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Background: More and more studies are focusing on the adverse effects and

damage caused by PPI abuse, we carried out a systematic review and meta-

analysis for assessing whether the proton pump inhibitor (PPI) leads to hepato-

biliary-pancreatic cancer.

Methods: PubMed, EMBASE and Web of Science were searched until 1 July

2022, 25 studies (17 case-control and 8 cohort studies; 2741853 individuals)

included in this study. Pooled Odd Ratios (ORs) were used for random effect

models. Sensitivity analysis and dose-response analysis, subgroup analysis were

all conducted.

Results: The aggregate OR of the meta-analysis was 1.69 (95% confidence

interval (CI): 1.42–2.01, p = 0.01) and heterogeneity (I2 = 98.9%, p < 0.001) was

substantial. According to stratified subgroup analyses, the incidence of hepato-

biliary-pancreatic cancer was associated, expect for study design, study quality

and region. Risk of hepato-biliary-pancreatic cancer is highest when people is

treated with normal doses of PPI. The risks decrease and become insignificant

when the cumulative defined daily dose (cDDD) increases.

Conclusion: The use of PPI may be associated with an increased risk of hepato-

biliary-pancreatic cancer. Hence, caution is needed when using PPIs among

patients with a high risk of hepato-biliary-pancreatic cancer.
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Introduction

Proton pump inhibitors have been the most widely used

drugs since the 1980s for treating gastroesophageal reflux disease

(GRED), H. pylori infection, Zollinger-Ellison syndrome and a

number of other diseases caused by hyperacidity irreversibly

inhibiting H+/K+-ATPase in stomach cell (Targownik et al.,

1528). These diseases usually require long-term treatment, which

leads to the consequence of overdose and adverse effects. Current

research suggests that changes in the gut microbiome and

dysbiosis are closely related to the development of malignant

tumors (Xia et al., 1471; Zhu et al., 1476; Huang et al., 1557), and

that PPI can alter the pH of the digestive tract, affecting normal

cell metabolism and flora migration, causing abnormal

metabolism in adjacent organs and producing carcinogenic

inflammatory factors, leading to tumor development (Jang

et al., 1536; Imhann et al., 1468).

Hepato-biliary-pancreatic cancers, as the most important

malignant tumors of the abdomen, are characterized by the

influence of microbiome of hepatopancreatic ampulla and

biliary tract and are significantly more difficult to treat and

have a poorer prognosis than other malignant tumors (Mao

et al., 2021; Wheatley et al., 1532; Nadeem et al., 2021). Although

some studies have suggested that PPIs can induce tumors in the

liver, gallbladder and pancreas by affecting duodenal and biliary

tract microbiome (Blackler et al., 2015; Yang et al., 2020), the

current clinical studies are not sufficient to support this opinion.

Hence, and high-quality evidence of an association between the

use of PPI and hepato-biliary-pancreatic cancer is needed.

Therefore, evidence is needed to help doctors address the

adequacy of the prescription and the patient’s dose

abnormalities during treatment.

We have clarified the association between PPI and risk of

hepato-biliary-pancreatic cancer by including known studies in

this meta-analysis. We likewise evaluated whether the risk of

hepato-biliary-pancreatic cancer aggravates when the dose of PPI

increases.

Methods

Search strategy

This study is based on the aloe system assessment and

analysis criteria (PRISMA) and the optional reporting items in

the Corcoran manual (Supplementary Appendix S1). This

research plan registered in the international prospective

systematic evaluation register is NO. CRD 420211103, and

can access the PubMed, EMBASE and web of science

databases, research collections of proton pump inhibitors and

hepato-biliary-pancreatic cancer, as well as comparative studies,

this was done by the two researchers themselves. The search

strategy is set out (Supplementary Appendix S2). In order to

identify other articles, additional manual searches were

conducted for references in research reports and related reviews

Inclusion and exclusion criteria

Including criteria: (Targownik et al., 1528) Observational

studies with a history of PPI drug use as an intervention and

pancreatic cancer, bile tract cancer, and hepatocellular as

outcome indicators, including case-control (pooled analysis of

nested case-control and case-control studies) or cohort studies

(pooled analysis of cohort studies); (Xia et al., 1471) Exact

records of PPI users; (Zhu et al., 1476) Defined results of

pancreatic, liver and biliary carcinoma; (Huang et al., 1557)

Odds ratio (OR), Relative risk (RR) and hazard ratio (HR)

reported for selected neoplasms and 95% CI.

