form of death is ferroptosis.

Curcumin can significantly down regulate the expression of long-

chain non coding RNA H19 (lncRNA H19) in lung cancer cells.

LncRNA H19, as a competitive endogenous RNA (ceRNA),

binds to miR-19b-3p and can enhance the transcription of

FTH1. Therefore, curcumin blocks the progression of lung

cancer by inhibiting the lncRNA H19/miR-19b-3p/FTH1 axis

to promote the ferroptosis process (Zhang R. et al., 2022).

In a word, iron plays a very important role in the

physiological process of cells. Under normal conditions, iron

maintains a relatively stable level. Lack of iron will lead to the

failure of cell function, while excessive iron will lead to cell

oxidative stress and promote cell ferroptosis.

MicroRNA targeting GSH synthesis
pathway

Cystine/glutamate antiporter (system xc−) is composed of

solute carrier family member 7A11 (SLC7A11) and solute carrier

family member 3A2 (SLC3A2) connected by disulfide bonds. Its

main function is to promote the exchange of cystine outside the

membrane and glutamate inside the membrane (Sato et al., 1999;

Cao and Dixon, 2016). Glutamic acid can be produced by

glutamine degradation under the catalysis of glutaminase

(GLS, including GLS1 and GLS2), in which GLS2 is the target

of tumor suppressor gene P53 (Gao et al., 2015; Kang et al., 2019).

Cystine transported into cells is reduced to cysteine under the

action of thioredoxin reductase 1 (TXNRD1), and then with

glutamic acid and glycine, glutathione (GSH) is generated in two

steps under the catalysis of glutamic acid cysteine ligase (GCL)

and glutathione synthetase (GSS) (Liang et al., 2019; Jiang et al.,

2021). GSH is a very important antioxidant in cells. It can reduce

lipid peroxide under the catalysis of glutathione peroxidase 4

(GPX4) to avoid oxidative damage to cells. If erastin is used to

inhibit the activity of system xc−, the GSH synthesis path will be

blocked, and the intracellular lipid peroxide cannot be cleared,

resulting in cell ferroptosis (Dixon et al., 2014).

MiR-375 is a multifunctional miRNA that participates in islet

development, insulin secretion and cell proliferation (Li, 2014).

MiR-375 was found to be down-regulated in gastric cancer (GC)

stem cells. Up regulation of miR-375 can significantly inhibit the

number of GC stem cells. The mechanism is that miR-375

triggers cell ferroptosis by directly targeting SLC7A11. When

GC cells were subcutaneously injected into nude mice, miR-375

was able to suppress tumor volume and decreased stem cell

frequency. When nude mice were injected with only a small

number of cells, miR-375 might prevent the mice from forming

tumors. These results were rescued by overexpression of

SLC7A11. (Ni et al., 2021). Therefore, miR-375/SLC7A11 axis

may be a target for inducing ferroptosis in GC stem cells.

MiR-5096 can inhibit the proliferation and invasion of breast

cancer cells and induce cell death. Overexpression of miR-5096

causes the increase of iron content, ROS, hydroxyl radical, lipid

peroxide and the decrease of GSH in breast cancer cells. These

characteristics indicate that its effect is related to ferroptosis.

Through the study of its mechanism, it is found that miR-5096

induces ferroptosis in breast cancer cells by inhibiting the activity

of SLC7A11 (Yadav et al., 2021).

Lidocaine, a local anesthetic commonly used in clinic, was

found to inhibit the proliferation, invasion and migration of

ovarian and breast cancer cells, and increase intracellular Fe2+

and ROS. Further studies showed that lidocaine could down

regulate the expression of SLC7A11 by increasing miR-382-

5p. Inhibition of miR-382-5p can block lidocaine induced

ferroptosis in ovarian and breast cancer cells. Therefore, miR-

382-5p may be a good target for inducing ferroptosis in ovarian

and breast cancer cells (Sun D. et al., 2021). In addition,

levobupivacaine, another local anesthetic, was found to inhibit

the growth of gastric cancer cells by inducing ferroptosis of gastric

cancer cells through miR-489-3p/SLC7A11 axis (Mao et al., 2021).

SLC7A11 is a very important regulatory molecule in the

ferroptosis signaling pathway. At present, a large number of

miRNAs have been found to regulate the ferroptosis process of

tumor cells by targeting SLC7A11. For example, miR-545-3p/

SLC7A11 axis in thyroid cancer (Wang H.H. et al., 2021), miR-

125b-5p/SLC7A11 axis andmiR-34c-3p/SLC7A11 axis in human

oral squamous cell carcinoma (Yu et al., 2021; Sun et al., 2022),

circEPSTI1/miR-375, miR-409-3p, miR-515-5p/SLC7A11 axis in

cervical cancer (Wu et al., 2021), circ0097009/miR-1261/

SLC7A11 axis in hepatocellular carcinoma (Lyu et al., 2021),

c-Myc/miR-25-3p/SLC7A11 axis in prostate cancer (Jiang et al.,

2022)and lncRNA SLC16A1-AS1/miR-143-3p/SLC7A11 axis in

renal cell carcinoma (Li et al., 2022), these signaling pathways

involve miRNAs targeting SLC7A11.

In conclusion, SLC7A11 is the main component of system

xc− to play a role. The inhibition of SLC7A11 will block the entry

of cystine into the cells, block the supply of GSH synthetic raw

materials and inhibit the activity of GPX4. The antioxidant

system of the cells is damaged, resulting in the failure to

remove lipid peroxides in time, and eventually ferroptosis.

MicroRNA targeting GPX4

Glutathione peroxidase 4 (GPX4), a selenoprotein, is the

central regulator of ferroptosis regulation pathway.
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Selenocysteine residue is the most important active site in GPX4.

If it is mutated, it will reduce the activity of GPX4 by 90% (Ingold

et al., 2018). Selenium is the raw material for the synthesis of

selenocysteine, is the essential element for the formation of

GPX4 active site, and plays an important role in the

occurrence and development of ferroptosis. The isopentenyl

pyrophosphate (IPP) produced by MVA pathway is crucial for

the maturation of selenocysteine-tRNA, which also explains the

phenomenon that statins cause the decreased expression of

GPX4 and the occurrence of ferroptosis by inhibiting MVA

pathway (Viswanathan et al., 2017). In addition, cysteine

cannot replace selenocysteine to play a role because of the

difference in pKa between the two (Borchert et al., 2018). At

physiological PH, selenocysteine is more likely to exist in ionic

state, which is necessary for catalytic function. The catalytic

process of GPX4 is completed in two stages. In the first stage,

the selenocysteine residue of the active site reduces the lipid

peroxide (PE-AA-OOH and PE-AdA-OOH) to a non-toxic

phospholipid alcohol (PE-AA-OH and PE-AdA-OH), while

the selenocysteine residue itself is oxidized. In the second

stage, the oxidized selenocysteine residues are restored to

activity by reduction with 2 molecules of GSH, and GSH is

oxidized to GSSG (Forcina and Dixon, 2019). Blocking GSH

synthesis or excessive consumption of GSH will make the

GPX4 active site unable to recover, which will inhibit

GPX4 activity and cause ferroptosis of cells (Yuan et al.,

2021). In addition, the use of GPX4 inhibitors (such as RSL3)

can directly inhibit GPX4, so that lipid peroxides cannot be

effectively cleared, and ultimately lead to ferroptosis of cells

(Yang and Stockwell, 2008).

MiR-15a-3p plays an important role in the regulation of

various cancers. It is found that miR-15a-3p participates in the

ferroptosis process of colorectal cancer, can directly bind to the

3′-UTR of GPX4 and inhibit its activity, resulting in the increase

of intracellular ROS, intracellular Fe2+ level and MDA (Liu et al.,

2022). In addition, it was found that miR-539 was low expressed

in colorectal cancer, while tumor necrosis factor (TNF)- α
Induced protein 8 (TNFAIP8/TIP8) is highly expressed in

colorectal cancer. TIP can promote the proliferation,

migration and angiogenesis of colorectal cancer. After

exploring the mechanism, it was found that miR-539 can

regulate the expression of TIP and indirectly down regulate

the expression of GPX4 by activating SAPK/JNK pathway,

promoting the process of ferroptosis and inhibiting colorectal

cancer cells (Yang Y. et al., 2021). Therefore, miR-15a-3p and

miR-539 can be used as potential targets to induce ferroptosis in

colorectal cancer cells.

