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Background: Increasing evidence has demonstrated that there was a strong

correlation between COVID-19 and idiopathic pulmonary fibrosis (IPF).

However, the studies are limited, and the real biological mechanisms behind

the IPF progression were still uncleared.

Methods: GSE70866 and GSE 157103 datasets were downloaded. The weight

gene co-expression network analysis (WGCNA) algorithms were conducted to

identify the most correlated gene module with COVID-19. Then the genes were

extracted to construct a risk signature in IPF patients by performing Univariate and

Lasso Cox Regression analysis. Univariate andMultivariate Cox Regression analyses

were used to identify the independent value for predicting the prognosis of IPF

patients. What’s more, the Kyoto Encyclopedia of Genes and Genomes (KEGG),

GeneOntology (GO), and gene set enrichment analysis (GSEA) were conducted to

unveil the potential biological pathways. CIBERSORTalgorithmswere performed to

calculate the correlation between the risk score and immune cells infiltrating levels.

Results: Two hundred thirty three differentially expressed genes were

calculated as the hub genes in COVID-19. Fourteen of these genes were

identified as the prognostic differentially expressed genes in IPF. Three (MET,

UCHL1, and IGF1) of the fourteen genes were chosen to construct the risk

signature. The risk signature can greatly predict the prognosis of high-risk and

low-risk groups based on the calculated risk score. The functional pathway

enrichment analysis and immune infiltrating analysis showed that the risk

signature may regulate the immune-related pathways and immune cells.

Conclusion:We identified prognostic differentially expressed hub genes related

to COVID-19 in IPF. A risk signature was constructed based on those genes and

showed great value for predicting the prognosis in IPF patients. What’s more,

three genes in the risk signature may be clinically valuable as potential targets

for treating IPF patients and IPF patients with COVID-19.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is themost common form of

chronic interstitial lung disease and accounts for 25%–30% of

interstitial lung disease (Richeldi et al., 2014; Poletti et al., 2018).

The primary symptoms of IPF are cough, breathlessness, restricted

lung function, impaired gas exchange, and progressive lung damage

(Martinez et al., 2017; Sgalla et al., 2018; Spagnolo et al., 2021). Studies

have shown that the incidence, disability, and mortality rates of

idiopathic pulmonary fibrosis are continuing to increase, with an

annual incidence of between 3 and 18 per million in North America

and Europe (American Thoracic Society, 1999; Ley and Collard, 2013;

Hutchinson et al., 2015). Although there are differences in the

pathogenesis of each individual with IPF, a growing number of

studies have found that the prognosis for IPF was poor, with a

median survival of only 3–5 years (Fernández Pérez et al., 2010;

Esposito et al., 2015; Vancheri, 2012). Unfortunately, patients with IPF

have limited treatment options, with lung transplantation being the

only treatment effective. Although it can greatly improve patient

survival, it is still challenging to universalize due to limited donors.

COVID-19 is an acute respiratory infectious disease caused by

a novel coronavirus severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) (Acter et al., 2020). Patients infected with SARS-

CoV-2 experienced severe lung infection and damage, which may

lead to pulmonary fibrosis. COVID-19 and IPF share many

symptoms, including shortness of breath, cough, breathlessness,

as well as weakness, and muscle and joint pain (Wong and Tam,

2004; Shereen et al., 2020; Sohrabi et al., 2020; Martinez et al.,

2021). Some studies have shown a subtle link between pulmonary

fibrosis and COVID-19 (George et al., 2020; Sheng et al., 2020). In

patients with IPF, a large amount of ACE2 accumulates in the

airways, which triggers an acute cough that progresses to

pneumonia. Similarly, the COVID-19 is covered with a

spherical lipid bilayer, with a prominent rim and highly

glycosylated stinger protein, which binds to ACE2 during viral

infection, triggering a sustained release of ACE2 after the invasion

of the cell and infection of the next target cells (Abd El-Aziz and

Stockand, 2020). The imaging features of IPF and COVID-19 have

some similarities while there are still some differences. The HRCT

features of COVID-19-associated pulmonary fibrosis include

thickened interlobular septa, architectural distortion, reticular

opacities, and even traction bronchiectasis or honeycombing,

which is similar to IPF. However, traction bronchiectasis and

honeycombing are more common in IPF and thickened

interlobular septa, and reticular opacities might be reduced in

some patients with COVID-19 after discharge (Raghu et al., 2011;

Hariri et al., 2020; Lu et al., 2020; Guarnera et al., 2021; Li et al.,

2021a). And IPF was identified as one of the most serious risk

factors for COVID-19 (Sheng et al., 2020). Patients with IPF from

COVID-19 infection had a much worse prognosis and faced

complex complications even after recovery from COVID-19

(King et al., 2014; George et al., 2020; Sun et al., 2020).