Excluding criteria: (Targownik et al., 1528) literature review

or comments; (Xia et al., 1471) evaluate cancer recurrence or

survival. We did not exclude based on the quality of the literature;

therefore, no studies were excluded due to poor study design or

low data quality.

Data extraction

Two auditors independently examined titles meeting the

including and excluding criteria and examined whether the

information of study is insufficient. Subsequently, the full text

of the selected articles was evaluated and two auditors extracted

critical information which includes first author, year of

publication, region/country, study design, exposure definition,

cDDD independently. Any disagreement has been resolved by

consensus between the two auditors or arbitrated by the third

auditor. The quality of the observational studies was assessed by

two authors using the Newcastle-Ottawa scale.

Data analysis and integration

ORs were used as a common measure of association between

studies. Statistical analyses were performed using R (4.2.1). We

derived aggregated risk estimates, which were expressed with

95% CI in total hepato-biliary-pancreatic cancer and in each

cancer. Random effect models were used to take into account the

heterogeneity of aggregate estimates. We used Cochran Q test to

evaluate heterogeneity between studies, quantified using Cochran

Q and I2 statistics.

Subgroup analysis and meta-regression was performed

(classification by study design [case-control or cohort), region

(Western or Asia), and the Newcastle-Ottawa Scale (NOS) score

(<7 or ≥7)].
We also investigated a potential nonlinear dose-response

relationship between cDDD and hepato-biliary-pancreatic
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cancer via restricted cubic splines and fractional polynomial

models reported in Bagnardi et al. (1093). Dose-response

study was conducted by mean cDDD values reported in the

included articles.

Results

Description of included studies

The electronic searches resulted in 726 titles, of which

25 studies met the inclusion criteria for the meta analysis.

4 article did not meet the inclusion criteria for meta-analysis

because they were review articles, the flowchart of study selection

was demonstrated in Figure 1. 25 articles and a population of

2741853 individuals were finally included in our analysis, an

article of these contains 2 population-based studies (Primary

Care Clinical Informatics Unit [PCCIU] and UK biobank

studies) which has different study designs, many of the

original studies included in this analysis had different

subgroup analyses. Therefore, we analyzed them separately in

our article. Supplementary Table S1 provides the details of the

study characteristics. Supplementary Table S2 demonstrates the

quality assessment and New-castle Ottawa scale scores of the

included studies. Scored 7 is considered as high-quality in our

study.

Association between proton pump
inhibitor use and hepato-biliary-
pancreatic cancer

All of the 25 studies (17 cases control (Bradley et al., 2012;

Bosetti et al., 2013; Lai et al., 2013; Lai et al., 2014; Risch et al.,

2015; Chien et al., 2016; Kearns et al., 2017; Valente et al., 2017;

Peng et al., 2018a; Peng et al., 2018b; Hicks et al., 2018; Shao et al.,

2018; Tran et al., 2018; Xiong et al., 2020a; Xiong et al., 2020b; Lee

et al., 2020; Lassalle et al., 2022) and 8 cohort studies (Boursi

et al., 2017; Hwang et al., 2018; Li et al., 2018; Kao et al., 2019;

Brusselaers et al., 2020; Lin et al., 2020; Kamal et al., 2021; Kim

FIGURE 1
A flow diagram demonstrating the search strategy and study selection process for this study.
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et al., 2022) contained association between PPIs and hepato-

biliary-pancreatic cancer risk. Results from both cohort and case-

control studies were reported in two studies (Kearns et al., 2017;