MiR-324-3p was found to be significantly underexpressed in

A549 cisplatin resistant lung adenocarcinoma cells.

Overexpression of miR-324-3p could reverse the cisplatin

resistance of the cells. It was found that miR-324-3p could

directly act on GPX4 and inhibit its expression, while

overexpression of GPX4 reversed the cisplatin sensitization

effect of miR-324-3p on lung adenocarcinoma cells. The

GPX4 inhibitor RSL3 has the same effect as the up regulation

of miR-324-3p in lung adenocarcinoma cells. Therefore, miR-

324-3p/GPX4 axis can be used as a good target to increase

cisplatin sensitivity of lung adenocarcinoma cells (Deng et al.,

2021).

Metformin is a commonly used hypoglycemic drug in clinic.

Many studies have found that it has anticancer activity. In one

study, metformin could up regulate the expression of miR-324-

3p and induce ferroptosis of MDA-MB-231 breast cancer cells. In

its target for ferroptosis, it was found that miR-324-3p could

directly bind to the 3′-UTR of GPX4, resulting in the down

regulation of GPX4, which led to ferroptosis of cells (Hou et al.,

2021). Ketamine, a clinical intravenous anesthetic, was found to

inhibit the proliferation of liver cancer cells in vivo and in vitro,

and induce ferroptosis. The expression of lncPVT1 and

GPX4 were decreased. Further studies showed that

lncPVT1 could directly interact with miR-214-3p and block

its adsorption on GPX4. Knockout of lncPVT1 can cause

ferroptosis in cells, and inhibition of miR-214-3p or

overexpression of GPX4 can reverse this process. Ketamine

induced ferroptosis can also be reversed by inhibiting miR-

214-3p or overexpression of GPX4. That is, ketamine

regulates the ferroptosis process of liver cancer cells through

the lncPVT1/miR-214-3p/GPX4 axis (He et al., 2021).

MiR-1287-5p/GPX4 axis is involved in regulating the

proliferation activity and ferroptosis of human osteosarcoma

cells, and is related to the sensitivity of cells to cisplatin (Xu

Z. et al., 2021). In addition, circKIF4A/miR-1231/GPX4 axis in

papillary thyroid cancer (Chen W.et al., 2021), miR-15a/

GPX4 axis in prostate cancer (Xu et al., 2022), circIL4R/miR-

541-3p/GPX4 axis in hepatocellular carcinoma (Xu et al., 2020)

and circDTL/miR-1287-5p/GPX4 axis in non-small cell lung

cancer (NSCLC) (Shanshan et al., 2021) also regulate the

process of ferroptosis in corresponding tumors.

In conclusion, GPX4 is the most important antioxidant factor

in the ferroptosis regulatory network. If GPX4 is inhibited, it will

lead to the destruction of the antioxidant system, and the lipid

peroxides in cells cannot be removed in time, resulting in

ferroptosis.

MicroRNA targeting lipid metabolism

Polyunsaturated fatty acid (PUFA) is an important

component of cell membrane and plays an important role in

biological function regulation (Gill and Valivety, 1997). PUFA is

one of the main targets of intracellular reactive oxygen species

(ROS) attack, and its diallyl C-H is vulnerable to attack, leading

to lipid peroxidation and cell death (Porter et al., 1979; Yin et al.,

2011). Polyunsaturated fatty acids are more prone to lipid

peroxidation than monounsaturated fatty acids (MUFA).

Providing exogenous PUFA to cells can increase the
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sensitivity of cells to ferroptosis, while adding exogenous MUFA

is the opposite (Yang et al., 2016; Magtanong et al., 2019). In the

process of ferroptosis, arachidonic acid (AA) and adrenal acid

(AdA) are the two most important PUFAs involved in lipid

peroxidation (Kagan et al., 2017). AA and AdA can be esterified

to AA-CoA and AdA-CoA by acetyl CoA under the action of

long chain acyl CoA synthetase 4 (ACSL4). Then, under the

catalysis of lysophosphatidylcholinyltransferase 3 (LPCAT3), it

can combine with phosphatidylethanolamine (PE) on the cell

membrane to form PE-AA and PE-AdA, so as to transfer these

two PUFAs to the cell membrane. Then, PE-AA and PE-AdA on

the membrane can be oxidized under the action of Lipoxygenase

(LOX) to form two lipid peroxides, PE-AA- OOH and PE-AdA-

OOH (Dixon et al., 2015; Yuan et al., 2016; Doll et al., 2017;

Kagan et al., 2017; Kuang et al., 2020). Lipid peroxide can change

the structure of lipid membrane, resulting in the increase of

biofilm curvature, the thinning of membrane thickness and the

change of cell permeability, which is an important cause of cell

death (Gaschler and Stockwell, 2017; Feng and Stockwell, 2018).

In addition, the decomposition of lipid peroxidation products

can produce substances such as malondialdehyde (MDA) and 4-

hydroxy-nonanal (4-HNEs), which can combine with biological

macromolecules such as nucleic acids and proteins to produce

cytotoxicity and cause cell death (Ayala et al., 2014).

Exosomes belong to the extracellular vesicle (EV) family,

which can transfer proteins, lipids, lncRNAs, circRNAs and

miRNAs, and act as an intercellular information transmitter

(Théry et al., 2002; He et al., 2018). Exosomes produced by

cancer associated fibroblasts (CAFs) in the tumor

microenvironment (TME) can promote tumor proliferation,

metastasis and increase drug resistance of tumor cells (Li

et al., 2018; Dong et al., 2020). The exosome miR-522 secreted

by CAF was found to be an inhibitor of arachidonic acid

lipoxygenase 15 (ALOX15) in GC, and ALOX15 is the main

enzyme that catalyzes the production of lipid peroxide in GC

cells. Therefore, miR-522 inhibits ferroptosis by inhibiting the

activity of ALOX15, preventing lipid peroxidation of cells. In

addition, it was also found that heterogeneous nuclear

ribonucleoprotein A1 (hnRNPA1) can promote the transfer of

miR-522 to exosomes, and ubiquitin specific protease 7 (USP7)

can stabilize hnRNPA1 through deubiquitination. When miR-

522 knockdown CAF cells and GC cells were mixed and injected

subcutaneously into nude mice, miR-522 in exosomes was

reduced. The levels of ALOX15 and lipid ROS in tumor

tissues were increased, and the tumor volume was significantly

decreased (Zhang et al., 2020).

In the treatment of cancer, the resistance to radiotherapy is

one of the thorny problems. Clinically relevant anti-radiation

(CRR) cells have strong anti-radiation ability, and also have

resistance to anticancer drugs and hydrogen peroxide. High

expression of miR-7-5p was found in CRR cells, and knockout

of miR-7-5p could lead to radiosensitivity. ROS, mitochondrial

membrane potential and intracellular Fe2+ concentration of CRR

cells with miR-7-5p knockout were significantly increased, while

ferritin expression was down regulated and ALOX12 expression

was up regulated. This means that miR-7-5p regulates the

sensitivity of cells to radiation through the ferroptosis

pathway, and ALOX12 is the downstream target of miR-7-5p

(Tomita et al., 2021).

Significant changes in intracellular lipid metabolism were

found in glioblastoma (GBM), in which the expression of

ALOXE3 was significantly down regulated. ALOXE3 knockout

can promote the growth of GBM cells and make GBM cells

resistant to P53-SLC7A11 dependent ferroptosis. In mechanism,

miR-18a can directly bind to ALOXE3 and inhibit its expression

and function. In addition, ALOXE3 silencing can promote

GMB cells to secrete 12-hydroxyeicosapentaenoic acid (12-

HETE), and 12-HETE activates Gs protein coupled receptor

(GsPCR) -PI3K-Akt signaling pathway through autocrine

mode, promoting the migration of GBM cells. Therefore,

miR-18a/ALOXE3 axis regulates the ferroptosis and metastasis

of GBM cells (Yang X. et al., 2021).

Sorafenib is a multi-target inhibitor in the treatment of

tumors and can be used as a first-line drug in the treatment

of advanced hepatocellular carcinoma (HCC). However, the

emergence of drug resistance makes the treatment effect poor.