Therefore, it is imperative to identify new prognostic markers

as well as therapeutic targets for patients with IPF patients and IPF

patients with COVID-19.

Our study was intended to explore the hub genes involved in

COVD-19 as biomarkers correlated to risk stratification in IPF.

Herein, we firstly identified the hub genes involved in the

progression of COVID-19 by performing the WGCNA

algorithm. Then we identified their prognostic values and

expression levels of the hub genes related to COVID-19 in

IPF. Differentially expressed prognostic genes related to

COVID-19 were used to establish a prognostic risk signature

in IPF. Further, differentially expressed genes (DEGs) were

analyzed between high-risk and low-risk groups. Through

computational analysis, we explored molecular mechanisms,

expression regulation, and immune cell infiltration. The aim

of this study was to provide an immunogenomic map of IPF and

to identify key genes associated with survival as candidates for

clinical biomarkers and potential targets of intervention for

curing patients with IPF and IPF with COVID-19.

Materials and methods

The flow chart of this research (Figure 1).

Data collection

The expression profiles of blood samples in 100 COVID-19

patients and 26 non-COVID-19 individuals were extracted from

the GSE157103 dataset on the GEO database (http://www.ncbi.

nlm.nih.gov/geo/). Furthermore, we downloaded expression files

of 196 bronchoalveolar lavages (BAL) samples (176 IPF samples

and 20 normal samples) and related clinical information from the

GSE70866 dataset. Patients with IPF were randomly divided into

a training set (n = 88) and a test set (n = 88). There were no

significant differences in analyzing the clinical variables between

these two sets (Table 1).

WCGNA construction and COVID-19-
related key module identification

We obtained the differentially expressed genes (DEGs)

between COVID-19 and non-COVID-19 at log2 |FC| ≥ 1 and

FDR < 0.05 by R package limma. The expression data of the

DEGs were extracted from GSE157103. Some genes were

excluded when the standard deviation was zero. R package

WGCNA was used to eliminate the genes and samples which

were the outlier after a scale-free co-expression network was

constructed. Details are as follows: the person’s connection grids

and normal linkage strategy were both performed for all pair-

wise genes. Then, a weighted contiguousness lattice was built

utilizing a power capability A_mn = |C_mn|̂β (C_mn = Pearson’s
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relationship among’s Gene_m and Gene_n; A_mn =

contiguousness between gene m and gene n). β was a delicate

thresholding boundary that could delimit or strengthen for

underscoring among genes and punish frail relationships.

After picking the force of six, the nearness was changed into a

topological cross-over grid (TOM), which could quantify the

organization availability of a gene characterized as the amount of

its contiguousness with any remaining genes for network gene

proportion, and the comparing uniqueness (1-TOM) was

determined. To characterize genes with comparative

articulation profiles into gene modules, normal linkage

progressive bunching was directed by the TOM-based

disparity measure with a base size (gene bunch) of thirty for

the genes dendrogram. Moduleeigengenes algorithm was used to

identify the module eigengene values. p-Values < 0.05 and

correlation coefficient > 0.3 (Sun et al., 2020; Cen et al., 2022)

were considered statistically significant, and the modules being

chosen were determined as COVID-19-related crucial modules.

Identification of the hub genes in COVID-
19 and the DEGs related to COVID-19
in IPF

We calculated the correlation between modules and genes to

obtain the GS. Meanwhile, the correlation between module feature

vectors and genes was also calculated to obtain MM. Based on the

cut-off criteria (|MM| > 0.5 and |GS| > 0.1), 233 genes with high

connectivity in the clinically significantmodulewere identified as hub

genes (Tang et al., 2018). DEGs of IPF were identified by the

screening criterion at log2 |FC| ≥ 1 and FDR < 0.05. The

common genes between COVID-19 and IPF were validated by

intersecting COVID-19 hub genes and DEGs of IPF.