Tran et al., 2018), four studies report an association between PPI

and multiple tumors (Chien et al., 2016; Xiong et al., 2020a; Lee

et al., 2020; Kamal et al., 2021). An aggravated risk and the

subgroup analysis by the types of pooled estimates indicated that

the pooled estimates were similar numerically and can be seen in

Figure 2, with significantly increased risks in studies reporting

ORs (OR = 1.69, 95%CI:1.42–2.01). I2 > 50% was found by

heterogeneity test, we identified evidences of publication bias by

the visual the results of Egger test (p < 0.001) (Supplementary

Figure S1), corrected (OR = 1.26 95% CI: 1.05–1.52) after adding

13 studies by subtractive complementation using trim and

filling method. The heterogeneity was obvious (Cochran’s

Q = 4478.36, I2 = 98.9%, p < 0.001). Subgroup analysis and

meta-regression in different subgroups were performed

(Supplementary Table S3). Differences in study design,

FIGURE 2
Forest Plot of Studies analyzing relationship between long-term PPI use and Hepato-Biliary-Pancreatic cancer.
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region, and NOS score were not sources of heterogeneity. An

overall sensitivity analysis revealed that the heterogeneity

originated from the study of Brusselaers et al. (2020) and

Lassalle et al. (2022) and Shao et al. (2018) (Supplementary

Figure S2), a rereading of these studies revealed that the

Brusselaers’ study was biased by a smaller sample size, while

the latter two were biased by different definitions of long-term

PPI use. When these studies were excluded and re-analyzed, it

was found that I2 < 50%.

Proton pump inhibitor use and different
cancers

A total of 12 studies reported the risk of liver cancer (3 studies

reported intrahepatic bile duct cancer as an outcome and 9 studies

reported the risk of hepatocellular carcinoma), which were

analyzed separately and found that long-term PPI use increased

the risk of liver carcinoma (OR = 1.69, 95% CI: 1.37–2.08),

hepatocellular carcinoma (OR = 1.69, 95% CI: 1.30–2.20) were

at risk of development. six case-control studies and five cohort

studies (one case-control study reported the results of the cohort

study) showed a significant association between long-term PPI use

and the development of liver cancer when subgroup analysis was

performed (OR 1.91, 95%CI:1.48–2.46 for case-control, OR= 1.51,

95% CI: 1.09–2.07 for the cohort study), and the risk of increased

incidence of liver cancer after long-term PPI use was found in

different geographical regions (Asia: OR = 1.75, 95%CI: 1.39–2.21;

Western: OR = 1.66, 95% CI: 1.30–2.13) (Supplementary

Table S3).

A total of 4 studies reported the risk of long-term PPI use and

the risk of biliary system carcinoma, of which 2 reported the risk

of gallbladder cancer (OR = 1.63, 95% CI: 1.31–2.04) and

3 reported the risk of intrahepatic and extrahepatic biliary

tract cancer (OR = 1.83, 95% CI: 1.60–2.09), respectively,

while the long-term use of PPI was associated with the overall

risk (OR = 1.79, 95% CI: 1.63–1.97), and long-term PPI use was

significantly associated with the overall biliary tract cancer (OR =

1.79, 95% CI: 1.63–1.97).

15 studies (13 case-control, 2 cohort studies) showed that

long-term use of PPI drugs increased the risk of developing

pancreatic malignancies (OR = 1.61, 95% CI: 1.23–2.11) and that

PPI uses increased the incidence of pancreatic tumors in different

geographical populations (Asia: OR = 1.67, 95% CI: 1.29–1.77;

Western: OR = 1.45, 95% CI: 1.17–1.78).

Cumulative defined daily dose, duration of
proton pump inhibitor uses, and cancer
risks

The WHO developed the anatomical therapeutic chemical

(ATC) classification system in 1969, which established the

defined daily dose (DDD) as the unit of medication frequency

analysis. It is defined as the average daily dose of a drug used for

the primary therapeutic purpose in adults (Lei et al., 2021).

Information on hepato-biliary-pancreatic cancer risks

correlated with cDDD of PPIs was provided in ten studies

(Figure 3).

In order to better assess the association between cDDD and

hepato-biliary-pancreatic cancers, we analyzed the association

between cDDD and overall tumor risk in a comprehensive

manner. The association of dose change with the risk of

pancreatic cancer, hepatocellular carcinoma and biliary tract

cancer was then analyzed separately.

Fourteen studies provided information on hepato-biliary-

pancreatic cancer risks correlated with cDDD of PPIs.