The study found that the expression of miR-23a-3p was

upregulated in sorafenib insensitive HCC patients compared

with sorafenib sensitive HCC patients. Lu et al. constructed

HCC tumor bearing mice, and the tumors in the control

group continued to grow. However, in mice treated with

sorafenib orally for a long time, the tumor volume decreased

briefly and then grew again rapidly, which means the emergence

of drug resistance. HCC cells were isolated from drug-resistant

mice and the IC50 value of the cells to sorafenib was significantly

increased. More notably, the expression of miR-23a-3p in

sorafenib resistant cells was more than 10 times higher than

that in parental cells. This means that the upregulation of miR-

23a-3p may be the reason why HCC cells acquire sorafenib

resistance. In-depth studies found that the upregulation of miR-

23a-3p was related to the activation of the upstream gene ETS1.

More importantly, the reason why miR-23a-3p makes HCC cells

sorafenib resistant is that it down-regulates ACSL4 expression,

increases GPX4 expression, reduces Fe2+ and lipid ROS content,

and puts cells in a high antioxidant state. This attenuates the

effect of sorafenib on induction of ferroptosis in HCC.

Intervention of the expression of miR-23a-3p may be one of

the good ways to sensitize HCC patients to sorafenib again (Lu Y.

et al., 2022).

Ma et al. (2021) found that in the detection of 38 pairs of

ovarian cancer and its adjacent tissues, the expression of

ACSL4 was up-regulated in ovarian cancer and correlated

with poor prognosis. But the upregulation of ACSL4 increased

the effect of erastin and RSL3 induced ferroptosis in ovarian

cancer cells. miR-424-5p inhibitor can promote the ferroptosis of

ovarian cancer cells induced by erastin and RSL3, which is related
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to directly targeting ACSL4 and increasing its expression. This

means that although inhibiting miR-424-5p may promote the

progression of ovarian cancer, it may also become a method to

sensitize ferroptosis in ovarian cancer.

Ou et al. (2022) found that the expression of circular RNA

circLMO1 was significantly down-regulated in cervical cancer.

Overexpression of circLMO1 can inhibit the proliferation of

cervical cancer cells, which can be blocked by ferroptosis

inhibitor and apoptosis inhibitor, but not necrosis inhibitor

and pyroptosis inhibitor. This indicates that circLMO1 can

cause cell death through ferroptosis and apoptosis. In cervical

cancer transplanted mice, circLMO1 overexpression significantly

suppressed tumor volume. In subsequent studies, the mechanism

that circLMO1 can induce ferroptosis in cervical cancer in a miR-

4291/ACSL4 dependent manner was determined. Although this

may only be one of the pathways, it also provides a potential

target for clinical treatment.

Bao et al. (2021) found that miR-670-3p was significantly up-

regulated in glioblastoma, but down-regulated under the action

of erastin or RSL3. MiR-670-3p inhibitor was able to target

ACSL4 to inhibit the growth of glioblastoma and promote

ferroptosis of glioblastoma. Silencing ACSL4 almost

completely blocked these effects. This suggests that ACSL4 is

required for miR-670-3p to regulate ferroptosis and cell growth

in glioblastoma. This may be a good target for clinical treatment

of glioblastoma, which needs further research.

MicroRNA targeting FSP1

In the process of ferroptosis, ACSL4 is considered to be an

important promoter gene in the regulation of ferroptosis, and the

expression level of ACSL4 plays a decisive role in the sensitivity of

ferroptosis (Doll et al., 2017). However, in some tumor cells with

high expression of ACSL4, even the absence of GPX4 could not

cause cell ferroptosis, which indicates that there is an antioxidant

system independent of GSH/GPX4. Mitochondrial apoptosis

inducing factor 2 (AIFM2) was found to inhibit the

occurrence of ferroptosis and was not affected by GSH

content and GPX4 activity. In order to characterize the role of

AIFM2 in ferroptosis, it was renamed as ferroptosis suppressor

protein 1 (FSP1) (Doll et al., 2019). FSP1 functions as NAD (P)

H-dependent CoQ oxidoreductase in vitro (Marshall et al., 2005).

The N-terminal of FSP1 can undergo myristoylation, which can

mediate the aggregation of FSP1 to the plasma membrane and

play the function of oxidoreductase on the plasma membrane.

FSP1 catalyzes the transformation of oxidized CoQ10

(ubiquinone) to reduced CoQ10 (ubiquinol). Reduced

CoQ10 acts as an antioxidant to capture lipid free radicals

and block the further expansion of lipid peroxidation of the

plasma membrane (Li J. et al., 2020; Tang and Kroemer, 2020).

CoQ10 is the main effector in FSP1 pathway and can be

synthesized by mevalonate (MVA) pathway. In MVA

pathway, acetyl CoA molecule generates 3-hydroxy-3-

methylglutaric acid monoacyl CoA (HMG CoA) in two steps

under the action of enzyme, and then reduces to MVA under the

action of HMG CoA reductase (HMGCR). MVA can produce

IPP through a series of enzymatic reactions. IPP can be used as

the basic unit for the synthesis of downstream products. IPP

generates farnesyl pyrophosphate (FPP) and geranylgeranyl

pyrophosphate (GGPP) through various enzymatic steps, and

is finally catalyzed to CoQ10 (Miziorko, 2011; Mullen et al., 2016;

Yan et al., 2021). The antioxidant system FSP1/CoQ10/NAD(P)

H plays a role independently of GSH/GPX4 system, and they play

a synergistic role in the process of resisting lipid peroxidation and

ferroptosis (Bersuker et al., 2019).

It was found that the expression level of exosome miR-4443

in cisplatin resistant A549 NSCLC cells (A549-R) was higher

than that in normal cells, and its expression level was 15 times

higher than that in cisplatin sensitive A549 NSCLC cells (A549-

S) (Song et al., 2021). Methyltransferase-like 3 (METTL3), a

methyltransferase responsible for the methylation of

N6 methyladenosine (m6A), has been found to be involved in

the sensitivity of tumor cells to cisplatin and the proliferation and

metastasis of NSCLC cells (Du et al., 2017; Jin et al., 2019; Li et al.,

2021). Further studies showed that miR-4443 could directly

target METTL3 and reduce its protein expression level,

thereby reducing the content of m6A in cells. M6A sites were

found at 2270, 2413, 4241, 4245 and 16006 in FSP1 mRNA,

indicating that the expression of FSP1 may be regulated by m6A

modification. In fact, in the cells transfected with miR-4443, the

decrease of m6A enrichment of FSP1 and the up regulation of

FSP1 mRNA expression were observed. In general, miR-4443 can

reduce the expression of METTL3 at the protein level, thereby

increasing the expression of FSP1, and regulate the sensitivity of

NSCLC cells to cisplatin by regulating the ferroptosis pathway. In

a mouse model of NSCLC xenografts, overexpression of miR-

4443 rendered cisplatin treatment almost ineffective. Therefore,

miR-4443may be a target that sensitizes NSCLC cells to cisplatin.

(Song et al., 2021).

In addition, it was found that circGFRA1 was significantly

up-regulated in HER2 positive breast cancer, and silencing

circGFRA1 could inhibit the proliferation, invasion and

metastasis of HER2 positive breast cancer cells. In mechanism,

circGFRA1 attenuated the inhibitory effect of miR-1228 on

AIFM2 (FSP1) by adsorbing miR-1228. CircGFRA1/miR-

1228/FSP1 axis participates in the development of

HER2 positive breast cancer through ferroptosis pathway, and

is a potential target for clinical treatment of HER2 positive breast

cancer (Bazhabayi et al., 2021).

MicroRNA targeting NRF2

Nuclear factor E2 related factor 2 (NRF2) is a transcription

factor in cells and plays a very important role in the process of
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oxidative stress (Ma, 2013). Many enzymes or proteins involved

in iron metabolism and lipid peroxidation are downstream target

genes of NRF2 (Sun et al., 2016; Kerins and Ooi, 2018). It is

known that ferritin (FTL/FTH1), ferroportin (FPN), heme

oxygenase 1 (HMOX-1, HO-1), glutamic acid cysteine ligase

(GCLC/GCLM), glutathione synthetase (GSS), NAD (P)

H-dependent quinone oxidoreductase 1 (NQO1),

SLC7A11 and GPX4 are all regulated by NRF2 (Anandhan

et al., 2020; Wang et al., 2020; Hu et al., 2021). Under normal

conditions, Kelch like ECH associated protein 1 (KEAP1)

combines with cullin3 (CUL3) to form a ubiquitin E3 ligase

complex, which ubiquitinates NRF2 and is rapidly degraded by

proteasome. When under oxidative stress, the activity of

ubiquitin E3 ligase complex decreased significantly, which

hindered the ubiquitination and degradation of NRF2. The

accumulated NRF2 can be transferred to the nucleus to form

heterodimer with small muscle aponeurotic fibrosarcoma

(sMAF) protein, and activate the transcription of genes

containing antioxidant response elements (ARE). The

expression of many genes is closely related to the inhibition of

ferroptosis (Yamamoto et al., 2018).

