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Non-coding RNA is still one of the most popular fields in biology research. In

recent years, people paid more attention to the roles of H19 in lung diseases,

which expressed abnormally in various pathological process. Therefore, this

review focus on the regulatory role of H19 in asthma, pulmonary arterial

hypertension (PAH), idiopathic pulmonary fibrosis (IPF), lung injury,

pneumonia, lung cancer, etc. And the potential therapeutic agents and

molecular treatments of H19 are collected. The aim is to demonstrate its

underlying mechanism in pulmonary diseases and to guide the basic

research targeting H19 into clinical drug translation.
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1 Introduction

The central dogma of genetic inheritance states that DNA is transcribed into RNA,

which is then translated into protein. However, protein-coding RNAs make up only a

proportion of total RNA, leaving more non-coding RNAs. Non-coding RNAs are now

known to have many regulatory functions concerning gene expression, and interactions

with DNA, RNA, and protein have all been reported (Hangauer et al., 2013). Non-coding

RNAs act as inducers, mediators, guides, or signal molecules, influencing many biological

processes, including cell proliferation and differentiation (Wang et al., 2021a). For

example, with respect to pulmonary dysfunction, the lncRNA TUG1 has been found

to sponge miR-222-3p with the result that the expression of the genes encoding

CELF1 and p53 are up-regulated (Li et al., 2021).

Non-coding RNAs are broadly divided into two classes based on their length, with

long non-coding RNAs (lncRNA) having greater than 200 nucleotides and short non-

coding RNAs, predominantly micro-endogenous RNAs having fewer than

200 nucleotides. LncRNAs, in particular, have been extensively studied and are

known to have many functions (Li et al., 2019a).
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One member of the lncRNA family, H19, is abundant and

shows a high degree of conservation. Its involvement in cancer

(Muller et al., 2019), diabetes (Li et al., 2020a), cardiovascular

(Zhang et al., 2018), and cerebrovascular disease (Feng et al.,

2021) has been reported. For example, H19 binds

hnRNPA2B1 and induces the epithelial-mesenchymal

transformation, and promotes metastasis and invasion of

colorectal cancer cells (Zhang et al., 2020a).

In recent years, research on drugs targeting lncRNAs has

gradually emerged, and reviews have discussed the progress and

challenges encountered in the development of lncRNAs as

potential biomarkers and molecular drugs (Winkle et al.,

2021). Similarly, H19, a clinical marker with broad application

prospects, is more and more concerned in lung diseases. The

review aims to summarize the roles of H19 in pulmonary diseases

to reveal the therapeutic target and the direction to improve

treatment.

2 The origin of H19

H19 is a maternally imprinted gene located on the short arm

of chromosome 11 at locus 11P15.5 (Ghafouri-Fard et al., 2020).

It is a single-copy gene that shows a high degree of conservation.

The 2.5 kb length consists of 5 exons and 4 introns and generates

a mature 2.3 kb transcript lacking an open reading frame (Cai

and Cullen, 2007). H19 is expressed at a high rate during

development in utero but is down-regulated after birth, with

heart and skeletal muscle being two of the few tissues that retain

residual expression (Martinet et al., 2016). The expression may be

detected predominantly in the cytosol, but H19 is also present in

the nucleus (Nordin et al., 2014). Transcription is considered to

result from the activity of RNA polymerase II and an antisense

RNA molecule of H19, 91H, has also been detected, although its

function remains unclear (Pachnis et al., 1988; Berteaux et al.,

2008).

3 The regulatory roles of H19

The current study found that H19 has four regulatory

functions (Schoenfelder et al., 2007). ① H19/miR-675 axis:

H19 is the precursor for the miR-675 and the sequence of

miR-675 is found in the first exon of the H19 sequence. H19/

miR-675 axis has many roles in cell growth and proliferation

(Keniry et al., 2012). For instance, the H19/miR-675 axis has been

implicated in the growth and migration of human squamous cell

carcinoma cells (Zhang et al., 2021a). ② Binding to miRNAs:

H19 is known to bind a range of microRNAs, including miRNA-

138, let-7 andmiRNA-200a and separately buffer their individual

effects on target genes, such as Vimentin, Integrin β3, and ZEB1/
ZEB2 to change the phenotype of the diseases (Liang et al., 2015;

Zhao et al., 2019a; He et al., 2019).③ Recruiting proteins: H19 is

also known to bind to a range of proteins, thereby modulating

downstream activities. By this mechanism, H19 binds to

EZH2 and inhibits E-cadherin expression, promoting the

metastasis of bladder cancer cells (Luo et al., 2013; Zhu et al.,

2018). ④ Epigenetic effects: epigenetic effects have also been

reported for H19 that binding to gene promoter regions, histone

modification enzymes and transcription factors to affect gene

expression. For instance, H19 is thought to induce

p-glycoprotein expression and by regulating the methylation

of MDR1 promoter with the effect that drug resistance is

promoted in hepatocellular carcinoma cells (Tsang and Kwok,

2007). The physiological effects outlined above confirm that

H19 is a biomarker and potential therapeutic target in

diseases such as cancers and cardiovascular diseases (Liu

et al., 2019a). We have plotted the mechanism of H19 in Figure1.

