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Jamu is an Indonesian traditional herbal medicine that has been practiced for

generations. Jamu ismade from variousmedicinal plants. Each plant has several

compounds directly related to the target protein that are directly associated

with a disease. A pharmacological graph can form relationships between plants,

compounds, and target proteins. Research related to the prediction of Jamu

formulas for some diseases has been carried out, but there are problems in

finding combinations or compositions of Jamu formulas because of the

increase in search space size. Some studies adopted the drug–target

interaction (DTI) implemented using machine learning or deep learning to

predict the DTI for discovering the Jamu formula. However, this approach

raises important issues, such as imbalanced and high-dimensional dataset,

overfitting, and the need for more procedures to trace compounds to their

plants. This study proposes an alternative approach by implementing bipartite

graph search optimization using the branch and bound algorithm to discover

the combination or composition of Jamu formulas by optimizing the search on

a plant–protein bipartite graph. The branch and bound technique is

implemented using the search strategy of breadth first search (BrFS), Depth

First Search, and Best First Search. To show the performance of the proposed

method, we compared our method with a complete search algorithm,

searching all nodes in the tree without pruning. In this study, we specialize

in applying the proposed method to search for the Jamu formula for type II

diabetes mellitus (T2DM). The result shows that the bipartite graph search with

the branch and bound algorithm reduces computation time up to 40 times

faster than the complete search strategy to search for a composition of plants.

The binary branching strategy is the best choice, whereas the BrFS strategy is

the best option in this research. In addition, the the proposed method can

suggest the composition of one to four plants for the T2DM Jamu formula. For a

combination of four plants, we obtain Angelica Sinensis, Citrus aurantium,

Glycyrrhiza uralensis, and Mangifera indica. This approach is expected to be

an alternative way to discover the Jamu formula more accurately.
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Introduction

Jamu, known as Indonesian herbal medicine, is local wisdom

that must be preserved because it has been practiced for

generations (Elfahmi et al., 2014). The 2010 Basic Health

Research results show that more than 50% of Indonesians use

herbal medicine (Purwaningsih, 2013). Jamu is made from

various plants that are considered to have healing properties

based on practical experience. Zuhud et al. (2001) identified

approximately 1,845 forest plant species in Indonesia that have

the potential as medicinal plants. National Agency of Drug and

Food Control in Indonesia noted that approximately 283 plant

species were officially registered and used for treatment. Thus,

Jamu has the potential to be developed. Because of the vast

biodiversity of Indonesia’s indigenous medicinal plants, herbal

medicine has the potential for economic development (Elfahmi

et al., 2014). However, this herbal medicine has not been widely

used because the discovery of herbal formulas has not been

supported by its scientific basis (Noor et al., 2022).

Various efforts to make herbal medicine have a

computational-based scientific basis have been carried out.

Research on herbal medicine by Afendi et al. (2010) put

forward the hypothesis that at least one Jamu formula has a

composition of four herbal plants. Onemain plant directly affects

disease, and the other three are supporting plants that have

analgesic, antimicrobial, and anti-inflammatory properties. The

3138 herbal formulas taken from 465 plants were classified into

nine properties (Afendi et al., 2010). Afendi et al. (2013)

continued their research by looking for the relationship

between plant composition and herbal medicine efficacy using

a statistical approach to classify nine properties of the 3138 Jamu

formulas derived from these 465 plants. Classification based on

partial least squares discriminant analysis produced an accuracy

of 71.6%. Fitriawan et al. (2013) conducted a similar study with a

machine learning approach using the support vector machine

(SVM) method, resulting in an accuracy of 71%. Puspita et al.

(2016) conducted another study that reported the study of feature

selection using clustering techniques to reduce the number of

irrelevant features before training using SVM.

Prediction of herbal composition based on plant composition

still does not obtain high accuracy. In addition, formula

predictions based on plant composition cannot describe the

interaction mechanism between compounds contained in

plants and target proteins that represent certain diseases. The

network pharmacology approach, first presented by Hopkins

(2008), provides an opportunity to investigate the molecular

complexity of herbal formulas and the correlation between herbal

formulas and disease complexes (Wu et al., 2013; Du et al., 2014).

It has been shown to work in various herbal compositions used in

traditional medicine (Emig et al., 2013; Lotfi Shahreza et al.,

2018). Furthermore, in this big data era, we can repurpose

traditional medicines by analyzing the combinatorial

properties of herbal formulas and their mechanism of action

(Newman et al., 2008; Huffman and Shenvi, 2019). With the

rapid advances in bioinformatics and systems biology, network-

based drug discovery is seen as a promising approach to more

cost-effective drug discovery (Keith et al., 2005; Jia et al., 2009;

Schadt et al., 2009; Zhang et al., 2019; Chaudhari et al., 2020;

Noor et al., 2022).

One of the representations of network-based drug discovery

is drug–target interaction (Li et al., 2009). Many studies predicted

interactions between compounds and target proteins, such as

using machine learning techniques, classification algorithms,

learning to rank algorithms, and deep learning algorithms (Xu

et al., 2021). Yamanishi et al. laid the basis for drug–target

interaction (DTI) prediction research. Their systematic study

employed a bipartite local model based on an SVM Yamanishi

et al. (2008). Yamanishi et al. (2010) used a distance learning

algorithm as a classifier. Other studies have used a binary

classification approach with machine learning techniques, such

as SVM and random forest (RF), to predict drug or compound

interactions with target proteins (Nasution et al., 2019; Shi et al.,

2019; Erlina et al., 2020; Wijaya et al., 2021). In this binary

classification approach, the features that represent DTI are

obtained from the compound fingerprint and the descriptor of

the protein. For example, in Erlina et al. (2020), the PubChem

fingerprint was used for its compound consisting of 881 features

and a dipeptide descriptor consisting of 400 features. The total

number of features is 1281. Therefore, Erlina et al. (2020)

reported that the binary classification model for this DTI faces

high-dimensionality problems that affect the model’s accuracy.