The OR was highest at about 500 cDDD/per patient

(Figure 3A), which may mean that long-term normal dose of

PPI use makes the risk of malignant tumor development

significantly higher. The OR declined and became not

apperant at around 1400 cDDD per patient or higher. The

risk of hepatocellular and pancreatic cancers is highest at a

cDDD of 300–400, while the risk of bile duct cancer is highest

at a cDDD of about 120. The results of the dose-response study

for hepatocellular carcinoma and pancreatic cancer were similar

to the overall results.

Discussions

Current guidelines for GERD, hemorrhagic ulcers and H.

pylori infection use IPPs as the drug of choice, but PPI also

have the potential to alter the structure of upper

gastrointestinal pH, which has potential links to previous

studies on the pathogenesis of hepato-biliary-pancreatic

cancer, and our study supports the view that excessive use

of PPI increases the risk of hepato-biliary-pancreatic cancer.

This may lead clinicians to be more careful in choosing

indications and to control the dose of the drug so that the

disease population is treated properly without worrying about

increased tumor risk.

After analyzed 25 studies using a random effects model,

including a total of 2741853 patients. This meta-analysis aimed

to clarify that long-term use of PPI may increase the risk of

hepato-biliary-pancreatic cancer.

Based on the results of our study, a normal dose of PPI is

associated with an increased risk of developing hepato-biliary-

pancreatic cancer. However, as the dose increases, the positive

correlation between the two diminishes (cDDD > 2000/per

patient).

Several mechanisms suggest a potential oncogenic effect of

PPI in hepato-biliary-pancreatic cancer. These effects include

an increase in levels of abnormal gastrointestinal hormones

and intestinal microbiota, as well as the production of

carcinogens.

Frontiers in Pharmacology frontiersin.org05

Zhou et al. 10.3389/fphar.2022.979215

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.979215


Abnormal levels of gastrin and
cholecystokinin

Prolonged use of PPI leads to a rise in gastric pH and an

increase in gastrin production by G-cells with negative feedback.

In addition to stimulating the secretion of digestive glands and

accelerating nutrient absorption, gastrin seems to induce the

development and growth of gastrointestinal cancers by binding

to CCK-BR on the surface of the enterochromaffin-like cells

(ECL) (Smith et al., 1995). In hepatocellular carcinoma, CCK-BR

and a precursor form of gastrin are expressed in tumor cells

(Caplin et al., 1999), and this expression may be associated with

apoptosis (Savage et al., 2006). Gastrin-releasing peptide

promotes hepatocellular carcinoma cell growth not only by

interacting with homologous receptors of gastrin-releasing

peptide co-expressed in tumor cells but also by activating the

mitogen-activated protein kinase/extracellular signal-regulated

kinase 1/2 (MAPK/ERK1/2) pathway through a non-dependent

mechanism of the epidermal growth factor receptor (EGFR)

(Savage et al., 2006), it can also inhibit the growth of normal

liver cells by blocking the activation of ER (Li et al., 2013). A

DNA vaccine targeting gastrin-releasing peptide has been shown

to inhibit the growth of blood vessels in liver tumors and to

destroy tumor cells (Meko’o et al., 2014; Stubbs et al., 2002).

However, in cholangiocarcinoma, gastrin appears to have the

opposite effect to that of hepatocellular carcinoma, inhibiting the

proliferation of cholangiocarcinoma cells and inducing apoptosis

via the Ca2+ dependent protein kinase C (PKC)-α pathway

(Kanno et al., 2001). However, when gastrin receptors are the

target of pancreatic cancer treatment, specific antagonists can

inhibit the growth of pancreatic cancer cells by blocking the

cellular stimulatory effect of gastrin. Current clinical studies have

demonstrated that these drugs have the potential to prolong

survival and are no less effective than conventional treatments for

pancreatic cancer (Chau et al., 2006), however, further research is

needed on their safety and long-term efficacy (Morisset et al.,

2004).