4 The regulatory mechanisms of
H19 in pulmonary diseases

Lung cancer, pulmonary arterial hypertension, asthma, and

many other diseases are all regarded as systemic disorders with

manifestations in the lung. Many such disorders have reported

the involvement of H19, among which lung cancer makes

frequent appearances in the medical literature. Different

effects have been characterized in different cell types. For

example, H19 promotes pulmonary fibrosis by inhibiting the

expression of miR-140 in human lung fibroblasts (HFL), leading

to enhanced deposition of extracellular matrix (Wang et al.,

2019). Further specific regulatory roles have been recorded in

airway smooth muscle cells (ASMC), myoblasts, cardiomyocytes,

small cell lung cancer lines (SCLC), and non-small cell lung

cancer lines (NSCLC). Pathways and downstream targets are

summarized in Table 1. All the above lung diseases are worthy of

further discussion during this review with respect to the roles

of H19.

4.1 Asthma

Asthma is characterized by episodic and reversible airway

constriction as part of an inflammatory response to

environmental allergens, infections and irritants. It is a

complex, multifactorial immune-mediated process with

multiple clinical types and airway remodeling, promoted by

abnormal proliferation and migration of smooth muscle cells

(Lambrecht and Hammad, 2012; Patel and Teach, 2019). The

work of Chen has shown that H19 regulated the expression of

mucoprotein 5AC (Muc5ac) through the PI3K/Akt/NF-κB
pathway in an in vitro mouse model of inflammation in

which the expression of H19 was low (Chen et al., 2021a).

And Low expression of H19 has been proposed as a

protective mechanism in mouse models of asthma. The
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FIGURE 1
The regulatory roles of H19. (A)H19 can indirectly regulates downstreammolecules by its spliceosomemiR-675-3p ormiR-675-5p. (B)H19 can
regulates downstreammolecules by acting as a “miRNA sponge”. (C)H19 can regulates downstreammolecules by binding to functional proteins. (D)
By epigenetic pathways, H19 can regulatemodification enzymes, transcription factors and promoters to regulate downstreammolecular expression.

TABLE 1 The miRNA, pathways and proteins interacting with H19.

Diseases Target Downstream
pathways or
molecules

References Physical characteristics

Asthma PI3K/Akt NF-Κb/Muc5ac Chen et al. (2021a) Airway remodeling

PAH Let-7b ACE-AngII-AT1R Sun et al. (2019) Right ventricular hypertrophy

miR-675 E2F1/EZH2 Omura et al.
(2020)

YB1 Col1a1 Choong et al.
(2019)

Pulmonary vascular remodeling

IPF miR-29b FGFb1 Tang et al. (2016) Phenotypic transformation disorder and extracellular matrix collagen deposition in
alveolar epithelial cellsmiR-140 TGF-β/smad3 Wang et al. (2019)

miR-196a Col1a1 Lu et al. (2018)

Lung injury miR-181a Runx2 Wu et al. (2018) Inflammation

miR-29b-3p HGMB1/TLR4 Tan et al. (2021)

miR-17 STAT3 Zhang et al. (2020)

Pneumonia miR-22-3p NLRP3 Sun et al. (2021) Congestion, Interstitial inflammation and diffuse alveolar damage

miR-140-5p TLR4 Yang (2022) Metastasis and diffusion

SCLC miR-140-5p FGF9 Li et al. (2020)

NSCLC miR-484 JNK Zhang et al. (2021) Proliferation and metastasis

CDH1 promoter DNMT1/DNMT3A Gao et al. (2019)

miR-29b-3p STAT3 Liu et al. (2019)

miR-148b-3p DDAH1 Huang et al.
(2020b)

microRNA-107 NF1 Qian et al. (2018)

EZH2 PTEN Xu et al. (2019)

miR-19b-3p FTH1 Zhang et al. (2022)
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inhibitors of phosphatidylinositol 3-kinase (PI3K) eliminated the

promotion of Muc5ac expression by H19 through

dephosphorylation of protein kinase B (Akt) and subsequent

activation of nuclear factor kappa-B (NF-κB). Muc5ac is a central

effector of allergic inflammation involved in airway hyper

reactivity (AHR) (Evans et al., 2015). The activity of Muc5ac

may lead to mucus blockage and airway inflammation worsening

asthma symptoms. Therefore, H19 inhibition may alleviates the

development of asthma by downregulating Muc5ac.