Several studies used deep learning to predict this DTI

(Fitriawan et al., 2016; Lee et al., 2019; Mei and Zhang, 2019;

Sulistiawan et al., 2020; Sajadi et al., 2021). Lee et al. (2019)

proposed a deep learning-based prediction model capturing local

residue patterns of proteins participating in DTIs. This was

motivated by reports about conventional learning-based

prediction models being not informative in predicting

accurate DTIs. Sajadi et al. (2021) proposed a method based

on deep unsupervised learning for drug–target interaction

prediction called AutoDTI++ to solve the sparsity problem of

the interaction matrix. Sulistiawan et al. (2020) used stacked

autoencoder (SAE) as pretraining for initializing weights on the

deep neural network (DNN) to prevent learning from stopping

too quickly. SAE for DNN pretraining can prevent the layer

outputs from vanishing during the training process (Boulila et al.,

2021) and help to achieve better generalization in prediction

results (Bahi and Batouche, 2018). However, there is a drawback

to using binary classification for predicting DTI. It simplifies the

DTI issue by modeling high-dimensional compound–protein
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and their complex associations into a binary classification model

without considering the relationship between compounds or

proteins (Mei and Zhang, 2019).

Thus, Pliakos et al. (2019) and Fadli et al. (2021) used

multilabel classification based on deep learning to generate a

prediction model for DTI. Multilabel classification can be used to

solve binary classification problems. In multilabel classification,

the training process produces a model that maps input vectors to

one or more classes. The prediction of the target is only

determined based on the pattern of the existing compound

structure. Utilizing proteins as class labels can reduce the

input dimensions because it does not require feature

extraction of the protein. In addition, from a machine

learning perspective, apart from being able to predict several

interactions at once, the multilabel classification model can

identify possible correlations between class labels (proteins) to

increase the performance of DTI predictions (Pliakos et al.,

2019).

The approach to machine learning for DTI, whether using

conventional machine learning methods, ensemble methods, or

deep learning, raises an important issue. Its application to predict

the formula of herbal compounds for certain diseases often leads

to different results. Erlina et al. (2020) reported the results of

different herbal compounds using multilayer perceptron, SVM,

and RF. To conclude which compounds and target proteins have

the most potential, Erlina et al. (2020) analyzed the overlapping

predictions of herbal compounds across all methods. Likewise,

Fadli et al. (2021) have built four different models based on

compound features. The four models produce several different

predictive compounds, so it is necessary to perform an

overlapping analysis of the predicted results. Another

limitation of the machine learning approach in predicting the

Jamu formula is that we cannot immediately know what plants

contain these candidate compounds. To get plant information,

we have to do a literature study or look for it in databases, such as

KNApSAcK (Afendi et al., 2012) and IJAH Analytics (http://ijah.

apps.cs.ipb.ac.id).

This research proposes a new approach using the graph

traversing technique to overcome the limitation of machine

learning approaches. In this study, a tree representing DTI was

built, and the unknown interactions were determined based on

similarity measurements among compounds and proteins that

meet a specific threshold value. Furthermore, the bipartite

network representing DTI was expanded into a bipartite

plant–protein network. Moreover, we applied a graph

traversing algorithm with the branch and bound technique

to perform tree searches to find medicinal plants for certain

diseases. Morrison et al. (2016) stated that the branch and

bound algorithm has been used successfully to find exact

solutions for a wide area of optimization problems. Zhang

et al. (2012) used branch and bound with a bipartite graph

to solve the single vehicle routing problem with a toll-by-weight

scheme. The results showed that branch and bound

outperforms the best-known exact algorithms at that time

for the unweighted minimum latency problem and was able

to find the optimal solution. Wang et al. (2019) used the branch

and bound technique to traverse the bipartite graph of resource

allocation problems in radio broadcast scheduling, and the

results showed that the algorithm greatly reduces the

searching space and execution time. In bioinformatics,

Sridhar et al. (2008) demonstrated branch and bound usage

to explore the metabolic networks and find the target for known

successful drugs. The algorithm can accurately identify the

target enzymes that interacted with the drugs and reduce the

total search time compared with the exhaustive search. Zhou

et al. (2016) used a modified branch and bound algorithm to

find the global minimum energy conformation in structure-

based computational protein design. The algorithm is able to

exploit the structure of residue–residue interaction graph to

significantly accelerate the process. Thus, we proposed to use

the branch and bound technique because of its ability to find the

solution optimally while being able to reduce search time and

space. To show the performance of the proposed method, we

compared our method with the complete search algorithm,

which searched all nodes in the tree without pruning. In this

study, we specifically apply the proposed method to search for

the Jamu formula for type II diabetes mellitus (T2DM) disease.

T2DM is a disease characterized by carbohydrate, fat, and

protein metabolism disorders and a lack of work and insulin

secretion (Fatimah, 2015). We hope that the proposed method

will become an alternative method for predicting interactions in

drug–target and for searching the Jamu formula for T2DM.

Materials and methods

Data acquisition

Data acquisition was done using web crawling techniques on

several databases and related research results. These data were

used to build three pharmacological networks as follows.