MiR-6077 was found to be associated with cisplatin/pemetrexed

(CDDP/PEM) resistance in patients with lung adenocarcinoma

(LUAD). On the one hand, miR-6077 can inhibit (cyclin

dependent kinase inhibitor 1A) CDKN1A, leading to the increase

of (cyclin dependent kinase 1) CDK1, overcoming the block of G2/

M point, thus enhancing the resistance of LUAD cells to CDDP/

PEM; On the other hand, miR-6077 can inhibit KEAP1, activate

NRF2/NQO1 signaling pathway, inhibit ferroptosis process, and

enhance the resistance of LUAD cells to CDDP/PEM. In a mouse

model of LUAD xenografts, overexpression of miR-6077 increased

tumor size and inhibited the effect of CDDP/PEM therapy. This

suggests that miR-6077 is a potential target for treating LUAD and

increasing CDDP/PEM sensitivity. (Bi et al., 2022). In

nasopharyngeal carcinoma (NPC), the significant down-

regulation of Raf kinase inhibitor protein (RKIP) leads to the

down-regulation of miR-450b-5p, thus activating NRF2/

NQO1 signaling pathway and inhibiting ferroptosis process,

which promotes NPC resistance to radiation (Huang et al.,

2020). NQO1 is a widely distributed cytosolic flavoprotein, which

can catalyze the double electron reduction of quinone compounds to

hydroquinone in a NAD (P) H-dependent manner, avoiding the

production of toxic semiquinone free radicals and reactive oxygen

species (ROS), and preventing the direct reaction between quinone

and intracellular sulfhydryl (Bianchet et al., 2008; Chhetri et al., 2018;

Zhang Y. et al., 2018; Ross and Siegel, 2021).

MiR-130b-3p can inhibit the process of ferroptosis in

melanoma treated with erastin or RSL3, and can reduce the

content of lipid peroxide and Fe2+ in cells. In mechanism, miR-

130b-3p inhibits ferroptosis by inhibiting the expression of

Dikkopf associated protein 1 (DKK1) and activating NRF2/

HO-1 signaling pathway (Liao et al., 2021).

It was found that the expression of lncRNA MT1DP could

make A549 and H1299 NSCLC cells induced by erastin more

sensitive to ferroptosis by down regulating NRF2. For tumor cells

treated with erastin, lncRNA MT1DP can up regulate the

contents of MDA and ROS, increase the concentration of Fe2+

and reduce the level of GSH. Through the study of its

mechanism, lncRNA MT1DP inhibits the expression of

NRF2 by stabilizing miR-365a-3p. Therefore, the lncRNA

MT1DP/miR-365a-3p/NRF2 axis can be used as a new

strategy to sensitize the ferroptosis of NSCLC cells induced by

erastin (Gai et al., 2020).

MicroRNA targeting glutamine
metabolism

Glutamine can be introduced into cells by glutamine

transporter (SLC1A5), and a part of glutamine is decomposed

into glutamic acid by cytoplasmic GLS1, participating in the

exchange of extracellular cystine and intracellular glutamic acid

in system xc−. The other part enters mitochondria and is

decomposed into glutamic acid under the catalysis of

mitochondrial GLS2, and then is catalyzed by glutamic-

oxaloacetic transaminase 1 (GOT1) to produce α-
Ketoglutarate (α KG). α KG can participate in a series of

reactions as the raw material of mitochondrial tricarboxylic

acid cycle (TCA cycle) to promote the production of ROS

(Hassannia et al., 2019). Inhibition of mitochondrial TCA

cycle or electron transfer chain (ETC) can reduce

mitochondrial membrane potential hyperpolarization and lipid

peroxide accumulation, thus inhibiting the process of ferroptosis

(Gao et al., 2019).

In melanoma cells, miR-137 inhibited SLC1A5, resulting in

decreased glutamine uptake and MDA accumulation. Inhibition

of miR-137 can increase the sensitivity of melanoma cells to

ferroptosis induced by erastin or RSL3. This indicates that the

miR-137/SLC1A5 axis can regulate the glutamine metabolic

pathway, inhibit the participation of glutamine metabolites in

the TCA cycle, thus reducing the production of ROS and the

accumulation of lipid peroxides, and finally inhibit the

occurrence of ferroptosis. In nude mice with melanoma

xenografts, knockdown of miR-137 enhanced the effect of

erastin and further reduced tumor volume. This further

demonstrates the role of miR-137 in melanoma cells. (Luo

et al., 2018).

In addition, overexpression of miR-9 in melanoma cells can

directly bind to 3′-UTR of GOT1 and inhibit its activity, thus

weakening ferroptosis induced by erastin or RSL3, while

inhibition of miR-9 expression has the opposite result.

Inhibition of lipid peroxidation and ferroptosis caused by

miR-9 can be reversed by inhibiting glutamine transport and

decomposition (Zhang et al., 2018b).
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Other targets

Activating transcription factor 4 (ATF4) is an important gene

in the regulation of mitochondrial oxidative stress, which can

activate the expression of SLC7A11 and other genes and play a

role in anti-oxidative stress (Lewerenz et al., 2012). In the

HepG2 and Hep3B hepatoma cells treated with erastin, the

overexpression of miR-214-3p increased the level of MDA

and ROS in the cells, increased the concentration of Fe2+,

decreased the level of GSH, and increased the sensitivity of

the cells to ferroptosis induced by erastin. This process was

proved to be related to miR-214-3p directly targeting

AFT4 and inhibiting its activity. When miR-214-

overexpressing Hep3B hepatoma cells were subcutaneously

injected into nude mice, it was found that the expression of

miR-214 in tumor tissue was increased, while the expression of

ATF4 was decreased. And miR-214 enhanced the effect of

erastin, which further reduced tumor volume (Bai et al.,

2020). In addition, it was found that lncRNA HULC plays a

role as the ceRNA of miR-3200-5p in hepatocellular carcinoma,

and miR-3200-5p can regulate the ferroptosis process by

targeting ATF4 and inhibit the proliferation and metastasis of

hepatoma cells (Guan et al., 2022).

Signal transducer and activator of transcription 3 (STAT3) is

an important regulatory molecule in cells, which can regulate the

expression of antioxidant stress genes such as SLC7A11 (Qiang

et al., 2020), NRF2-GPX4 (Liu and Wang, 2019). In the study of

the regulation of breast cancer cell proliferation, metastasis and

ferroptosis by circular RNA RHOT1 (cirRHOT1), it was found

that cirRHOT1 could adsorb miR-106a-5p and reduce its

expression, weaken the inhibition of miR-106a-5p on STAT3,

and finally enhance the resistance of MDA-MB-231 and T47D

breast cancer cells to ferroptosis. In MDA-MB-231 cell

xenografted nude mice, knockdown of cirRHOT1 can increase

the expression of miR-106a-5p in tumor tissue, while reduce the

expression of STAT3, and the tumor growth is significantly

inhibited (Zhang et al., 2021a). In addition, propofol was

found to inhibit the proliferation, invasion and metastasis of

SGC7901 and BGC823 gastric cancer cells and promote the

progress of ferroptosis. In terms of mechanism, propofol

could up regulate miR-125b-5p and inhibit the expression of

STAT3, promote the process of ferroptosis and inhibit the

development of gastric cancer cells (Liu Y.P. et al., 2021).