4.2 Pulmonary arterial hypertension

Changes in pulmonary vascular structure or function may

lead to increased vascular resistance and arterial pressure

culminating in the pathological presentation of pulmonary

arterial hypertension (PAH). The condition is defined as a

resting mean pulmonary arterial pressure (mPAP), measured

by right heart catheterization, in excess of 25 mmHg (Galie et al.,

2016). Pulmonary vascular remodeling and right ventricular

(RV) hypertrophy or even failure may result from PAH

(Hoffmann et al., 2016).

Vascular remodeling results from excessive proliferation of

pulmonary artery smooth muscle cells and the dysfunction of

arterial endothelial cells (Kim, 2014). There is a great deal of

evidence to suggest the involvement of the H19-let-7b axis in

vascular remodeling (Sun et al., 2019). H19, in a role as a

competing endogenous RNA (ceRNA), binds to let-7b to

down-regulate its expression and upregulate the expression of

cyclinD1. The result is the proliferation of vascular smooth

muscle and vascular remodeling (Sun et al., 2019). It has also

been shown that by binding and sequestration of let-7b, H19 can

upregulate the expression of the angiotensin I receptor-1 (AT1R)

in rat pulmonary artery smooth muscle cells (PASMCs)

stimulated by platelet-derived growth factor-BB (PDGF-BB)

(Su et al., 2018). The binding of angiotensin II to AT 1 R

activates the MAPK signaling pathway to promote the

proliferation of blood vessels and smooth muscle cells,

contributing to vascular remodeling.

The foregoing results all indicate a pathological role for

H19 in PAH. However, there is a contradictory finding. Wang

reported elevated H19 in a melatonin-mediated rat model of

PAH, in which the H19-miR-200a-PDCD4 axis played a

therapeutic role (Wang et al., 2018a). There may be

environmental and time exposure factors accounting for the

opposite finding.

H19 regulated cardiomyocyte (CM) hypertrophy, promoted

CM apoptosis, and stimulated proliferation and fibrosis of

cardiac fibroblasts in vitro, all of which are related to the

progression of right ventricular failure (Liu et al., 2018;

Choong et al., 2019). Omura used CMs from rats with

pulmonary hypertension to demonstrate that H19 silencing

upregulates the histone methyltransferases, enhancer of Zeste

homolog 2 (EZH2) and E2F1 (Omura et al., 2020). Upregulation

of EZH2 may contribute to improving CM cross-sectional area.

However, any specific regulatory relationships among H19,

EZH2, and E2F1 remain unclear. E2F1 is known to be a

target of miR-675 and a trans-activator of EZH2 (Ma

et al., 2018). Therefore, H19 is likely to inhibit the

expression of EZH2 through the miR-675-E2F1-

EZH2 axis. EZH2 exerts epigenetic effects to inhibit the

expression of sine oculis homeobox homolog 1 (six1) (Gao

et al., 2020). Decreased six1 reduced the expression of cardiac

sarco-endoplasmic reticulum Ca2+ ATPase marker

(SERCA2a) (Meyer et al., 1995). All in all,

H19 knockdown may reduce myocardial hypertrophy and

heart failure through this cascade.

In addition, H19 inhibits the expression of y-box binding

protein 1 (YB1), leading to de-inhibition of type 1 collagenα1
(Col1α1) and a variety of miRNAs, such as miR-29b. The

resulting changes in the extracellular matrix may reduce CM

survival and promote fibrosis (Choong et al., 2019).

In conclusion, we suggest that H19 may have a central role in

the process of vascular smooth muscle cell proliferation and CM

extracellular matrix alteration making it a suitable drug target

for PAH.

4.3 Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) has a high mortality rate,

and there is no effective drug treatment (Nathan and Meyer,

2014). Two features characterize IPF: the phenotypic

transformation of alveolar epithelial cells and excessive

deposition of extracellular matrix collagen (Ley et al., 2011).