1) Network A represents a plant–compound–protein

network. The plant data are taken from the KNApSAcK

database (Afendi et al., 2012). The compound data are

taken from PubChem (Kim et al., 2019) and KNApSAcK

database. The protein target data are taken from PubChem

BioAssay (Wang et al., 2017).

2) Network B is an extension of network A by adding

10 compounds obtained from searching over compounds

in the ChemMine-Tools database (Backman et al., 2011).

These 10 compounds have similarity scores of at least 0.9 to

each compound in network A.

3) Network C represents the relationship between the T2DM

target proteins in Uniprot and the compounds in PubChem

BioAssay.
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Figure 1 illustrates the three above-mentioned networks. The

details of data and source databases for each network are

provided in Table 1.

Each compound has a CID and a CAS ID. The CAS ID is

used to find a CID that corresponds to the compound in the

PubChem database.

Data preprocess

The data was preprocessed on the target protein of T2DM

because of Usman et al. (2020). There are 21 proteins, each

has the betweenness centrality (BC) and closeness centrality

(CC) values. The two values are averaged and then

normalized to the range of 0–1. This value becomes the

weight of a protein. Table 2 shows the normalization

results. Genes in Table 2 are attributes that indicate the

gene name of the T2DM protein. BC and CC are the BC

and CC, respectively, whereas AVG is the average value of BC

and CC. The normalization results are shown in the NORM

column. From the data acquisition results, only 14 T2DM

proteins could be targeted by at least one compound.

Therefore, we carried out analysis and experiment with

those 14 T2DM target proteins.

FIGURE 1
Illustration of three networks of plants, compounds, and proteins, respectively represented by T, C, and P. We define three networks from
different databases to get the relationship between plants and protein. Network A connects plants from KNApSAcK, compounds from KNApSAcK and
PubChem, and proteins from PubChem BioAssay. Network B connects compounds in network A, compounds in network B taken from
ChemmineTools, and the target protein is the same as that in Network A. Network C connects proteins from Usman et al. (2020), proteins from
Uniprot, and compounds from PubChem BioAssay.

TABLE 1 Results of data acquisition from the various databases.

Network Data Data resources Results

A Plants KNApSAcK - 711 plants

Compound KNApSAcK - obtained 4926 compounds from 711 plants with 7725 interactions of plant–compound

- only 581 plants have at least one compound

Compound PubChem - only 2780 of 4926 compounds have CID and are categorized as compound

- only 541 plants have at least one compound

Target protein PubChem BioAssay - obtained 2308 target proteins with 131.798 interactions of compound–protein

- only 1063 compounds have at least one target protein

B Compound ChemmineTools - obtained 9647 compounds from the expansion of network A

Target protein PubChem BioAssay - obtained 2465 target protein from 9647 compound

C Target protein Usman et al. (2020) - 21 target proteins associated with T2DM

- The score of betweenness centrality (BC) and closeness centrality (CC)

Target protein UniProt - MGI to GI id conversion for each target protein

Compound Pubchem BioAssay - obtained 803 compounds have interaction with 14 target proteins of T2DM
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Measurement of compound similarity

Measurement of the similarity of two compounds was

carried out using the Tanimoto coefficient. The Tanimoto

coefficient is used to measure the degree of similarity with the

formula. The more similar the two compounds are, the higher

their Tanimoto coefficient. To be specific, the Tanimoto

coefficient approaches 1 when two compounds have more

similarities. By contrast, the Tanimoto coefficient approaches

0 when two compounds have more dissimilarities. For this

reason, the compound structure is encoded into binary bits

representing the compound’s molecular structure. We

utilized the Klekota–Roth fingerprint, which has

4860 binary features. For each compound, the fingerprint

algorithm encodes 1 in a bit if there is a corresponding

molecular structure, and 0, otherwise. Eq. 1 shows the

Tanimoto coefficient formula.

coef � c
(a + b − c) (1)

where a denotes the number of bits 1 in the first compound.b

denotes the number of bits 1 in the second compound.c denotes

the number of 1 bit in both compounds.

In this study, we used the fingerprint algorithm to calculate

the similarity score between the compounds in networks A

and C.

Connecting networks A, B, and C

The three main networks from this research are networks A,

B, and C, as shown in Figure 1. The vertex or node of the network

is a component, which can be a plant, a compound, a protein, or a

disease, whereas the edge represents the connection between

components. We used an adjacency list data structure to store the

networks. An adjacency list is a data structure that stores graphs

like a neighbor list. By using this data structure, we can speed up

the tracing process because enumerating a vertex’s neighbors can

be done in O(k), where k is the number of neighbors of a vertex

(Blandford et al., 2003).

Networks A and B connection
Networks A and B are connected because network B is an

extension of network A. The expansion is through the similarity

between compounds in network A (denoted as Ca) and

compounds in network B (denoted as Cb).

Networks A and C connection
Network A (denoted as Na) and C (denoted as Nc) are

connected through two pathways, namely, compound

similarities and protein similarities. The compound similarity

was formed by calculating the similarity of each compound in

network C (denoted as Cc) with the compound in network A (Ca)

using the Klekota–Roth fingerprinting and Tanimoto coefficient.

For each compound in network C (Cc), we record all compounds

with the highest similarity score and create a new edge between

Ca and Cc. The pseudocode is provided in Supplementary

Figure S1.

The protein similarity pathway was formed by looking at the

proteins in networks A and C that are the same. For each exact

protein pair, a new edge is created between the two proteins. The

pseudocode is provided in Supplementary Figure S2.