A current study has proved long-term PPI use may pose a

risk for gallbladder dysfunction and biliary complications (Cahan

et al., 2006), a retrospective analysis of stone recurrence in

patients after endoscopic retrograde cholangiopancreatography

(ERCP) found that PPI may pose a risk for recurrence of

common bile duct stone (CBDS) in ERCP patients (Fukuba

et al., 2017). Long-term PPI use may be associated with the

abnormal secretion of CCK, a gastrointestinal peptide released

from the upper part of the small intestine, which has a similar

peptide structure to gastrin. CCK has functions that include

stimulation of intestinal motility, stimulation of pancreatic

FIGURE 3
Dose response curve of Studies analyzing relationship between long-term PPI use and Hepato-Biliary-Pancreatic cancer. [(A) Hepato-Biliary-
Pancreatic cancer. (B) biliary tract cancer. (C) hepatocellular carcinoma. (D) pancreatic cancer].
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enzyme secretion, and stimulation of gastric acid secretion

(Rehfeld, 2017). Its primary function is to trigger gallbladder

emptying by binding to the CCK A-type receptor (CCKAR) and

mediating the activation of post-membrane signaling pathways

in smooth muscle, defects in CCKAR are a key point of

impairment of gallbladder motility, which in turn may form

the background for GBC (Suzuki et al., 2001; Best Practice &

Research Clinical Endocrinology &Metabolism, 2008), abnormal

level of CCK results in reduced or delayed postprandial

gallbladder contraction, leading to bile stagnation and creating

an environment for cholesterol supersaturation and subsequent

gallstone formation (Savage et al., 2006; Meko’o et al., 2014;

Stubbs et al., 2002; Kanno et al., 2001; Chau et al., 2006). Both

CCK and its receptor CCKAR are important in the pathogenesis

of biliary tract tumors, CCK is currently thought to exhibit

growth-stimulating effects on biliary tract-derived cancer cell

line (Lee et al., 1989), an analysis of the biliary tract tumor in

Shanghai, China, found that women with the CCKAR genotype

were at increased risk of gallbladder cancer, and biliary

tumorigenesis may be inhibited when CCKAR is in an

antagonistic state (Ogura et al., 2002). However, CCKAR

receptors are more highly expressed in patients with

cholelithiasis than in the normal population, while CCKAR

expression is reduced in patients with GBC (Faridi et al.,

2015), it may be because CCK remains chronically high in CA

patients, leading to a decrease in receptor number and activity

responsiveness. However, Kazmi observed a significant increase

in CCKARmRNA and protein expression in GBC tissues (Kazmi

et al., 2014). Furthermore, gastrin or CCK showed a definite

growth stimulating effect on biliary tract-derived cancer cell

lines, and CCKAR and CCK-BR mRNA were detected in all

biliary and pancreatic cancer (Jang et al., 2005). CCK also has a

pro-pancreatic function in the normal gastrointestinal

environment, and high CCK levels have been found to

stimulate abnormal pancreatic growth and promote early

carcinogenesis and malignant tumor growth by binding to

CCKAR, pro-carcinogenic effect of CCK can be inhibited by

antagonizing CCKAR (Smith et al., 1990). Although CCKR

expression has been widely reported in many tumors (Caplin

et al., 1999), relevant studies have shown that none of the cancer

samples had statistically higher CCKR expression than all normal

samples (Roy et al., 2016). Therefore, the association between

CCK and Hepato-biliary-pancreatic cancer still needs to be

further investigated (Srivastava et al., 2008).

Abnormal gut microbiota

The distribution of microorganisms in the gastrointestinal

tract depends mainly on the pH gradient and the abundance of

oxygen, and the changes in pH due to long-term PPI use are

limited to the duodenum and proximal small intestine (Michalek

et al., 2011), this part of the gastrointestinal tract is more closely

related to the hepatobiliary and pancreas, bacteria may enter the

body circulation through portal vein transfer and activate pro-

inflammatory pathways organs (Gagnaire et al., 2017), which

may induce solid tumor growth if these pathways are activated

over time (Mantovani et al., 2008). When the inflammatory

pathway is activated, it may lead to the abnormal metabolism

of bile acids, thus inducing cholestatic liver cancer (Singh et al.,

2018). Bacteria can disrupt the normal DNA repair by producing

toxins and alter the bile acid metabolism process by enzymes on

the surface of bacteria, thus leading to local inflammation and

vascular proliferation in the tissues and increasing the possibility

of biliary tract stone formation, which are potential biliary tumor

carcinogenic mechanisms (Ward et al., 1994; Lara-Tejero and

Galán, 2000; Haghjoo and Galán, 2004).