Construction of a protein and protein
interaction network

The STRING (http://www.string-db.org/) database was used

to construct the PPI network and explore the interactions

between these common genes.

Construction of COVID-19-related
prognostic signature

Patients with IPF were split up into a training set and a test

set at a ratio of 1:1. We identified COVID-19-related prognostic

DEGs in IPF and developed a prognostic risk signature. Then the

predictive capability was validated in the test set, and total set.

Univariate Cox proportional hazard regression was employed to

confirm the COVID-19-related DEGs with prognostic values of

overall survival. A cut-off p-value < 0.05 was set to prevent

omissions. Afterward, the least absolute shrinkage and selection

operator (LASSO) penalized Cox proportional hazards

regression was employed to avoid overfitting and a prognostic

signature was constructed with the R package glmnet (Wang

et al., 2019). The final model was determined by the value of

penalty parameters(λ) corresponding to the lowest partial

likelihood of deviance. The formula used to calculate the risk

score was as follows: risk score = sum (COVID-19-related

prognostic DEGs expression level × corresponding coefficient).

Subsequently, patients were divided into high-risk and low-risk

groups according to the median risk score. Principal component

analysis was employed to implement by using R package stats.

Predictive power was further validated by Kaplan–Meier survival

curves and the area under the curves (AUCs) by conducting the R

packages survival and survivalROC (Lorent et al., 2014),

respectively.

Functional enrichment analysis

All samples in GSE70866 were divided into high-risk and

low-risk groups according to the prognostic risk score. Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis and Gene Ontology (GO) were performed between

high-risk and low-risk groups by employing the R package

clusterProfiler using the DEGs (log2|FC| ≥ 1 and FDR <
0.05). Furthermore, Gene Set Enrichment Analysis (GSEA)

was also conducted in the Hallmark gene set h. all.v7.4.

symbols.gmt between high-risk and low-risk groups to explore

the key biological pathways of DEGs by GSEA (version 4.1.0). An

adjusted p-value < 0.05 was considered statistically significant.

TABLE 1 The clinical characteristics of different sets.

Characteristics Test (n = 88) Training (n = 88) Total (n = 176) p-Value

Age 1

<70 47 (53.40%) 46 (52.28%) 93 (52.84%)

≥70 41 (46.60%) 42 (47.72%) 83 (47.16%)

Sex 0.17

Female 12 (13.64%) 20 (22.72%) 32 (18.18%)

Male 76 (86.36%) 68 (77.28%) 144 (81.82%)
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Immune infiltrating cells analysis

As a deconvolution algorithm based on RNA-Seq data,

CIBERSORT can estimate the composition ratio of different

immune cells (Newman et al., 2015). We then used the R

package IOBR to calculate the relative proportions of twenty-

one immune infiltrating cells in training cohort according to

the transcriptional data. Wilcoxon rank-sum test was used to

identify the differences in the immune cell infiltration in

high-risk and low-risk groups. p-Value < 0.05 was considered

statistically significant. What’s more, Pearson’s

correlation analysis was conducted to calculate the

correlation between hub genes and different immune

infiltrating cells.

Results

Construction of WGCNA and
identification of COVID-19-related key
module

The differentially expressed genes in COVID-19 and

normal individuals were identified, including 429 up-

regulated genes and 647 downregulated genes (Figure 2A),

then the expression profiles of these DEGs were extracted

from the GSE157103 dataset. Further, we used WGCNA to

analyze the expression profiles of the DEGs to find co-

expressed gene modules. The scale-free topological index

was 0.85 when the soft threshold for COVID-19 was six,

as demonstrated in Figures 2B,C, therefore the network

follows a power-law biological network, and the derived

gene dendrograms and their corresponding module color

was shown in Figures 2D,E. The correlations between each

module and the two phenotypes (health and disease states)

were determined by using hierarchical clustering and

Spearman correlation analyses, and the modules most

relevant to the disease were identified. The heatmap

showed that the blue (r = 0.44, p = 2.3e-7) module was

highly correlated to COVID-19 (Figure 2H). Meanwhile,

the correlation between gene signatures (GS) for COVID-

19 and module membership (MM) in the blue module (r =

0.66, p = 5.8e-38) was also validated the blue module was the

key module associated with the progression of COVID-19.