Networks B and C connection
Networks B and C are linked by protein similarity. A new

edge is created between every protein in network B that is the

same as the protein in network C. The pseudocode is provided in

Supplementary Figure S3.

Graph traversing for constructing a
weighted bipartite network plant–protein

Graph traversing from T2DM proteins to plants aims to

determine which plant can target T2DM proteins. For this

process to be efficient, it is necessary to trace the T2DM

protein to the compound in network A. Then, we stored the

interaction information between proteins and compounds in

network A. Next, for each compound, we traced it back to the

plant containing the compound in network A. Any components

(plants, compounds, or proteins) that cannot be traced from the

TABLE 2 Protein weight normalization results.

Gene BC CC AVG NORM

INS 0.3211 0.6250 0.4731 1.000

AKT1 0.2435 0.5128 0.3782 0.799

TCF7L2 0.2003 0.5714 0.3859 0.816

KCNJ11 0.1342 0.5000 0.3171 0.670

UBC 0.1097 0.4878 0.2987 0.632

PPARG 0.0952 0.5128 0.3040 0.643

GCGR 0.0780 0.4762 0.2771 0.586

INSR 0.0775 0.5000 0.2888 0.610

IAPP 0.0526 0.4348 0.2437 0.515

SOCS3 0.0518 0.4348 0.2433 0.514

EP300 0.0443 0.4167 0.2305 0.487

PPARA 0.0311 0.4082 0.2197 0.464

WFS1 0.0186 0.4444 0.2315 0.489

APOE 0.0163 0.3846 0.2004 0.424

FOXO1 0.0096 0.3704 0.1900 0.402

STAT3 0.0066 0.3509 0.1787 0.378

PTH 0.0044 0.3509 0.1776 0.375

CTLA4 0.0000 0.3448 0.1724 0.364

MTNR1B 0.0000 0.3922 0.1961 0.414

PRKACA 0.0000 0.3390 0.1695 0.358

SOD3 0.0000 0.3448 0.1724 0.364
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T2DM protein was removed from the network to form a simpler

network so that the search process became more efficient.

Next, we conducted graph traversing to construct a bipartite

network of plant–compound–protein as follows:

1) Traverse from network C to network B

A complete search was started by searching from network C

to network B. At first, the compound in network C was removed.

Then, a search was carried out from the T2DM proteins (denoted

as Pc) to each compound in network B (Cb). First, look for Pc and

Pb that are the same, where Pb denotes proteins in network B.

Next, store information on which target protein (Pt) traced each

compound Cb. Again, a search was carried out from the T2DM

proteins (Pc) to each compound Cb and recorded any target

protein (Pt) connected with compound Ca whose similarity

weight to compound B (Cb) is at least 0.9. The pseudocode is

provided in Supplementary Figure S4.

2) Traverse from network C to network A.

First, we removed the compounds in network C. A search

was carried out from the T2DM proteins Pc to the compound Ca

in network A. Then, we stored any target protein that is

connected to all compounds Ca. If there was a stored target

protein (Pt) connected to the compound Ca, the previously

recorded weight is updated to 1. Similar to the previous step,

we traced the T2DM proteins (Pc) but retained all compounds in

network C. For each compound Ca, record the T2DM protein

(Pc) as protein target Pt that traced it (if the protein has not been

recorded previously), and update the edge weights if the

similarity score of Ca and Cc traversed is greater than the

previous edge weight. Last, backtracking was carried out to all

compounds up to plants in network A. For each plant, if the

weight of the target protein is greater than the weight of the

previous target protein (if it has been recorded), then update the

weight and record all the target proteins that had interaction with

compounds traceable from the plant. The pseudocode is

provided in Supplementary Figure S5.

Graph traversing over networks A, B, and C finally produces

a relationship between plants and proteins. This relationship is

represented as a weighted bipartite graph between plants and

proteins. From the graph search results, some compounds and

plants cannot target any T2DM protein. These components were

eliminated from the network, leaving 1467 compounds and

460 plants in network A. Each compound and plant pair in

network A has information in the form of any T2DMprotein that

can be traced, along with edge weights found during tracing the

protein.

Examples of the search results and the stored information:

′73399′: ({′60391226′: [′Akt1′, 0.7993787198, 0.9]},

set([′60391226′])).
Information:

1) 73399 is CID a compound.

2) 60391226 is a GI of T2DM protein that can be traced from

this compound.

3) Akt1 is the symbol gene for the T2DM protein.

4) 0.7993787198 is the weight of the T2DM proteins.

5) 0.9 is the edge weight that is passed when tracing the T2DM

protein.

6) set([′60391226′]) is a set data structure to prevent double

counting.

If the node is a plant, the information that changes is only the

CID of the compound in the Latin name of the plant in question.

For example, “Schisandra chinensis Baill.”: ({′60391226′: [′Akt1′,
0.7993787198, 0.9]}, set([′60391226′])). The difference with the

previous result, namely, “Schisandra chinensis Baill.” is the

plant’s Latin name.

Composition of k plants as a candidate for
herbal formula

Each plant has a relationship with one or more target

proteins of TD2M. Each relationship has a different value.

The greater the value of the relationship between a plant and

protein indicates that the plant is associated with the target

protein. In addition to the correlation value, each significant

protein in T2DM has its weight. The known correlation value

and protein weight will be used as a benchmark in calculating the

herbal formula score using Eq. 2.

Formula score � ∑PiWi (2)

where Pi denotes protein weight ith and Wi denotes edge weight

of protein ith.