Long-term PPI reduces gastrointestinal microbial diversity

by blocking gastric acid secretion and affecting gut microbiota

diversity (Jackson et al., 2016; Zhernakova et al., 2016), it can

increase the growth of potentially pathogenic bacteria such as

Clostridium difficult, Enterococcus, Streptococcus,

Staphylococcus, and E. coli (Jacobs et al., 2013; Su et al.,

2018), as well as the disruption of the intestinal barrier and

the alteration of intestinal permeability, these changes in the

normal structure and microbiota can lead to excessive

accumulation of lipopolysaccharides (LPS) and increased

levels of deoxycholic acid in the tumor microenvironment,

and hyper-deoxycholic acidemia can induce the development

of HCC by damaging DNA (Bindels et al., 2012), LPS promotes

HCC pathogenesis and metastasis and affects prognosis by

upregulating toll-like receptor (TLR4) expression, thereby

increasing cell proliferation, inhibiting apoptosis and

producing a specific systemic inflammatory response.

Activation of TLR2 by lipid wall phosphate in bacteria and

ursodeoxycholic acid leads to upregulation of the senescence-

associated secretory phenotype (SASP) and cyclooxygenase 2

(COX-2), which mediates prostaglandin 2 inhibition of

antitumor immunity via EP4 receptors, thereby inducing HCC

progression (Yoshimoto et al., 2013).

As an important secretory organ of the body, the pancreas

requires the assistance of intestinal microorganisms for the

application of its digestive enzymes. The antimicrobial activity

of pancreatic fluid protects the pancreas from retrograde

infection and contributes to the diversity of the gut

microbiota. However, intestinal microorganisms can reach the

pancreas via the circulatory system or the biliary/pancreatic duct,

especially in the case of abnormal gut microbiota (Fritz et al.,

2010). The current study suggests that the abnormal distribution

of Enterococcus faecalis and Escherichia coli may be associated

with the progression of pancreatic tumors associated with

pancreatitis (Maekawa et al., 2018). Microorganisms promote

tumor development, invasion and migration by activating the

inflammatory response, increasing pro-inflammatory cell

recruitment and cytokine secretion, increasing exposure to

oxidative stress, altering energy dynamics, and damaging
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DNA, ultimately leading to molecular alterations and tumor

transformation. In addition, chronic inflammation caused by

non-pathogenic bacteria can induce the production of

angiogenic factors, which increase the oxygen as well as

nutrient supply to tumor and directly accelerate cancer cell

growth. Alterations in several molecular mechanisms:

oncogene mutations, oncogene inactivation, loss of

heterozygosity, and chromosomal and microsatellite

instability are also involved in inflammation-mediated

oncogenesis. Cells within the microenvironment control

tumor growth through the production of autocrine,

paracrine, and endocrine mediators (Morgillo et al., 2018). It

is believed that abnormal gut microbiota is an important cause

of weight-related tumors, weight abnormalities aggravate the

homogeneity of the gut microbiota by increasing deoxycholic

acid production, which can lead to DNA damage, and activate

the K-RAS pathway to induce pancreatic cancer (Schulz et al.,

2014). LPS on the cytosolic surface of bacteria are involved in

the progression and invasion of pancreatic cancer through a

cascade reaction generated by LPS-TLR, but no studies have

shown this mechanism increases the risk of pancreatic cancer

(Yu et al., 2010; Dapito et al., 2012; Mishra et al., 2016).

Bile acid concentrations in the digestive tract are significantly

higher in GERD patients receiving long-term PPI therapy than in

healthy individuals (Stamp, 2002), Bile acids can directly disrupt

the plasma membrane and cause activation of the PKC and

p38 MAPK pathways, which result in a cascade reaction that

activates the downstream IL-6 and Janus kinase (JAK)—signal

transducer and activator of transcription 3 (STAT3) pathways,

then leading to HCC (Nag et al., 2013), and persistently high bile

acid levels can stimulate the development of HCC (Kong et al.,

2016).