GTP cyclohydrolase 1 (GCH1) was found to hinder the

progression of ferroptosis. GCH1 can synthesize

tetrahydrobiopterin/dihydrobiopterin (BH4/BH2) in cells and

cause lipid remodeling. GCH1/BH4 axis is an antioxidant

system independent of GSH/GPX4 axis, which can regulate

the synthesis of BH4, the abundance of CoQ10 and prevent

the peroxidation of phospholipids with two polyunsaturated fatty

acyl tails, thus enhancing the ability of cells to resist ferroptosis

(Kraft et al., 2020). In the exploration of bioinformatics, it was

found that TMEM161B-AS1/hsa-miR-27a-3p/GCH1 regulatory

network was involved in the development of esophageal cancer

(Lu M. et al., 2022). As an independent antioxidant system in

ferroptosis, GCH1/BH4 axis may have great potential for the

regulation and progress of ferroptosis, which requires further

exploration by researchers.

OTU domain-containing ubiquitin aldehyde-binding

protein 1 (OTUB1) was found to be overexpressed in human

tumors. OTUB1 can be directly combined with SLC7A11 to

make it stable. CD44 also plays an important role in this process,

which can promote the interaction between OTUB1 and

SLC7A11 and enhance the stability of SLC7A11. Knockout of

OTUB1 will reduce the expression of SLC7A11, and knockout of

CD44 will weaken the interaction between OTUB1 and

SLC7A11, both of which regulate the progress of ferroptosis

by affecting the stability of SLC7A11 (Liu et al., 2019).

Ferroptosis regulation is a complex system, and many

regulatory factors play a crucial role in the progress of

ferroptosis. Ser90/93/96 of beclin1(BECN1) can phosphorylate

under the action of AMP activated protein kinase (AMPK), and

then form a complex with SLC7A11 to inhibit system xc− activity

and promote the progress of ferroptosis (Song et al., 2018).

BRCA1 related protein 1 (BAP1) can encode nuclear

deubiquitinating enzyme, which reduce histone 2A

ubiquitination (H2AUB) on chromatin. BAP1 acts on

SLC7A11 to reduce the H2AUB ratio of its promoter, and

inhibits the expression of SLC7A11 through deubiquitination

(Zhang Y. et al., 2018). Ataxia telangiectasia-mutated gene

(ATM) silencing can enhance the nuclear transfer of metal

regulated transcription factor 1 (MTF1), promote the

expression of ferritin (FTH1, FTL) and ferroportin (FPN), and

inhibit the progress of ferroptosis (Chen et al., 2020). In addition,

P53 and Yes associated protein 1 (YAP1) (Ye et al., 2021) are

closely related to the progress of ferroptosis. These targets are

potential targets of miRNA, which have very important

implications for us to explore the mechanism of miRNA

acting on tumors and find targets for tumor treatment.

Application and effect in treatment

With the development of research, more and more miRNAs

have been found to regulate tumor development through

ferroptosis pathway. This provides many potential targets for

the treatment of tumors and the improvement of drug resistance.

It was found that lidocaine can promote ferroptosis of

ovarian cancer and breast cancer cells and inhibit their

proliferation in vitro by targeting miR-382-5p/SLC7A11 axis.

In vivo experiments of animals, the expression of miR-382-5p

was up-regulated and the expression of SLC7A11 was down-

regulated in the ovarian cancer transplanted tumor bearing mice

treated with lidocaine, and the tumor volume was significantly

smaller than that of the control group nude mice (Sun D. et al.,

2021). In conclusion, lidocaine has been found to have the
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potential to treat breast cancer and ovarian cancer by inducing

ferroptosis of tumor cells. However, many problems need to be

considered before it is applied in clinical practice. Lidocaine has

many adverse reactions, which may cause central nervous system

reactions, such as paresthesia, muscle tremor, convulsion,

respiratory depression, etc., and may also cause cardiovascular

reactions, such as hypotension, bradycardia, atrioventricular

block, etc. Therefore, the efficacy and adverse reactions of

lidocaine need to be further evaluated in the clinic.

Propofol is a commonly used anesthetic in clinic. It has been

found that it has a good inhibitory effect on the proliferation,

invasion and migration of gastric cancer cells, and can increase

the effect of erastin. Propofol can promote ferroptosis of gastric

cancer cells by targeting miR-125b-5p/STAT3 axis, and the

tumor volume of gastric cancer transplanted tumor bearing

mice treated with propofol has been well controlled (Liu Y.P.

et al., 2021). Ketamine is an intravenous anesthetic with sedative,

analgesic and anesthetic effects, which is used for various minor

operations or diagnostic operations. Recent studies have found

that ketamine can promote the ferroptosis of liver cancer cells by

downregulating lncRNA PVT1. As a ceRNA, downregulation of

lncRNA PVT1 reduced the adsorption of miR-214-3p, while

increased the binding of miR-214-3p to GPX4 (He et al., 2021).

Although both drugs were found to induce ferroptosis in specific

tumors, they are unlikely to be approved for clinical use in

tumors due to concerns over abuse.

Metformin is a common hypoglycemic drug. It was found to

inhibit the proliferation of breast cancer cells by targeting miR-

324-3p/GPX4 axis. In breast cancer transplanted tumor bearing

mice treated with metformin, the expression of miR-324-3p and

GPX4 were up-regulated and down-regulated respectively, and

the tumor volume was significantly smaller than that of the

control mice (Hou et al., 2021). Although metformin has the

effect of anti-breast cancer, the hypoglycemic effect needs to be

noticed. It can reduce the blood sugar content, cause

hypoglycemia in patients, and cause other diseases. This

problem may be solved by combining with other drugs and

supplementing glucose. In addition, for breast cancer patients

with diabetes, this may be a good adjuvant.

In addition to some chemical synthetic drugs, some natural

products have also been found to be able to induce ferroptosis in

tumor cells by targeting ferroptosis related miRNAs. Icariside II

(ICS II) is an active flavonoid with anti-tumor properties. It can

promote the ferroptosis of RCC cells by targeting miR-324-3p/

GPX4 axis, which is independent of p53. ICs II can inhibit the

proliferation, invasion and migration of RCC cells, but has no

obvious effect on the viability of normal cells (Yu et al., 2022).

Curcumenol is an effective component of wenyujin, which has

anti-tumor effect. Ferroptosis is the main form of curcumenol

induced lung cancer cells death, which has been proved in vitro

and in vivo experiments. The mechanism is that curcumenol can

target the lncRNA H19/miR-19b-3p/FTH1 pathway (Zhang R.

et al., 2022).

Although both chemical synthetic drugs and natural

products have the ability to target miRNAs to promote

ferroptosis in tumor cells, they have some common

shortcomings. First, the mechanism by which drugs regulate

miRNAs or related molecules is unclear. Second, there are many

targets of drug regulation, resulting in poor specificity and many

side effects. In order to accurately target the target molecules, the

research of genetic drugs will become a hotspot in the future.

In a previous report, programmed death receptor 1 (PD-1)

antibody (anti-PD-1) was able to reactivate tumor infiltrating

CD8 + T cells in the TME, which released interferon- γ (IFN- γ)
that can promote the ferroptosis of tumor cells. Anti-PD-

1 immunotherapy for melanoma transplanted mice can inhibit

tumor growth and increase the content of lipid ROS and

ferroptosis marker prostaglandin-endoperoxide synthase 2

(PTGS2). This result was blocked by ferroptosis inhibitor

liproxstatin-1, which indicates that ferroptosis is one of the

important mechanisms of anti-PD-1 immunotherapy for

melanoma. In immunotherapy, IFN- γ is the main effector

that triggers ferroptosis in tumor cells. Guo et al. (2022)

found that one of the important mechanisms for ferroptosis

induced by IFN- γ in melanoma is the activation of the ATF3/

miR-21-3p/TXNRD1 axis, and blocking this axis attenuates

ferroptosis and therapeutic effect of IFN- γ, which indicates

that the overexpression of miR-21-3p may play a synergistic role

with anti-PD-1 immunotherapy. In order to verify whether miR-

21-3p can enhance the effect of anti-PD-1 in vivo, the researchers

constructed miR-21-3p-loaded gold nanoparticles (miR-21-3p-

AuNp), injected them into melanoma transplanted mice, and

injected anti-PD-1 for immunotherapy. It was found that

compared with mice treated with miR-21-3p-AuNp or anti-

PD-1 alone, the tumor growth of mice treated with the

combination was further delayed, and the contents of miR-21-

3p and TXNRD1 in tumor tissue were further up-regulated and

down-regulated respectively, and the content of ferroptosis

marker PTGS2 was higher. This result can be blocked by the

ferroptosis inhibitor liproxstatin-1. In addition, gold

nanoparticles (AuNp) alone had no therapeutic effect on

tumors, and the therapeutic effect of miR-21-3p-AuNp was

attributed to miR-21-3p. This indicates that miR-21-3p can

enhance ferroptosis induced by anti-PD-1 immunotherapy. In

addition, the combined treatment of miR-21-3p-AuNp and anti-

PD-1 can promote the expression and secretion of pro-

inflammatory cytokines and chemokines, thereby enhancing

anti-tumor immunity. Excitingly, the miR-21-3p-AuNp

delivery system has low immunogenicity. Moreover, the liver,

spleen, kidney, heart and lung of the mice did not show obvious

pathological changes in the results of HE staining. This shows

that miR-21-3p-AuNp treatment has relatively high safety and

has the potential to enter clinical treatment.