The higher the score of a formula, the better the formula will

be in treating T2DM. If T plants and k unique plants are

selected, there will be C(T, k) possible herbal formula

candidates with k constituent plants. C(n, r) is a function

that returns the value of the number of combinations of r

objects from n objects. It shows that the memory and time

complexity in finding the combination of k plants that make up

the herbal formula is O(Tk). However, memory usage

optimization can be done by limiting the number of

candidate herbal formulas. For example, if we only want an F

for herbal formulas with the highest score, we can use a priority

queue data structure to store the candidate herbal formulas. A

priority queue is a data structure in the form of a (binary)

heap. The (binary) heap itself is a complete binary tree. This

data structure has characteristics: for each subtree with root X,

the left and right child subtrees are smaller (or equal to) X. The

complexity of inserting and popping data in the priority queue is

O(log n), where n is the number of data stored in the priority

queue, whereas the top process has a complexity of O(1).
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The top is retrieving data with the maximum value in the

priority queue, whereas the pop is removing data with the

maximum value from the priority queue. This characteristic

can be used to store the score of herbal formula candidates.

Hence, the data stored in the priority queue is the herbal

candidate with the highest score’ the score will be stored in

the form of −score. This is because if the priority queue already

accommodates F candidate herbal formulas, then the pop process

will issue the herbal formula with the lowest score (−highest

score).

With this technique and data structure, the memory

complexity becomes O(F), where F is the number of

candidates with the highest score. If this process is paralleled

with t threads, then it takes t priority queues, each of which

accommodates F herbal candidates. The t priority queues will

then be combined into a priority queue. Memory complexity

becomes O(t*F).

By contrast, the time complexity is still O(Tk) because it must

produce all combinations of k plants as candidate herbal

formulas. However, optimization can be done by reducing T.

Because the herbal formula to be sought has the highest score,

plants that do not have the maximum edge weight for a T2DM

protein can be eliminated. Then, search for plants that are not a

subset (smaller) of T2DM protein than other plants, i.e., if we

choose a plant X whose T2DM protein is a subset of another

plant Y with more T2DM protein, then it is more optimal if we

choose plant Y.

Graph traversing using branch and bound
technique

According to Morrison et al. (2016), branch and bound is a

fundamental methodology and is widely used in solving exact

solutions for NP-hard optimization problems. Branch and bound

implicitly generate all possible solutions to the problem by

storing partial solutions called subproblems in the tree

structure. Unexplored nodes in the tree generate branches and

partition the solution space into smaller regions that can be

solved recursively (branching), and a pruning rule is used to

reduce the search space size that proves to be nonoptimal

(pruning). In the branch and bound algorithm, three

components are not explicitly explained but can significantly

influence the algorithm’s performance. These components are

search strategy, branching strategy, and pruning rules.

Searching strategy

In this study, the branch and bound technique will be

implemented using the search strategy of breadth-first search

(BrFS) (Bundy and Wallen, 1984), depth-first search (DFS)

(Morrison et al., 2016), and best-first search (BFS) (Morrison

et al., 2016). The difference between these three search strategies

is the order in which the nodes are searched. BrFS performs a

search by searching for the nearest neighbor, or in this case, the

nearest neighbor is a child of that node. A search by visiting the

nearest neighbor will make the search comprehensive. Next, the

second strategy is DFS. A search on DFS will perform a search

focused on one of the paths until it encounters a leaf node. After

the leaf nodes are traced, backtracking is carried out and traced

again on other paths. The last search strategy is BFS. In the BFS

search strategy, the node visited first is the node with the most

optimal partial solution. In the case of this herbal formula, of

course, the most optimal solution is to get the most significant

profit. The difference in search of the three search strategies is

shown in Figure 2. The value in the circle is the profit of each

node, whereas the value outside the node is the order of the node

search.

Branching strategy

In addition to determining the search strategy, the branching

strategy also considerably influences its use. In this study, the

branching strategy used is binary branching (Devroye, 1998;

Morrison et al., 2016)) and wide branching (Morrison et al.,

2016). The binary branchingmakes each node form two children,

namely, the selected plant condition and the unselected plant

condition. In the wide branching strategy, nodes will form as

many children as N-level nodes as many plants are added. The

different forms of the two branching strategies is shown in

Figure 3.

Pruning rule

The final aspect of the branch and bound algorithm is the

pruning rule. In this study, the pruning rule used is the lower

bounds to ensure the result is the most optimal solution. The

lower bounds pruning rule starts by sorting the data from the

most significant profit. Each node will calculate the maximum

profit that may be obtained. The node will not be traversed if the

profit is not greater than the maximum profit of the temporary

solution.

The problem of finding Jamu formulas can be approached as

a 1–0 KNApSAcK problem, so it can be solved using the branch

and bound technique (Ezugwu et al., 2019). Suppose that there

are data that have weight (wi) and profit (pi) stored in an array.

Furthermore, the data are sorted by the highest pi/wi value to find

the maximum profit that can be obtained with the maximum

limit (W) allowed. Figure 4 shows the data that have weight and

profit.

Figure 5 shows the process of finding the maximum profit

from Figure 4 using the lower bounds pruning rule. The letter X

in each node represents an item that was added (1), not added
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(−), or not added (0) at that node. The letter B on each node is the

maximum profit value obtained if the node is traced. Each node

has its weight (w) based on the weight of the added items.

Implementation of branch and bound
technique

The first step is to store plant data using a struct (a collection

of variable definitions wrapped in a specific name). The plant

data are represented as a bipartite plant–protein graph. Each

significant protein in the data has a weight taken from two

centrality values, namely, BC and CC. Edges that connect plants

and proteins have different weights that are taken when tracing

graphs.