The involvement of miRNAs has been confirmed in pulmonary

fibrosis, and H19 has been shown to bind the 3′UTR and inhibit

the expression of the fibrosis regulator, miR-29b (Tang et al.,

2016). Moreover, miR-29b inhibits col1a1 via an effect on the

PI3K/Akt pathway (Li et al., 2012). Transforming growth factor1

(TGFb1) induces deposition of extracellular collagen to mediate

pulmonary fibrosis in vitro. Its role in cell proliferation requires

the activity of miR-29, and miR-29 overexpression inhibits

TGFb1-induced lung fibroblast proliferation (Tang et al.,

2016). Indeed, miR-29 may regulate fibrosis by regulating the

TGFb1 signaling pathway (Li et al., 2016). Besides, Lu also

confirmed that H19 could promote IPF. As a ceRNA,

H19 can compete with miR-196a to positively regulate

colla1 and promote the development of IPF (Lu et al., 2018).

Similarly, Wang has reported that H19 exerts a promotional

effect on pulmonary fibrosis by reducing the expression of miR-

140, inhibiting the TGF-b/smad3 pathway (Wang et al., 2019).

Optimal levels of TGF-β-smad3 signaling appear to be critical for

secondary alveolar septum formation. Over-expression of TGF-β
and TGF-β3 receptors may lead to invasive and transient

pulmonary fibrosis, respectively (Warburton et al., 2013).
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4.4 Lung injury

There are many types of lung injury, and acute lung injury

(ALI) is the most common one. Inflammation is the main feature

of lung injury (Vishnupriya et al., 2020). H19 has been confirmed

to be closely associated with various inflammatory genes,

regulating the expression of inflammatory genes (Wang et al.,

2020a). Wu’s study showed that H19 was significantly expressed

in LPS-induced acute lung injury in rats, and overexpression of

H19may be a protective mechanism (Wu et al., 2018). In contrast

to the role of H19 in promoting disease progression in most

diseases, overexpression of H19 negatively regulated miR-181a,

promoting the expression of runt-related transcription factor 2

(Runx2), alleviating LPS-induced cell damage, and ameliorating

LPS-induced acute lung injury (Wu et al., 2018). The same

experiment confirmed that Runx2 activated the JNK and

Notch pathways to promote cell proliferation and survival. In

this study, H19 was shown to promote the proliferation of lung

fibroblast cells (MRC-5 cells) to attenuate LPS-induced lung

injury. However, in IPF, the overexpression of H19 promotes

the proliferation of fibroblasts, which will cause the aggravation

of IPF. For different diseases, the promotion of lung fibroblast

cells proliferation by H19 has the opposite effect on the

development of disease.

The incidence of smoke-induced lung injury (SILI) involves

inflammatory stimulation (Guo et al., 2019). Ginsenoside

Rb3 has been shown to inhibit H19 and play a therapeutic

role in SILI. H19 acts as a sponge for miR-29b-3p to regulate

its expression negatively. In addition, miR-29b-3p inhibited the

expression of toll-like receptor 4 (TLR4) and alleviated lung

injury by inhibiting the expression of HMGB1mRNA (Tan et al.,

2021). TLR4 promoted the production of inflammatory

mediators (Yang et al., 2020).

Another lung injury associated with inflammation is

bronchopulmonary dysplasia (BPD), which is

disproportionately common in infants (Gilfillan et al., 2021).

Zhang proved that inhibition of H19 could significantly improve

alveolar congestion and inflammatory infiltration in BPD mice

(Zhang et al., 2020b). H19 has a negative regulatory effect on

miR-17, competitively binding to it and upregulating STAT3 to

promote inflammation. STAT3 activates inflammatory

pathways, including NF-κB in cancer (Yu et al., 2009).

Therefore, regulation of the H19/miR-17/STAT3 axis may

have therapeutic effects on BPD.

4.5 Pneumonia

Pneumonia is an acute respiratory tract, including

community-acquired pneumonia (CAP) and hospital-acquired

pneumonia (Torres et al., 2021). Infection of the lungs and

damage to the immune barrier by pathogens are the leading

cause of pneumonia (Torres et al., 2021). Sun showed that

H19 was significantly increased in LPS-induced pneumonia

models and sponging of miR-22-3p positively regulated

NLRP3 to promote cell pyroptosis (Sun et al., 2021). The

NLRP3 inflammasome promoted the activation and release of

protease caspase-1 to induce gasdermin D-mediated pyroptosis

(Huang et al., 2021). Another study also showed that inhibiting

the expression of H19 can alleviate inflammation by regulating

miR-140-5p/TLR4 axis in pneumonia (Yang, 2022). The LPS

receptor, TLR4, may promote LPS-mediated endogenic

transduction of inflammatory signals (Zamyatina and Heine,

2020). In conclusion, H19 plays a positive promoting role in the

pneumonia model. Therefore, H19-targeted therapy may play a

role in the treatment of pneumonia.