Luo et al. determined that miR-101-3p/TBLR1 axis can

promote ferroptosis and apoptosis of lung cancer cells and

significantly inhibit cell proliferation in vitro experiments.
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They combined miR-101-3p with nanocarriers to make nano

drugs, and proved that they could be well clustered in the tumor

tissues of lung cancer bearing mice through fluorescence labeling

experiments. In the model mice injected with nano drugs

through tail vein, the expression of miR-101-3p and TBLR1 in

tumor tissue increased and decreased respectively, and some

molecules were significantly changed, such as the content of ROS

and lipid ROS increased, the content of GSH decreased, the

ferroptosis markers GPX4 and PTGS2 decreased and increased

respectively, the apoptosis markers Bcl-2 and cleaved

Caspase3 decreased and increased respectively, and the tumor

tissue volume was significantly smaller than that of the control

group (Luo Y. et al., 2021). This indicates that nano drugs can

play a good anti-tumor effect by promoting ferroptosis and

apoptosis of tumor tissues in mice.

In conclusion, compared with traditional drugs, genetic drugs

have higher specificity. However, it should also be noted that

miRNAs are pleiotropic and can target many downstream genes

to produce different biological effects, such as the regulation of cell

cycle, apoptosis, pyroptosis, ferroptosis, and tumor immunity.

Therefore, it is very important to deeply study the specific

mechanism of miRNA, which provides a theoretical basis for

gene therapy. In addition, it is important to accurately transfer

specific miRNAs to specific tumor sites. Although in the study of

Guo et al., miR-21-3p hardly caused damage to other organs and

had no obvious immunogenicity, it was only tested in short-term

experiments and could not predict the adverse effects of long-term

use. In addition, it is more unclear whether othermiRNAswill cause

adverse reactions. As far as ferroptosis related miRNAs are

concerned, promoting ferroptosis of tumor cells can inhibit

tumors, while promoting ferroptosis of central nervous cells and

other normal organs may lead to neurodegenerative diseases, organ

damage and organ fibrosis. Therefore, how to transfer miRNAs

specifically into specific tumors requires further exploration by

researchers, and multidisciplinary cross fusion will be beneficial

to this process.

Conclusions and prospects

Malignant tumor is a disease that seriously endangers human

life and health. At present, there are surgical resection,

chemotherapy, radiotherapy and immunotherapy. However,

the mechanism of tumor occurrence and development is very

complex. Tumor has strong resistance to some traditional

treatment methods and maintains a high recurrence rate.

Therefore, the mortality of tumor patients is still very high.

Individualized treatment will be the basic direction of tumor

treatment in the future. Only by understanding the molecular

mechanism of tumor development in patients and the differential

expression information of related genes, can we better improve

the treatment effect and improve the survival rate of patients.

MicroRNA (miRNA) is a kind of small non coding RNA, which

can directly combine with the 3′- untranslated region (3’ - UTR)

of the target mRNA to inhibit the translation of the target mRNA,

thus regulating a series of cellular biological processes. MiRNA

has been found to play a key role in the development of tumors.

The differential expression of miRNA is closely related to the

degree of malignancy, drug resistance and prognosis of tumors.

Regulating the expression of miRNAs can inhibit or kill tumor

cells through a variety of mechanisms, including inhibiting cell

cycle (Zhang Z. et al., 2018), inhibiting stem cell frequency (Ni

et al., 2021), inhibiting angiogenesis (Lu et al., 2017), promoting

tumor immunity (Wang C. et al., 2021), promoting apoptosis (Xu

W. et al., 2021), pyroptosis (Jiang et al., 2020), ferroptosis (Luo

et al., 2018), etc. Ferroptosis is a form of cell death discovered in

recent years. It is a kind of programmed death caused by iron

dependent lipid peroxidation, which is different from apoptosis,

necrosis and other cell death modes. The discovery of new cell

death modes has great significance for the treatment of tumor

diseases. More and more studies have found that miRNA

regulates tumor progression by regulating ferroptosis signaling

pathway. Therefore, this paper expounds the mechanism of

ferroptosis, and summarizes the research progress of miRNA

targeting ferroptosis signaling pathway in tumors.

The regulatory network of ferroptosis is mainly divided into

two categories: oxidation system and antioxidant system. The

oxidation system includes iron metabolism, lipid metabolism,

glutamate metabolism, etc. in ironmetabolism, the related targets

that regulate the concentration of free iron in cells affect the

progress of ferroptosis. The increased expression of TF, TFRC,

STEAP3, DMT1, NCOA4 and IREB2 contribute to the increase

of intracellular free iron concentration, which can promote the

progress of ferroptosis. While the increased expression of FPN,

FTH1, FTL and prominin 2 attenuate the effect of ferroptosis. In

lipid metabolism, the content of PUFA in the plasma membrane

determines the sensitivity of cell ferroptosis, because PUFA is the

main substrate of lipid peroxidation. The enhanced expression of

ACSL4 and LPCAT3, which are involved in the induction of

PUFA transfer to the plasma membrane, can promote the

progress of ferroptosis. The increased expression of ALOXs

can directly promote lipid peroxidation and ALOXs are the

direct regulator of ferroptosis. Glutamate metabolic pathway

can produce α KG, α Kg is the raw material of mitochondrial

TCA cycle, which can promote the mitochondrial TCA cycle to

produce ROS, which contributes to the promotion of ferroptosis.

Therefore, increasing the expression of SLC1A5, GLS2 and

GOT1 in glutamate pathway can promote the generation of

ROS and the progress of ferroptosis. The antioxidant system

includes system xc−/GSH/GPX4 axis, FSP1/CoQ10/NAD (P) H

axis, GCH1/BH4 axis, etc. If the activities of SLC7A11, GPX4 and

GSH synthesis pathway related enzymes are inhibited, the

antioxidant capacity of system xc−/GSH/GPX4 axis will be

destroyed, and the lipid peroxide in cells cannot be removed

in time, resulting in ferroptosis. If FSP1 is inhibited, the reduced

CoQ10 will be reduced, and the scavenging capacity of
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intracellular lipid peroxide will be decreased, which will promote

the progress of ferroptosis. GCH1 can catalyze the hydrolysis of

GTP to BH4, increase the abundance of CoQ10 and prevent the

peroxidation of phospholipids with two polyunsaturated fatty

acyl tails. If GCH1 is inhibited, the ability of cells to resist lipid

peroxidation will be weakened and the development of

ferroptosis will be accelerated. In addition, NRF2, ATF4,

STAT3, BECN1, BAP1, ATM, P53, YAP1, OTUB1, CD44 and

other genes also participate in the progress of ferroptosis by

regulating the related targets of oxidation system and antioxidant

system (Figure 1). It is worth noting that some factors involved in

the regulation of ferroptosis have two sides. For example, in

different studies, the effect of HO-1 on ferroptosis shows

opposite results (Ma et al., 2020; Chen Y.et al., 2021; Liu

X.J. et al., 2021; Yang J. et al., 2021). HO-1 is a stress-induced

enzyme that can catalyze the degradation of heme to produce

biliverdin, carbon monoxide (CO) and Fe2+ (Pulkkinen et al.,

2011). Biliverdin and CO have strong antioxidant capacity, which

can reduce the content of ROS and inhibit lipid peroxidation. The

production of Fe2+ can promote the production of ferritin and

ferritin can bind free Fe2+. But the excessive increase of Fe2+

concentration will lead to a large increase in ROS and lipid

peroxidation, significantly promoting the progress of ferroptosis.