Examples of data stored using a struct:

′Leucaena glauca′: ({′3041727′: [′Ppara′, 0.4643250105, 0.9]},
{′60391226′: [′Akt1′, 0.7993787198, 0.9]},
{′13432234′: [′Pparg′, 0.6426582082, 0.9]}).
The set of plant data is stored in an array of structs. The plant

struct consists of the name of the plant (name), the weight of the

edge of the 14th plant protein (value), plant weight (weight), and

total plant profit (totalValue) calculated from Eq. 2. After being

saved, the data are sorted by the totalValue parameter. Storage

using arrays allows accessing plant struct data based on array

index.

FIGURE 2
Searching strategy (Morrison et al., 2016)

FIGURE 3
Branching strategy (Morrison et al., 2016)
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Implementation of the branch and bound using
breadth first search

The BrFS strategy was first tried using the queue data structure.

The queue data structure is used because it has FIFO (first in, first out)

properties, which follow the BrFS strategy. The BrFS strategy is

implemented using the binary branching strategy and the lower

bounds pruning rule. Figure 6 illustrates the use of the queue data

structure in tree tracing. The node value in Figure 6 is the order of

browsing in the tree. When the third node has been accessed and left

the queue, the two children of that node will enter the queue. Each

FIGURE 4
Data with weight and profit.

FIGURE 5
Lower bounds pruning rule.
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node in the tree will store a list of plant indexes and the totalValue of

the sum of each stored plant. The X symbol in Figure 6 shows the

plants stored in that node.

The branch and bound algorithm starts by generating the root

node. The root node is then stored in the queue data structure. After

generating the root node, the next step is to enter a loop that will stop

when there are no nodes in the queue. Based on the nature of the

FIFO queue data structure, data from the queue is fetched (FRONT)

and removed from the queue (POP).

The next step generates the child of the node. There are two

children, namely, the condition of a plant being added and that

not being added. At this stage, there is a bound function call,

which is a function that calculates the upper bound of a node

shown in Supplementary Figure S6. After getting the bound value

of the child node, the value is compared with the temporary

maxProfit. If the bound value of the child node is greater than

maxProfit, then the child will be stored in the queue. In addition,

if the profit on the node is greater than maxProfit, then the

maxProfit value will be replaced with the node’s profit.

Implementation of the branch and bound using
depth-first search

The next step is implementing a DFS lookup strategy

using a stack data structure. The stack data structure is used

because it has first in, last out properties, which are in

accordance with the DFS search strategy. The DFS strategy

is implemented using a binary branching strategy and lower

bounds pruning rules. The stack data structure is used in tree

tracing. The value of the node is the order of tracing in the

tree. The search is carried out by always prioritizing accessing

the right child until it reaches the leaf node. After reaching

the leaf node, backtracking is performed and traces the left

child if the right child has been traced. Figure 7 shows the use

of the stack data structure on the tree.

Implementation of the branch and bound using
best-first search

The last search strategy is BFS by using the priority queue

data structure. The priority queue data structure is a data

structure in the form of a (binary) heap tree. (Binary) heap

tree is a data structure in the form of a complete binary tree and

has the characteristic that the value of each left child and right

child of a node will not be greater than its parent. The structure of

the (binary) heap tree can be seen in Figure 8, where the value for

each node is the total value of the nodes in the tree. The

complexity of deleting data and adding data to the priority

queue is O (log n), for n is the amount of data that has been

stored in the priority queue, whereas the process of accessing

FIGURE 6
Use of the queue data structure in tree tracing.
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leading data has a complexity of O (1). A priority queue follows

the BFS search strategy, which will execute nodes based on the

most optimal solution.

Using a wide branching strategy
After implementing the binary branching strategy, a wide search

strategy was implemented. In the wide branching search strategy, the

BrFS strategy is used because it has the shortest computation time

compared with the other two search strategies in the previous

experiment. In contrast to binary branching, where each internal

node must make two children for the condition of the plant being

added or not, in the wide branching strategy, each node will create a

different number of children depending on the plant index added last to

that node. Figure 9 shows a wide branching strategy. The computation

time of the wide branching strategy using BrFS ismuch longer than the

binary branching strategy; therefore, wide branching experiments with

DFS and BFS search strategies were not carried out. The X symbol in

Figure 9 shows the selected crop index at each node.

Results and discussion

Comparison of computing time and
search space

Differences in the use of search strategies and branching

strategies will affect the computational time and search space. In

order to get the best strategy, each computation time and search

space of the strategy will be compared. Each strategy, search and

branching, will get the same input data, namely, the

plant–protein bipartite graph. The comparison of the search

space will be seen from the number of candidate solutions

generated in each strategy.

Three search strategies combined with two branching

strategies resulted in four different branch and bound

strategies: BrFS with binary branching, DFS with binary

branching, BFS with binary branching, and BrFS with wide

branching. The four strategies in the branch and bound

FIGURE 7
Use of the stack data structure on the tree.

FIGURE 8
Priority queue with (binary) heap tree.

Frontiers in Pharmacology frontiersin.org11

Kusuma et al. 10.3389/fphar.2022.978741

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.978741


algorithm have different computational times. Table 3 shows the

complete data on the computational time for each strategy in this

study: The experiment was conducted using PCwith Intel Core i3

1.8 GHz processor, 6 GB RAM, SSD Sandisk 120 GB, and Linux

Ubuntu 16.04 Operating System.