4.6 Lung cancer

Lung cancer is the most common cancer-type worldwide

(Sung et al., 2021). It can broadly be divided into two types:

non-small cell lung cancer (NSCLC) which accounts for 80%–

85% of total lung cancer (40% adenocarcinoma, 25%–30%

squamous cell carcinoma, and 10%–15% large cell carcinoma)

and small cell lung cancer (SCLC) (Schabath and Cote, 2019).

H19 may promote the proliferation and migration of tumor

cells.

4.6.1 Small cell lung cancer
SCLC only accounts for about 15%–20% of lung cancer cases.

However, its propensity for metastasis means that about two-

thirds of patients have distant metastatic disease at the initial

diagnosis, giving them an abysmal prognosis and low survival

rate (Hou et al., 2012). Knockout of H19 has been shown to

inhibit the proliferation and migration of SCLC cells. Li

demonstrated that H19 regulates the expression of the tumor

suppressor gene, miR-140-5p (Li et al., 2020b). The expression of

miR-140-5p had an inhibitory action on cell invasion and

epithelial-mesenchymal transformation of oral squamous cell

carcinoma (Zhao et al., 2019b). The oncogene, fibroblast

growth factor (FGF9), is a target of miR-140-5p in SCLC.

And miR-140-5p can bind to 3′-UTR of FGF9 and inhibits its

expression (Wang et al., 2020b). Therefore, through negative

regulation of miR-140-5p, H19 stimulates the tumor-promoting

activity of FGF9 in SCLC. The detailed findings expose the

possibility that H19 could be a therapeutic target in SCLC and

have potential as a biomarker. Additional mechanistic details

should be explored.

4.6.2 Non-small cell lung cancer
NSCLC includes adenocarcinoma, squamous cell carcinoma,

and large cell carcinoma, among which lung adenocarcinoma

accounts for the highest proportion. H19 has been shown to

reduce miR-484 expression in A549 cells in vitro (Zhang et al.,

2021b). Through its negative regulation of the cytokinesis and
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proliferation factor, Rho-associated kinase 2 (ROCK2), miR-484

would usually exert a tumor-suppressing activity (Hartmann

et al., 2015; Liu and Li, 2020). ROCK2 overexpression has

been shown to increase the levels of phosphorylated stress-

activated protein kinase (JNK), transcription regulation factors

C-Jun, and mesenchymal markers but to decrease levels of

epithelial markers. This suggests that ROCK2 regulates the

epithelial-mesenchymal transformation (EMT), including loss

of cell polarity and increased mobility (Zhang et al., 2021b). EMT

promotes invasive metastasis, resistance to anti-tumor drugs, and

various stress responses in tumor cells (Nieto, 2017). Therefore,

H19 knockout influences proliferation, invasion, and metastasis

by upregulating mir-484 and down-regulating ROCK2 to inhibit

the EMT in lung cancer cells.

It has been suggested that the activity of H19-induced

DNA methyltransferase1 (DNMT1) and DNA

methyltransferase3 (DNMT3) promoted methylation and

silencing of the Cadherin 1 (CDH1) promoter (Gao et al.,

2019). In addition, CDH1-inhibition may promote TGF-β1-
induced EMT and tumor invasion in breast cancer (Cano-

Gonzalez and Lopez-Rivas, 2016). These findings suggest that

inhibition of H19 and CDH1 methylation may inhibit EMT

and cell proliferation, promoting apoptosis of lung

adenocarcinoma cells. Moreover, H19, as a ceRNA, targets

miR-29b-3p to limit its expression (Liu et al., 2019b). The

target gene of miR-29b-3p, signal transducer and activator of

transcription 3 (STAT3), promotes differentiation of bone-

marrow-derived inhibitory cells (MDSCs) and acts as a tumor

promoter (Liu et al., 2019b). It may be that STAT3, activated

by H19, increases proliferation and decreases apoptosis of lung

adenocarcinoma cells and activates the expression of EMT-

specific proteins.