Therefore, the mechanism of HO-1 is complex (Wang et al.,

2007; Sugimoto et al., 2012; Chiang et al., 2018). The effect of

HO-1 on the progress of ferroptosis may be related to its specific

expression level in cells. At the medium level, HO-1 shows

antioxidant effect, while at the high level, it can significantly

FIGURE 1
The regulatory mechanism of ferroptosis. The regulatory network of ferroptosis is mainly divided into two categories: Oxidation system and
antioxidant system. The oxidation system includes iron metabolism, lipid metabolism, glutamate metabolism, etc. The antioxidant system includes
system xc−/GSH/GPX4 axis, FSP1/CoQ10/NAD (P) H axis, GCH1/BH4 axis, etc. Iron metabolism: Transferrin (TF); Transferrin receptor 1 (TFRC); Six
transmembrane epithelial antigen of protein 3 (STEAP3); Divalent metal ion transporter 1 (DMT1); Zinc transporter 8/14 (ZIP8/14); Labile iron
pool (LIP); ferroportin (FPN); Ferritin heavy chain 1 (FTH1); Ferritin light chain (FTL); Solute carrier family member 11A2 (SLC11A2); Iron response
element binding protein 2 (IREB2); Reactive oxygen species (ROS); Poly (RC) binding protein 2 (PCBP2); Nuclear receptor coactivator 4 (NCOA4);
Multivesicular bodies (MVB). Lipid metabolism: Polyunsaturated fatty acid (PUFA); Long chain acyl CoA synthetase 4 (ACSL4);
Lysophosphatidylcholine acyltransferase 3 (LPCAT3); Phosphatidylethanolamine (PE); Arachidonic acid lipid peroxidase (ALOX). Glutamate
metabolism: Glutamine transporter (SLC1A5); Glutamic acid cysteine ligase 1 (GCL1); Glutamic acid cysteine ligase 2 (GCL2); Glutamic-oxaloacetic
transaminase 1 (GOT1); α- Ketoglutarate (α KG). Tricarboxylic acid cycle (TCA cycle). System xc-/GSH/GPX4 axis: Cystine/glutamate antiporter
(system xc−); Solute carrier family member 7A11 (SLC7A11); Solute carrier family member 3A2 (SLC3A2); Glutathione (GSH); Thioredoxin reductase 1
(TXNRD1); Glutamic acid cysteine ligase (GCL); Glutathione synthetase (GSS); Glutathione peroxidase 4 (GPX4); oxidized glutathione (GSSG);
Selenium (Se). FSP1/CoQ10/NAD (P) H axis: ferroptosis suppressor protein 1 (FSP1); Oxidized coenzyme Q10 (CoQ10); Reduced coenzyme Q10
(CoQ10H2). 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA); 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR); Mevalonate
(MVA); Isopentenyl pyrophosphate (IPP); Farnesyl pyrophosphate (FPP); Geranylgeranyl pyrophosphate (GGPP). GCH1/BH4 axis: Guanosine
triphosphate (GTP); GTP cyclohydrolase 1 (GCH1); Tetrahydrobiopterin (BH4); Other regulatory factors: Nuclear factor E2 related factor 2 (NRF2);
Heme oxygenase 1 (HO-1); NAD (P) H-dependent quinone oxidoreductase 1 (NQO1); Kelch like ECH associated protein 1 (KEAP1); Cullin3 (CUL3);
Activating transcription factor 4 (ATF4); Activating transcription factor 4 (ATF4); OTU domain-containing ubiquitin aldehyde-binding protein 1
(OTUB1); Beclin1(BECN1); AMP activated protein kinase (AMPK); BRCA1 related protein 1 (BAP1); Histone 2A ubiquitination (H2AUB); Yes associated
protein 1 (YAP1); Signal transducer and activator of transcription 3 (STAT3).
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TABLE 1 The basic information of miRNA in ferroptosis signaling pathway.

miRNA Research object Target Progress on ferroptosis References

miR-545 Colorectal cancer TF Inhibition Zheng et al. (2021)

miR-19a Colorectal cancer IREB2 Inhibition Fan et al. (2022)

miR-4735-3p Clear cell renal cell carcinoma FPN Promotion Zhu et al. (2022)

miR-129-5p Bladder cancer PROM2 Promotion Luo W. et al. (2021)

miR-19b-3p Lung cancer FTH1 Inhibition Zhang R. et al. (2022)

miR-375 Gastric cancer SLC7A11 Promotion Ni et al. (2021)

miR-5096 Breast cancer SLC7A11 Promotion Yadav et al. (2021)

miR-382-5p Ovarian and breast cancer SLC7A11 Promotion Sun D. et al. (2021)

miR-489-5p Gastric cancer SLC7A11 Promotion Mao et al. (2021)

miR-545-3p Thyroid cancer SLC7A11 Promotion Wang H.H. et al. (2021)

miR-125b-5p Oral squamous cell carcinomas SLC7A11 Promotion Yu et al. (2021)

miR-34c-3p Oral squamous cell carcinomas SLC7A11 Promotion Sun et al. (2022)

miR-375-3p Cervical cancer SLC7A11 Promotion Wu et al. (2021)

miR-409-3p Cervical cancer SLC7A11 Promotion Wu et al. (2021)

miR-515-5p Cervical cancer SLC7A11 Promotion Wu et al. (2021)

miR-1261 Hepatocellular carcinoma SLC7A11 Promotion Lyu et al. (2021)

miR-25-3p Prostate cancer SLC7A11 Promotion Jiang et al. (2022)

miR-143-3p Renal cell carcinoma SLC7A11 Promotion Li et al. (2022)

miR-15a-3p Colorectal cancer GPX4 Promotion Liu et al. (2022)

miR-539 Colorectal cancer GPX4 Promotion Yang Y. et al. (2021)

miR-324-3p Lung adenocarcinoma GPX4 Promotion Deng et al. (2021)

miR-324-3p Breast cancer GPX4 Promotion Hou et al. (2021)

miR-214-3p Liver cancer GPX4 Promotion He et al. (2021)

miR-1287-5p Osteosarcoma GPX4 Promotion Xu Z. et al. (2021)

miR-1231 Papillary thyroid cancer GPX4 Promotion Chen W.et al. (2021)

miR-15a Prostate cancer GPX4 Promotion Xu et al. (2022)

miR-541-3p Hepatocellular carcinoma GPX4 Promotion Xu et al. (2020)

miR-1287-5p Non-small cell lung cancer GPX4 Promotion Shanshan et al. (2021)

miR-522 Gastric cancer ALOX15 Inhibition Zhang et al. (2020)

miR-7-5p Radioresistant HeLa and SAS cell lines ALOX12 Inhibition Tomita et al. (2021)

miR-18a Glioblastoma ALOXE3 Inhibition Yang X. et al. (2021)

miR-23a-3p Hepatocellular carcinoma ACSL4 Inhibition Lu Y. et al. (2022)

miR-424-5p Ovarian cancer ACSL4 Inhibition Ma et al. (2021)

miR-670-3p Glioblastoma ACSL4 Inhibition Bao et al. (2021)

miR-4291 Cervical cancer ACSL4 Inhibition Ou et al. (2022)

miR-4443 Non-small cell lung carcinoma FSP1 Inhibition Song et al. (2021)

miR-1228 HER-2-positive breast cancer FSP1 Inhibition Bazhabayi et al. (2021)

miR-6077 Lung adenocarcinoma NRF2 Promotion Bi et al. (2022)

miR-450b-5p Nasopharyngeal carcinoma NRF2 Promotion Huang et al. (2020)

miR-130b-3p Melanoma NRF2 Inhibition Liao et al. (2021)

miR-365a-3p Non-small cell lung cancer NRF2 Promotion Gai et al. (2020)

miR-137 Melanoma SLC1A5 Inhibition Luo et al. (2018)

miR-9 Melanoma GOT1 Inhibition Zhang et al. (2018a)

miR-214-5p Hepatoma ATF4 Promotion Bai et al. (2020)

miR-3200-5p Hepatocellular carcinoma ATF4 Promotion Guan et al. (2022)

miR-106a-5p Breast cancer STAT3 Promotion Zhang et al. (2021a)

miR-125b-5p Gastric cancer STAT3 Promotion Liu Y.P. et al. (2021)

miR-27a-3p Esophageal cancer GCH1 Promotion Lu M. et al. (2022)

(Continued on following page)
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increase the concentration of Fe2+ and promote ferroptosis

(Chiang et al., 2018). MiRNAs targeting these ferroptosis

targets have been found in different tumor studies, which

provides a theoretical basis for the treatment of tumors by

miRNAs (Table 1).