The binary search strategy produced optimum computational

time, especially in the BrFS and DFS search strategies. In the

combination of two plants, the longest time is the wide branching

strategy, but for the combination of three and four plants, the use of

complete search, as done in previous studies, requires a very long

computational time. In addition to the computation time, the search

space size can also be seen by calculating the number of solutions

generated for each strategy. Figure 10 shows the difference in the

search space size using the calculation of the number of solutions

generated for each strategy in log(n) units.

In Figure 10, it can be seen that the search space of complete

search is far above other strategies. The wide branching strategy

has a broad search over the binary branching strategy. The binary

branching strategy with either BrFS, DFS, or BFS search

strategies has almost the same search area.

Pruning process

The branch and bound and complete search algorithms have

the same worst-case complexity O(Tk), i.e., when no nodes are

FIGURE 9
Wide branching strategy.

TABLE 3 Complete data on the computational time for each strategy.

The number
of plant
(k)

BrFS DFS BFS Wide branching Complete search

2 0.25 0.256 0.31 1.14 0.98

3 11.40 11.64 18.70 48.25 169.12

4 476.21 483.75 1070.58 2106.60 20285.02

Frontiers in Pharmacology frontiersin.org12

Kusuma et al. 10.3389/fphar.2022.978741

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.978741


pruned. In this study, the branch and bound algorithm has a

better computational time than the complete search strategy. It

proves that the pruning process was successfully carried out in

this study.

Comparison of branching strategies

The search space and computational time of the wide branching

and binary branching strategies differ quite a lot. The wide branching

strategy has a longer computation time and a larger search space than

the binary branching strategy because of its inability of the pruning

process. Each node in the wide branching forms a very large number

of child nodes and takes time and space for each level of the tree to be

formed. At node level 1 will raise to 460 child nodes and will be more

andmore for the next node. The number of nodes at each level results

in the length of the process to generate nodes with wi =W, where the

greater the W requested, the higher the target level.

Search strategy comparison

In the search strategy, BFS is not better than BrFS or DFS. BFS

performs a search based on the most optimum node on the node to

be searched. Searching based on the most optimum node is expected

to be able to cut the search space better, although it has a greater

complexity when the process of deleting and adding nodes to the list.

After testing, the search space of BFS with BrFS andDFS is notmuch

different. It caused the computation time of BFS to be longer than

BrFS and DFS. The best search strategy in this study is BrFS, which

has a slightly better computational time difference than DFS.

Searching using the BrFS strategy can reduce search space better

than other strategies. The BrFS strategy of tracing nodes with the

difference that the children on that node are plants are added and not

added. The BrFS strategy traces nodes from the root, which nodes

access high-scoring plants so that when high-scoring nodes are not

added, it speeds up the process of pruning those nodes.

Composition of k plants

From the previous search results, 460 plants had at least one

target protein in T2DM. Of the 460 plants, up to four combinations

will be used to create a candidate for herbal formula. For every k

combination of plants, 10 candidate herbal formulas with the highest

score will be taken. The higher the formula score, the more traceable

T2DM target protein and the more remarkable the edge weights

traced that protein.

If k = 1,Mangifera indica got the highest score with 9 out of 21

(42.8%) traceable T2DM proteins, or if seen from the formula score,

4.39 out of a maximum score of 11.3 (38.8%). The summary of the

10 candidates’ Jamu formulas for the combination of one plant with

the highest score can be seen in Supplementary Table S1. Moreover,

Punica granatum could only target seven T2DM proteins, but the

formula score was higher than Argemone mexicana, Salvia

miltiorrhiza, and Daucus carota. It shows that the edge or protein

weight targeted by Punica granatum is greater than the three plants.

A comparison of target proteins and edge weights between Punica

granatum and Argemone mexicana can be seen in Supplementary

Table S2.

When we compare edge weights, Punica granatum is relatively

always higher than Argemone mexicana. It makes the Punica

FIGURE 10
Comparison of search space area in log(n) units.
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granatum formula score higher than Argemone mexicana, although

Punica granatum cannot target GCGR protein. If k = 2, the

composition of Mangifera indica and Citrus aurantium obtained

the highest score, 5.26 (46.5%), and 11 T2DMproteins (52.3%) could

be traced. The summary of the 10 candidate herbal formulas for the

combination of two plants with the highest scores can be seen in

Supplementary Table S3.

Referring to the composition of one plant,Mangifera indica got

the highest score and could target 9 T2DM proteins. From

Supplementary Table S3, it can be seen that Mangifera indica

mostly appears in every candidate’s Jamu formula. However, the

number of T2DM proteins is only approximately 10 or 11. It

indicates that the second plant paired with Mangifera indica only

added approximately two new target proteins. However, it is also

possible that the edge weight of the second plant is higher than the

edge weight of Mangifera indica. The candidates with the highest

scores are Mangifera indica and Citrus aurantium. The comparison

of the protein weights of the two can be seen in Supplementary Table

S4. The contribution ofCitrus aurantium is in theKCNJ11 protein, in

which the edge weight value of Citrus aurantium is greater than that

of Mangifera indica. In addition, two T2DM proteins cannot be

targeted byMangifera indica, namely,MTNR1B and EP300 proteins.

If k = 3, the composition of Angelica sinensis, Citrus aurantium,

andMangifera indicahad the highest score, 5.7763 (51.1%), and there

were 12 T2DM proteins (57.1%) that could be traced. A summary of

the 10 best Jamu formula candidates can be seen in Supplementary

Table S5. Supplementary Table S5 shows several Jamu formulas that

have the same score. The plant compositions target the same T2DM

protein and have the same edge weights. For a composition of three

plants, the Jamu formula scores are approximately 50% of the

maximum score, and all of them targeted 12 T2DM proteins.