H19 has been shown to regulate miR-148b-3p and

promote the expression of dimethylarginine

dimethylaminohydrolase 1 (DDAH1) through negative

feedback in lung adenocarcinoma cells resistant to gefitinib

(Huang et al., 2020a). DDAH1 has been shown to inhibit the

EMT in gastric cancer, suppressing tumor growth, but is

considered a risk factor in breast cancer and cardiovascular

systems (Palm et al., 2007; Cano-Gonzalez and Lopez-Rivas,

2016; Hulin et al., 2017). Further research is necessary to

explain why DDAH1 shows adverse effects in different disease

systems. In addition, H19 may act as a competitive inhibitor of

microRNA-107, which usually modulates degradation of the

RAS signal transduction pathway negative regulator, NF1

(Qian et al., 2018). Proliferation and migration of NSCLC

cells would thus increase in the presence of H19. NF1 is known

to regulate metastasis of hepatocellular carcinoma cells (Li

et al., 2015). And NF1 is a GTP-activating protein that acts as a

Ras protein shutdown signal. Patients who lack NF1 have

higher levels of RAS-GTP, which promotes cancer cell growth

and differentiation (Brundage et al., 2014). The forkhead box

protein F2 (FOXF2) transcription factor has been shown to

stimulate H19 transcription, leading to H19-mediated

silencing of the tumor suppressor gene, PTEN, by

recruitment of EZH2 (Xu et al., 2019). Thus, the

progression of NSCLC is exacerbated. Another study

showed that Curcumenol could effectively inhibit the

expression of H19 and promote the occurrence of

ferroptosis in lung cancer (Zhang et al., 2022). H19 acts as

the “ceRNA” of miR-19b-3p and promotes the expression of

FTH1, which plays a promoting role in lung cancer. FTH1 is

an inhibitor of ferroptosis (Tian et al., 2020). Therefore,

Curcumenol can target H19 to treat lung cancer.

Finally, we summarized the current studies on H19 in lung

diseases (Figure 2) to explain the potential therapeutic value of

H19 in lung diseases.

5 The drugs targeting H19

A summary of the drugs targeting H19 from a search of

previous publications is shown in Table 2. It is not difficult to

see from the table that there are currently three drugs targeting

H19 to treat lung diseases, namely melatonin, Curcumenol

and Ginsenoside Rb3. Both Curcumenol and Ginsenoside

Rb3 inhibit H19 expression through the H19/miR-19b-3p/

FTH1 axis and the H19/miR-29b-3p/HGMB1/TLR4 axis to

promote ferroptosis in lung cancer cells and reduce

inflammation (Tan et al., 2021; Zhang et al., 2022). But

Wang showed that melatonin upregulated H19 expression

to suppress PAH, in contrast to other reports that

H19 promoted this disease (Wang et al., 2018a). In this

study, H19 was identified as a positive factor that inhibits

the development of the disease.

Currently, we have not found drugs that can target H19 to

treat diseases such as pulmonary fibrosis, asthma and

pneumonia. Drugs targeting H19 remain a potentially fruitful

area of research.

The pathogenesis of asthma and pneumonia are all related to

the production of inflammation, and pulmonary fibrosis is

related to the production of fibrosis, and H19 is highly

expressed in these diseases without exception. Studies by

others have found that metformin suppressed inflammation in

diabetic nephropathy by inhibiting H19 expression and that

dihydroartemisinin inhibited the development of liver fibrosis

(Xu et al., 2020; Xia et al., 2021). Therefore, we can also

hypothesize whether drugs such as metformin and

dihydroartemisinin may target H19 in lung disease. We

prospect that future research may demonstrate the

applicability of these drugs.

In recent years, monomeric chemical constituents in

botanicals have been widely used to target H19 to inhibit

disease progression. Using existing online databases, including

TCMSP and miRbase, facilitates the bioinformatics-based search

for drugs targeting H19.
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6 The molecular therapy
targeting H19

RNA-based therapeutics, including various antisense

oligonucleotides (ASOs), small interfering RNAs (siRNAs),

and miRNA sponges, have been approved by the European

Medicines Agency (EMA), demonstrating the clinical

feasibility of RNA therapeutics (Winkle et al., 2021). However,

no effective lncRNA-based therapy has been approved in the

clinic, and most are in Phase II or Phase III clinical development.

The diverse functions of lncRNAs indicate various opportunities

for their therapeutic targeting, and corresponding molecular

drugs can be developed by adjusting lncRNA modes of action,

such as transcriptional inhibition, post-transcriptional

inhibition, or interaction with proteins. We summarize

possible future molecular therapies targeting H19.

6.1 The therapies based on modification

6.1.1 The small molecule inhibitors of H19
With the continuous discovery of lncRNA structural

information and its functional motifs, the design or discovery

of small molecule inhibitors of related targets has become a

reality. For example, the methylation inhibitor 5-azathioprine-

2′-deoxycytidine (5-aza-dC) inhibited themethylation of the ICR

region of the H19 gene and down-regulated the expression of the

H19 gene (Zhao et al., 2012).

6.1.2 The constructs of H19 regulatory
sequences

The regulatory sequence of H19 has been evaluated as a

promising and safe targeted therapy in phase 1 and 2 studies in

pancreatic cancer (Hanna et al., 2012). Hochberg et al.