Finally, we discuss the application of therapies targeting

ferroptosis associated miRNAs. Some chemical synthetic drugs

and natural products were found to be able to target ferroptosis

related miRNAs for tumor therapy, but this class of drugs has

some common inadequacies. First, the mechanisms by which

chemical synthetic drugs and natural products regulate miRNAs

or related molecules are unknown. Second, chemical synthetic

drugs and natural products can target many targets, resulting in

poor specificity and many side reactions. Therefore, gene drugs

with high specificity are hot spots for future research. Currently,

gene drugs for ferroptosis related miRNAs have been

preliminarily explored and the effects have been validated in

animals. For example, gold nanoparticles loaded with miR-21-3p

to treat melanoma tumor bearing mice were able to render them

more sensitive to anti-PD-1 immunotherapy by promoting

ferroptosis. Nano drugs loaded with miR-101-3p can play a

good anti-tumor effect by promoting ferroptosis and apoptosis

of tumor tissues in mice. The use of ferroptosis inhibitors can

block the ferroptosis and tumor treatment effects induced by the

above-mentioned gene drugs, which suggests that ferroptosis

plays a great role in these miRNA treatments. However, the role

of miRNA is pleiotropic, and it can participate in a series of

biological processes such as cell cycle, cell apoptosis, ferroptosis,

and tumor immunity. Therefore, ferroptosis is only one effect of

miRNA, and the anti-tumor effect of miRNA is a combination of

multiple mechanisms. For example, miR-101-3p can induce lung

cancer cell death through apoptosis and ferroptosis. As another

example, miR-6077 affects the sensitivity of LUAD cells to

CDDP/PEM by regulating cell cycle genes and ferroptosis.

Therefore, in-depth study of the mechanism of miRNA is the

theoretical basis of miRNA gene drug therapy. The in-depth study of

the mechanism of miRNA is helpful for us to master the function of a

miRNA in a specific tumor. In addition, how to specifically transfer

miRNAs into specific tumors is a key issue, because miRNAs play

different roles in different tissues andmay cause some side effects. For

example, miR-375-3p can promote ferroptosis of cervical cancer cells

by targeting SLC7A11, and can be used as a potential gene therapy

drug. However, Zhang et al. found that miR-375-3p could induce

ferroptosis in cardiomyocytes by targeting GPX4, thus promoting

fibrosis (Zhuang et al., 2022). For another example, miR-214-3p can

inhibit tumor by targeting GPX4 to induce ferroptosis in liver cancer

cells, while in another study, miR-214-3p can aggravate ferroptosis in

cisplatin induced acute kidney injury by targeting GPX4 (Zhou et al.,

2022). This suggests that ferroptosis relatedmiRNAsmay increase the

risk of organ damage and fibrosis in non-tumor tissues. Therefore,

how to transfer miRNAs specifically into specific tumors requires

further exploration by researchers, and multidisciplinary cross fusion

will be beneficial to this process.

In conclusion, ferroptosis is a complex regulatory network,

which is different from the death forms of apoptosis and necrosis.

It is a new idea for the treatment of anti-apoptotic tumor cells. In

the past, the role of miRNA in tumors was often associated with

cell cycle regulatory genes, but in recent years, it has been found

that some miRNAs can regulate the occurrence and development

of tumors through the ferroptosis pathway. This is of great

significance for understanding the role of miRNA in tumors,

finding therapeutic targets and improving drug sensitivity.
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Glossary

miRNA MicroRNA

39—UTR 3′—untranslated region

TF transferrin

TFR1/TFRC transferrin receptor 1

STEAP3 six transmembrane epithelial of antigen protein 3

DMT1/SLC11A2 divalent metal ion transporter 1

ZIP8 zinc transporter 8

ZIP14 zinc transporter 14

LIP labile iron pool

ROS reactive oxygen species

PCBP1 poly (RC) binding protein 1

PCBP2 poly (RC) binding protein 2

NCOA4 nuclear receptor coactivator 4

IREB2 iron response element binding protein 2

IRE iron response element

FTH1 ferritin heavy chain 1

FTL ferritin light chain

FPN/SLC40A1 ferroportin

MVB multivesicular bodies

CRC colorectal cancer

MDA malondialdehyde

ccRCC clear cell renal cell carcinoma

lncRNA long-chain noncoding RNA

circRNA circular RNA

ceRNA competitive endogenous RNA

system xc- cystine/glutamate antiporter

SLC7A11 solute carrier family member 7A11

SLC3A2 solute carrier family member 3A2

GLS glutaminase

GLS1 glutaminase 1

GLS2 glutaminase 2

GSH glutathione

GCL glutamic acid cysteine ligase

GSS glutathione synthetase

GPX4 glutathione peroxidase 4

GC gastric cancer

TNFAIP8/TIP8 tumor necrosis factor (TNF)- α Induced

protein 8

NSCLC non-small cell lung cancer

PUFA polyunsaturated fatty acid

MUFA monounsaturated fatty acids

AA arachidonic acid

AdA adrenal acid

ACSL4 long chain acyl CoA synthetase 4

LPCAT3 lysophosphatidylcholinyltransferase 3

PE phosphatidylethanolamine

LOX lipoxygenase

MDA malondialdehyde

4-HNEs 4-hydroxy-nonanal

EV extracellular vesicle

CAFs cancer associated fibroblasts

TME tumor microenvironment

ALOX15 arachidonic acid lipoxygenase 15

hnRNPA1 heterogeneous nuclear ribonucleoprotein A1

USP7 ubiquitin specific protease 7

CRR clinically relevant anti-radiation

GBM glioblastoma

ALOXE3 arachidonic acid lipoxygenase E3

12-HETE 12-hydroxyeicosapentaenoic acid

GsPCR Gs protein coupled receptor

ETS1 ETS proto-oncogene 1

AIFM2 mitochondrial apoptosis inducing factor 2

FSP1 ferroptosis suppressor protein 1

CoQ coenzyme Q

MVA mevalonate

HMG CoA 3-hydroxy-3-methylglutaric acid monoacyl CoA

HMGCR HMG CoA reductase

IPP isopentenyl pyrophosphate

FPP farnesyl pyrophosphate

GGPP geranylgeranyl pyrophosphate

A549-R cisplatin resistant A549 NSCLC cells

A549-S cisplatin sensitive A549 NSCLC cells

METTL3 methyltransferase-like 3

m6A N6 methyladenosine

NRF2 nuclear factor E2 related factor 2

HMOX-1/HO-1 heme oxygenase 1

GCLC glutamic acid cysteine ligase catalytic subunit

GCLM glutamic acid cysteine ligase regulatory subunit

NQO1 NAD (P) H-dependent quinone oxidoreductase 1

KEAP1 Kelch like ECH associated protein 1

CUL3 combines with cullin3

sMAF small muscle aponeurotic fibrosarcoma

ARE antioxidant response elements
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CDDP cisplatin

PEM pemetrexed

LUAD lung adenocarcinoma

CDKN1A cyclin dependent kinase inhibitor 1A

CDK1 cyclin dependent kinase 1

NPC nasopharyngeal carcinoma

RKIP Raf kinase inhibitor protein

SLC1A5 glutamine transporter

GOT1 glutamic-oxaloacetic transaminase 1

α KG α- Ketoglutarate
TCA cycle tricarboxylic acid cycle

ETC electron transfer chain

ATF4 activating transcription factor 4

STAT3 signal transducer and activator of transcription 3

GCH1 GTP cyclohydrolase 1

BH4 tetrahydrobiopterin

BH2 dihydrobiopterin

OTUB1 OTU domain-containing ubiquitin aldehyde-binding

protein 1

BECN1 beclin1

AMPK AMP activated protein kinase

BAP1 BRCA1 related protein 1

H2AUB histone 2A ubiquitination

ATM ataxia telangiectasia-mutated gene

MTF1 metal regulated transcription factor 1

YAP1 Yes associated protein 1

CO carbon monoxide

TBLR1 transducin beta 1X-linked receptor protein 1

PTGS2 prostaglandin endoperoxide synthase 2

TXNRD1 thioredoxin reductase 1.
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