If k = 4, the herbal formula candidates with the highest score are

Angelica sinensis, Citrus aurantium, Glycyrrhiza uralensis, and

Mangifera indica, with a score of 6.13 (54.2%), and there are

13 T2DM proteins (61.9%) that can be targeted. The 10 best

candidates can be seen in Supplementary Table S6. The highest

score for the composition of the three plants was the combination of

Angelica sinensis, Citrus aurantium, andMangifera indica, which can

target 12 T2DM proteins. For k = 4, the composition reappeared as a

candidate for herbal medicine with the highest score, plus the plant

Glycyrrhiza uralensis. It shows that one new protein can be targeted

by Glycyrrhiza uralensis but cannot be targeted by the other three

plants. Glycyrrhiza uralensis consistently appeared in all 10 candidate

herbs, meaning that of the four plant combinations, only Glycyrrhiza

uralensis targeted a T2DM protein that neither did the other three. If

traced back from the T2DMprotein to the information stored in each

plant, it was seen that the TCF7l2 protein was only targeted by

Glycyrrhiza uralensis.

The limitation of this study is that it can only be used up to a

composition of four plants. Doing a combination of five plants

without reducing the number of plants will take much time. When

the combination is one plant, it only takes 0.005 s for the program to

finish. The combination of the two plants takes 0.34 s. Combinations

of three and four plants take 253 s and 33,214 s, respectively. The

comparison of the increase in program execution time is

comprehensively shown in Table 4. This problem can be

overcome by using parallel computing, which is beyond the scope

of this study.

Best composition of Jamu formula

The experiment results showed that the plant combinations

were obtained from two plant combinations to four plant

combinations. The best of each composition of plants can be

seen in Table 5. The composition of the two plants consists of

TABLE 4 Execution time for composition k plants.

Combination/Composition k Time to k (sec) Time
to- (k+1)/(k) (sec)

1 0.005 68

2 0.34 744.11

3 253 131.28

4 33214 —

TABLE 5 Best results of the composition of plants for the Jamu formula.

Composition of plant Latin name Formula score

2 Citrus aurantium, Mangifera indica 5.26512

3 Angelica sinensis, Citrus aurantium, Mangifera indica 5.77630

4 Angelica sinensis, Citrus aurantium, Glycyrrhiza uralensis, Mangifera indica 6.13136
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Citrus aurantium and Mangifera indica with a total formula

score of 5.26512. In formulas for three and four plants, Citrus

aurantium and Mangifera indica plants also existed. It can be

concluded that Citrus aurantium and Mangifera indica plants

dominate the Jamu formulas for two, three, and four plants.

The best results from the four plant compositions are Angelica

sinensis, Citrus aurantium, Glycyrrhiza uralensis, and Mangifera

indica. From the literature study, all the mentioned plants had the

potential to be used as T2DM treatments. Li and Chen (2007) and Li

et al. (2007) research analyzed the effects of Angelica sinensis

polysaccharides on diabetic rats. The results showed that

polysaccharides contained in Angelica sinensis could not only

significantly reduce blood glucose levels but also improve the

clinical symptoms of T2DM in the rats. Jia et al. (2015), which

conducted research on the effects of Citrus aurantium in diabetic

mice, reported that neohesperidin derived from Citrus aurantium

helped increase oral glucose tolerance and insulin sensitivity as well as

decrease insulin resistance in the diabetic mice. Moreover,

aromatherapy produced from Citrus aurantium extracts also

helped to relieve anxiety and fatigue in T2DM patients (Abdollahi

and Mobadery 2020). Glycyrrhiza uralensis can also be used for

T2DM treatment and prevention because of its flavonoids containing

α-glycosidase and PTP1B inhibitory activities. Both inhibitions have

been suggested as potential therapeutic targets for drug discovery for

T2DM patients (Guo et al., 2015). As for Mangifera indica, Ngo et al.

(2019) showed that its leaves extract contained potential

hypoglycemic and antioxidant properties, which could be

beneficial for T2DM patients, by inhibiting a starch digestive

enzyme, possessing glucose uptake capacity and adsorption, and

suppressing the production of nitric oxide, which its high level could

cause diabetes complications. Further research is needed to verify and

determine the potential efficacy of Jamu composition using Angelica

sinensis, Citrus aurantium, Glycyrrhiza uralensis, and Mangifera

indica plants.

Conclusion

Bipartite graph search optimization with branch and bound

algorithms for predicting Jamu formulas can reduce computation

time. The complete search strategy has the worst-case and best-

case complexities of O(Tk), where T is the number of plant data,

and k is the number of plant combinations. The branch and

bound algorithm has the worst-case complexity of O(Tk) and the

best-case of O(T). Although the worst case is the same, the

branch and bound algorithm achieves faster computation time.

In this study, we found that the best branching strategy is the

binary strategy t and the best search strategy are BrFS and DFS.

The proposed method suggests that the potential plant

composition for the type II diabetes mellitus Jamu formula

comprises Angelica sinensis, Citrus aurantium, Glycyrrhiza

uralensis, and Mangifera indica. We note that this

composition requires experimental validation, which is beyond

our current scope. In addition, Citrus aurantium and Mangifera

indica plants dominate the three- and four-plant composition for

Jamu formulas. This approach is expected to be an alternative

way to discover the Jamu formula more accurately.
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