After that, 233 key genes in the blue module were extracted at

the threshold of GS > 0.1 and MM > 0.5. the results of the GO

and KEGG pathway enrichment demonstrated that these

233 genes mainly enriched in the biological

pathways involved in cell proliferation,

immunomodulation, and energy metabolism,

including DNA replication, nuclear division, p53 signaling

pathway, cell cycle, ATPase activity, and immunoglobulin

binding.

Identification of COVID-19-related
prognostic DEGs in IPF

Based on the log2 |FC| ≥ 1 and FDR < 0.5, a total of

14 differentially expressed genes were identified from the

233 COVID-19-related genes in IPF samples. Among which

were thirteen up-regulated genes (BIRC5, UBE2C, GTSE1,

KIF4A, CDC25C, BHLHA15, UCHL1, PIMREG, MET,

CENPI, ERCC6L, LAMC1, NEIL3) and one downregulated

gene (IGF1). What’s more, eight of these thirteen genes were

correlated to the overall survival in the Univariate Cox regression

(Figures 3A,B), and the heat map showed that the expression

difference between IPF samples and matched normal samples

(Figure 3C). The protein and protein interaction network and

correlation heat map exhibited the interactive information

among these differentially expressed prognostic genes related

to COVID-19 (Figures 3D,E).

Establishment of a risk signature related to
COVID-19 in IPF

We used the eight prognostic genes related to COVID-19 to

establish the risk signature in the training set, including seven

detrimental genes with HR > 1 and one protective gene with

HR < 1. Lasso Cox regression was performed to minimize the

overfitting, three of the eight genes were chosen to construct a

risk signature according to the optimum λ value (λ = 0.8) (Figures

4A,B). The risk score was calculated as the following formula:

Risk score = 0.32 × MET + 0.0244 × UCHL1-0.0429 × IGF1.

Subsequently, all patients with IPF in the training set were

divided into high-risk and low-risk groups based on the

median risk score. PCA analysis illustrated those patients with

IPF were distributed in two directions (Figure 4D). We graded

the risk scores of the IPF patients and depicted their distributions

in the training set, the dot plot demonstrated the survival status

of these patients, and the expression differences of the three

prognostic genes were shown between two risk groups

(Figure 4C). Patients with higher risk scores had a

considerably lower overall survival (p = 4.2e-10, HR = 5.45,

95 CI% = 3.03–9.82) (Figure 4F). The areas under the curve

(AUCs) were 0.75 at 1 year, 0.74 at 3 years, and 0.94 at 5 years

(Figure 4E).

In addition, the risk signature’s predictive potential was

validated in both the test and total set. Every patient’s risk

score was determined, and the patients were separated into

high-risk and low-risk groups in two sets, as previously

reported. Figure 5A presented the distribution of the risk

scores, survival status, and the expression level of the three

prognostic genes related to COVID-19. The result of PCA

revealed that the patients in each subgroup were divided into

two clusters (Figures 5B,F). The Kaplan–Meier survival curves in

the test group showed that the overall survival of high-risk
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patients was lower than that of the low-risk groups (p = 1.3e-4,

HR = 3.23, 95% CI = 1.73–6.04) (Figure 5D). The AUC after

1 year was 0.77, the AUC after 3 years was 0.85, and the AUC

after 5 years was 0.90 (Figure 5C).

Similar to the test cohort and the training cohort, the overall

survival was subsequently different in the two risk groups (p =

4.5e-6, HR = 2.53, 95 CI% = 1.68–3.80) (Figure 5H). The AUC

after 1 year was 0.76, the AUC after 3 years was 0.79, and the

AUC after 5 years was 0.91 (Figure 5G). The distribution of the

risk scores, survival status, and the expression levels of the three

prognostic genes related to COVID-19 were also shown in

Figure 5E.

Independent prognostic analyses of the
risk signature

To examine if clinical characteristics (such as gender and age)

and risk score are independent prognostic variables for overall

survival in IPF, Univariate and Multivariate Cox regression

analyses were undertaken. The results showed that the risk

score was remaining as an independent risk factor for the

outcome of IPF in both training (Figures 6A,D), test (Figures

6B,E), and the total set (Figures 6C,F) after considering age and

gender.