FIGURE 2
The mechanisms and related targets of H19 in lung diseases. H19 acts as a sponge for miR-140, miR-29b, and miR-196a to promote cellular
fibrosis. H19 promotes cell hypertrophy by splicing to producemiR-675. H19 acts as a sponge formiR-21 andmiR-181a to promote cell proliferation.
H19 promotes inflammation by acting as a sponge for miR-17, miR-29b-3p, and miR-140-5p and regulating the PI3K/Akt pathway through
epigenetic pathways. H19 regulates cell death by binding to YB1 and acting as a sponge for miR-22-3p and miR-19b-3p. H19 promotes cell
carcinogenesis by acting as a sponge for microRNA107 and regulating EZH2 expression through epigenetic pathways. H19 acts as a miR-29b-3p,
miR-148b-3p, and miR-484 sponge and regulates the expression of CDH1 promoter through epigenetic pathways to promote cancer cell
proliferation and metastasis.
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constructed a vector named DTA-H19, and it was regulated by

the regulatory sequences of H19. The vector can selectively kill

H19-positive cells by expressing the diphtheria toxin A chain

gene. Anticancer effects have been demonstrated for this

treatment in phase I/IIa clinical studies in patients with

superficial bladder cancer, unresectable pancreatic cancer, or

ovarian cancer (Sidi et al., 2008; Hanna et al., 2012; Gofrit

et al., 2014; Lavie et al., 2017). Furtherly, another new DTA

vector regulated by double regulatory sequences, H19-DTA-P4-

DTA, was subsequently developed, with better anticancer effects

than before (Amit and Hochberg, 2010).

6.1.3 The RNA interfering drugs of H19
The developments of nucleic acid drugs siRNA and antisense

oligonucleotides (ASOs) make the development of drugs

targeting interfering lncRNAs possible. The development of

TABLE 2 The drugs targeting H19.

Drugs Diseases Year References Biological mechanisms

Ginsenoside Rb3 Smoke-induced lung injury 2021 Tan et al. (2021) Inhibiting the expression of H19, HMGB1, and TLR4, promoting the
expression of miR-29b-3p. And then alleviating smoke-induced lung injury

Curcumenol Lung cancer 2022 Zhang et al. (2022) Inhibiting the expression of H19 and FTH1, promoting ferroptosis and the
expression of miR-19b-3p

Dihydroartemisinin Liver fibrosis 2021 Xia et al. (2021) Inhibiting H19 transcription and reducing signaling by H19-AMPK, thereby
preventing liver fibrosis

Metformin Cerebral ischemia-reperfusion 2019 Zeng et al. (2019) Inhibiting the expression of H19 can promote the expression of miR-148a-
3p, thus decreasing the expression of Rock2 to inhibit oxidative stress
response

Polycystic ovary syndrome 2019 Chen et al. (2019) Increasing the expression of miR-29b-3p by inhibiting H19, thus inhibiting
the expression of MMP-9 and MMP-2

Gastric cancer 2019 Li et al. (2019b) Decreasing the expression of H19, thereby activating AMPKα and inhibiting
MMP9

Pre-eclampsia 2019 Shu et al. (2019) Reducing H19, promoting the expression of miR-148a-5p and miR-216-3p,
and then decreasing the expression of P28 and EBI3 proteins

Diabetic nephropathy 2020 Xu et al. (2020) Decreasing the expression of H19 and TGF-β1, promoting the expression of
miR-143-3p, and reducing cell proliferation, inflammation, and ECM
accumulation

Melatonin Ischemic heart diseases 2016 Cai et al. (2016) By promoting the expression of miR-675, the senescence of cardiac
grandmother cells was inhibited

Early brain injury following
subarachnoid hemorrhage

2018 Yang et al. (2018) Promoting the expression of H19, miR-675-3p, and NGF, inhibiting the
expression of P53 and LET-7A, and then inhibiting apoptosis

Pulmonary Hypertension 2018 Wang et al. (2018a) Upregulating H19, miR-675-3p, and PDCD4, downregulating miR-200a and
IGFR1, and then reducing vascular remodeling and PAH.