Insufficient gastric acid leads to microbiota translocation and

overgrowth in the digestive tract leading to dysbiosis, and an

increased pH leads to bacterially catalyzed N- nitrosamine

leading to nitrosamine reduction and rapid nitrosamine

production in the lumen. Faster nitrosation triggers the

production of potentially carcinogenic N-nitrosamines in the

digest tract (Yeomans et al., 1995). The association between

nitrosamines and various types of cancer has been extensively

studied (Mirvish, 1995). The association between nitrosamines

and various types of cancer has been extensively studied (Rustagi

and Dasanu, 2012), which can increase the risk of pancreatic

cancer by affecting β2-AR signaling and upregulating HIF-1α
expression (Zhang et al., 2016), it also caused DNA damage and

decreased repair capacity in the pancreatic duct epithelium in

synergy with glucagon (Howatson and Carter, 1987; Risch, 2012),

however, a meta-analysis of the association between nitrosamine

exposure and pancreatic cancer development did not report a

direct association (Zhou et al., 2012; Fritschi et al., 2015). In

hepatocellular carcinoma, nitrosamine induces apoptosis in

human normal liver cell lines through endogenous and

exogenous pathways of caspases (García et al., 2009),

nitrosamine has been shown to induce hepatocellular

carcinoma in mouse models (Balaraman et al., 2021).

Therefore, it is reasonable to assume that nitrites produced by

gut microbiota disorders have varying degrees of induction in

Hepato-biliary-pancreatic cancer.

Long-term abnormal hormonal stimulation, decreased

diversity of gut microbiota, production of carcinogenic

substances, chronic inflammation, and activation of tumor

pathways may all be biologically linked to long-term PPI

use, and therefore the amplification of these biological

mechanisms and the synergy between them should be

further investigated and patients on long-term PPIs and with

high risk factors for hepato-biliary-pancreatic cancer should

have regular medical check-ups.

However, there is still a proportion of studies showing

synergistic effects of PPI on chemotherapeutic agents for

tumors. For example, PPIs show dose-dependent antitumor

effects on esophageal cancer cells and breast cancer cells and

enhance the sensitivity of tumor cells to chemotherapeutic

agents (Matsumura et al., 1410; Ihraiz et al., 2020). This

may be due to the fact that PPI cause acidification of the

tumor microenvironment, which induces apoptosis, inhibits

tumor cell migration and enhances the chemo-sensitivity of

tumor cells (Falcone et al., 2016). However, no studies have

shown a coordinated effect of PPIs on the chemotherapy of

hepato-biliary-pancreatic cancers, therefore a lot of basic

research is still needed to investigate the association

between them.

Potassium-competitive acid blockers (P-CABs) are

theoretically superior to PPIs due to its pH stability in

digestive tract and long half-life period (Rettura et al., 2021),

and have been shown to be non-inferior to PPIs for acid-related

disorders in many clinical trials (Komori et al., 2019; Sunwoo

et al., 2020). The efficacy and safety of potassium-competitive

acid blockers should therefore be the focus of more research in

the future. But at present, the great benefits of PPI treatment for

patients appear to outweigh the risks of cancer. This risk of

cancer can be avoided by following up high-risk patients and

stopping PPI in time.

Limitations

Although the results of this study corroborate the conclusion

that long-term PPI may increase the risk of hepato-biliary-

pancreatic cancer. However, there are still some shortcomings:

if some measurement uniformities were available, we could have

performed a dose or response duration analysis to evaluate the

linear relationship, which would have helped quantify the

association more accurately. and the dose and duration

inconsistencies mentioned above may have contributed to this

heterogeneity. Third, the relationship between long-term PPI use

and biliary system cancer may be biased, the bias may be caused by
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the number of cDDD in the studies. In addition, the meta-analysis

included only studies published in English, with smaller studies

with cumulative results often unpublished, leading to potential

biases.

Conclusion

In conclusion, the results of this study corroborate the argument

that the risk of hepatobiliary and pancreatic cancer is higher among

IPP users. Whether the risk of cancer development was analyzed for

hepato-biliary-pancreatic cancer or for single cancers, there was a

positive correlation between the risk of tumor development and low

doses, the risk of tumor development was highest at normal doses.

However, no further increase in tumor risk was found with higher

cumulative defined daily dose. Hence, further studies are needed to

clarify and validate the mechanism. However, health professionals

should carefully consider the prescription of PPI for patients at high

risk of hepato-biliary-pancreatic cancer and control the misuse of

medications.
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