Functional enrichment analyses based on
the risk signature

Three hundred ninty nine DEGs correlated with the risk score

were identified in the training group at the criterion of log2 |FC| ≥
1 and FDR < 0.5, GO and KEGG pathway enrichment analyses were

performed on thoseDEGs to further elucidate the potential biological

functions and pathways related to the risk score. The results showed

that the DEGs were mostly enriched in cell chemotaxis, chemokine

and cytokine activity, viral protein interaction with cytokine and

cytokine receptors, and chemokine signaling pathway (Figures 7A,B).

FIGURE 1
The flowchart of our research.
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GSEA of the risk signature correlated to
the COVID-19

GSEA was conducted to further investigate the function

of the risk signature related to COVID-19, based on the

expression matrix of all genes between the high-risk and

low-risk groups. The results depicted that most genes in

risk signature related to COVID-19 regulate the immune

and detrimental hallmarks of IPF. Considerably, the

biological pathways such as IL2-STAT5 signaling,

FIGURE 2
WGCNA analysis and the functional pathway analysis. (A) The results of the DEGs of COVID-19. (B,C)Network topology analysis of different soft
threshold power. (D) Dendrograms of genes acquired by mean linkage hierarchical clustering, A color branch of the cluster tree represents a co-
expression module. (E)Module-trait relationships. The red color represents positive correlation and the green color represents negative correlation.
The significance of the correlation was indicated by p-value. (F) The correlation between blue module and COVID-19. (G,H) The results of GO
and KEGG pathway enrichment analysis.
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apoptosis, TGFβ signaling, and inflammatory response were

identified to be mainly enriched in the high-risk group

(Figure 7C).

Differences in the immune cell infiltrating
between high-risk and low-risk groups

Immune cells play a significant role in disease progression.

Hence, we analyzed the immune infiltrating cells in the high-risk

and low-risk groups to estimate the association between the risk

signature we constructed and the immunoregulation. We utilized

the CIBERSORT algorithm to calculate the relative ratio of the

twenty-one immune cells in every patient with IPF. The results

showed that the naïve B cells, M0 macrophages, resting dendritic

cells, and resting mast cells were infiltrating more in the low-risk

group, while activated NK cells and activated mast cells were

infiltrating more in the high-risk group (Figure 8A). What’s

more, the correlation analysis between risk score and immune

cell infiltrating also demonstrated that the activated NK cells (p =

5.4e-6, r = 0.34) and activated mast cells (p = 3.3e-10, r = 0.45)

were positively related to the risk score, while M0 macrophages

(p = 1.2e-4, r = −0.29), resting mast cells (p = 4.2e-3, r = −0.22),

and dendritic cells (p = 7.0e-4, r = −0.25) were negatively

correlated to the risk score (Figure 8B). In addition, the

expression levels of MET and UCHL1 were positively

FIGURE 3
Identification of the prognostic DEGs related to COVID-19 in IPF. (A) Eight prognostic genes related to COVID-19 were differentially expressed
between IPF group and normal group. (B) Univariate Cox proportional regression analysis showed that eight differentially expressed prognostic
genes related to COVID-19 were significantly correlated to the survival of IPF patients. (C) The heat map of eight differentially expressed prognostic
genes related to COVID-19. Red represents high expression and blue represents low expression. (D) The protein and protein network of eight
differentially expressed prognostic genes related to COVID-19. (E) The correlation heat map of eight prognostic differentially expressed genes
related to COVID-19.
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correlated to the activated mast cells and activated NK cells.

However, the resting mast cells, resting dendritic cells, and

M0 macrophages were negatively associated with both two

genes. Furthermore, IGF1 was negatively correlated to the

activated NK cells and monocytes.

Discussion

As previously reported, courses of different IPF patients

were hard to predict, some patients with IPF deteriorated

rapidly while some others progressed much slowly (Ley et al.,

2011; Mura et al., 2012; Mishra and Sindhwani, 2021).

Meanwhile, treatments for patients with IPF were limited.