Atorvastatin Acute myocardial infarction 2020 Huang et al.
(2020b)

H19 in exosomes and its downstream signaling pathway mediate blood
vessels to protect the heart

Levonorgestrel Adenomyosis 2020 Liang et al. (2020) Increasing the expression of H19 and decreasing miR-17 and TLR4 to
promote apoptosis and inhibit inflammation

Valproic acid Ovarian cancer 2018 Sajadpoor et al.
(2018)

Negatively regulating the expression of H19 and EZH2, inducing apoptosis
and inhibiting proliferation of cancer cells

5-Azacytidine Rhabdomyosarcoma 2015 Tarnowski et al.
(2015)

Activating H19 and miR-675 by demethylation of DMR at IGF2-H19
inhibits rhabdomyosarcoma cell proliferation

Geniposide Hypoxic-ischemic encephalopathy 2019 Yuan and Zheng,
(2019)

Promoting the expression of H19, activating the PI3K/AKT and Wnt/β
-catenin pathways, and inhibiting cell apoptosis

Astragaloside IV Atherosclerosis 2019 Song et al. (2019) Promoting H19 expression, inhibiting DUSP5, then attenuating autophagy
and mineralization of VSMCs in atherosclerosis

6-Gingerol Myocardial ischemia/reperfusion
injury

2021 Lv et al. (2021) Increasing the expression of H19 and ATG7, inhibiting the expression of
miR-143, and promoting autophagy to alleviate myocardial injury

Huaier Extract Breast Cancer 2017 Wang et al. (2017) Inhibiting the expression of H19 and miR-675, promoting the expression of
CBL, inhibiting the proliferation of breast cancer cells, and inducing
apoptosis

Cinnamaldehyde Inflammatory bowel disease 2021 Qu et al. (2021) Inhibiting Th17 cell differentiation by the S1P2 pathway and inducing
inflammation by regulating H19 and MIAT.

Berberine Nonalcoholic fatty liver disease 2021 Wang et al. (2021b) Inhibiting the expression of H19 can alleviate liver fibrosis

Icariin Aberrant proliferation of retinal
pigment epithelial

2020 Zhang et al. (2020c) Promoting the expression of H19, p53, and p21, inhibiting cell proliferation
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siRNAs and antisense oligonucleotides (ASOs) have the same

effect on degrading the lncRNAs, having pointed out another

direction to knock down the expression of lncRNAs (Chen et al.,

2021b). For instance, The researchers found that the expression

of lncRNA DANCR could be modulated with siRNA

nanoparticles for the treatment of non-small cell lung cancer

(Nicolescu et al., 2022). Other researchers have constructed an

ASO targeting lncRNAMALAT1, which can significantly inhibit

the metastasis and invasion of rat lung cancer cells. These third-

generation modified ASOs use Au nanoparticles as a carrier,

which maintain the stability and good biological activity of ASOs

(Gong et al., 2019).

6.2 The therapies based on delivery mode

Effective delivery methods may solve the clinical translation

of RNA therapy, so we list promising delivery methods for H19-

targeting drugs in the future.

6.2.1 The endogenous carrier-exosome delivery
Cell-derived exosomes are a good delivery vehicle with

minimal antigenicity and cytotoxicity, which achieve cell-to-

cell information transfer (Bayraktar et al., 2017). It has been

reported that H19 mediated the development of cancer cells

such as hepatocellular carcinoma by means of exosomes

(Conigliaro et al., 2015). Higher levels of H19 were also

found in serum exosomes from bladder cancer (Wang et al.,

2018b). The above suggests that delivering H19 through the

exosome pathway may be a better drug delivery method in

future studies.

6.2.2 The exogenous carrier delivery
Currently, lipid nanoparticles (LNPs) are regarded as the

most effective way to deliver siRNA by exogenous carriers due

to their easy modification, high biodegradability, and high

biocompatibility (Winkle et al., 2021). Ligand-conjugated

siRNA therapy based on N-acetylgalactosamine (GalNAc)

has shown promising results in hepatocytes (Rajeev et al.,

2015). Another delivery mode of metal-based NPs has also

attracted attention and may be combined with various

compounds for delivery (Khoshnevisan et al., 2018).

Therefore, these delivery methods are already undergoing

clinical studies and are expected to be used for H19-

targeted therapy in the future.

7 Conclusion and prospects

H19 has been extensively studied in cancer, endocrine, and

cardiovascular diseases. Given that H19 plays an important

regulatory role in lung diseases such as lung cancer,

pulmonary fibrosis, and pneumonia, targeting H19 is a

promising area of research. Of course, there are still

some difficulties in solving the clinical translation of many

RNA-based therapies, such as specificity and delivery of

molecular drugs. But new chemical modification methods

and delivery methods are constantly improving. In addition,

drugs targeting H19 with plant-based, low toxicity and

few side effects are gotten attention in recent years. Using

existing botanical databases and combining with

bioinformatics technology, active ingredients targeting

H19 can be quickly found to facilitate subsequent research.

We prospect that the molecular therapy targeting

H19 and related molecular drugs will be applied to clinical

therapies.
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