When COVID-19 first came out in 2019, people found there

was a strong link between IPF and COVID-19 (Uzel et al.,

2020; Zhang C. et al., 2021). As a study showed that fifty-gene

profiles in peripheral blood can predict the outcomes of IPF

and COVID-19 patients (Juan Guardela et al., 2021). We

supposed that interaction between IPF and COVID-19 may

be through some key genes, so the present study was intended

to explore some hub genes both involved in IPF and

COVID-19.

In our research, we found three genes both involved a lot in

IPF and COVID-19, the gene signature of these three genes can

well predict the outcomes of IPF patients. The mechanisms

behind the gene signature were further illustrated. MET, also

called mesenchymal-epithelial transformation factor, was firstly

validated in tumor progression (Tanaka et al., 2006; Watson

et al., 2006). Three types of mutation in MET can lead to the

coincidence of tumors (Paik et al., 2015; Skead and Govender,

2015). Its high expression indicated a poorer prognosis for IPF

patients in our study. IPF has many resemblances with cancer,

like invasive phenotype. Recently it was reported that

ASS1 deficiency happened in pulmonary fibrosis, MET can be

activated by knocking down ASS1, then interacting with the

upstream of the Src-STAT3 signaling to up-regulate the

proliferation of fibroblast cells (Li et al., 2021b). Moreover, it

has been shown that the overexpression of the MET and

CD44v6 can sustain the TGFβ signaling in IPF (Stella et al.,

2014). MET blockage can lead to recovery from the damage of

aberrant recapitulation of developmental programs. A study even

proved that MET inhibitors can be tested in interfering with the

progression of IPF (Stella et al., 2016). UCHL1, also called

ubiquitin carboxyl-terminal hydrolase 1, was functionally

identified to regulate a range of cellular processes, such as

FIGURE 4
Construction of the risk signature in the training set. (A,B)Cross validation for tuning parameter selection and lasso analysis of eight differentially
expressed prognostic genes related to COVID-19. (C) The distribution of risk score, survival status, and expression level of three differentially
expressed prognostic genes related to COVID-19 between high-risk and low-risk group. (D) The PCA plot of the training set. (E) Time-dependent
ROC analysis. (F) The overall survival of IPF patients in high-risk and low-risk group.
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cell-cell communication, apoptosis, and DNA repair, by

removing or editing poly or monoubiquitin chains from

ubiquitin proteins (Clague et al., 2012; Pfoh et al., 2015). Its

role in fibrosis was still lacking exploration, a study demonstrated

it can be a potential therapeutic target for liver fibrosis (Wilson

et al., 2015). More recently, there was a study showed that potent

and selective UCHL1 inhibitors can down-regulate the fibrotic

responses in a cellular model of IPF, which indicated that

UCHL1 may be a potential target to cure IPF (Panyain et al.,

2020). These results from others were consistent with our

FIGURE 5
Validation of the risk signature in the test cohort and total cohort. (A,E) the distribution of risk score, survival status, and expression levels of three
differentially expressed prognostic genes related to COVID-19 in test cohort and total cohort. (B,F) The PCA plot of test cohort and total cohort (C,G)
Time-dependent ROC analysis of our risk signature in test cohort and total cohort. (D,H) The overall survival of IPF patients in test cohort and total
cohort.

FIGURE 6
Univariate and Multivariate Cox analysis of the risk signature. (A–C) The Univariate Cox analysis of the risk signature in training cohort, test
cohort, and total cohort. (D–F) The Multivariate Cox analysis of the risk signature in training cohort, test cohort, and total cohort.
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exploration of which UCHL1 acted as a detrimental gene in IPF.

For insulin-like growth factor 1(IGF1), was mainly studied in

various tumors. Several studies identified that IGF1 was involved

in fibrotic progression and may play a great role in IPF (Salonen

et al., 2022; Thomas et al., 2022). In our study, the expression

level of IGF1 was lower in the IPF group and IGF1 was identified

as a protective gene when its high expression predicted better

survival of IPF patients. However, these three genes were

seldomly studied in COVID-19 because of the explosive

growth of COVD-19 and the risk to perform experiments.

Future biological pathways behind COVID-19 will be revealed

eventually.

The WGCNA algorithm was performed to investigate the

key genes and possible pathways associated with COVID-19.

Two hundred thirty three key genes were identified in the most

crucial molecule. The results of KEGG and GO pathway

enrichment indicated that those genes were mostly enriched

in DNA replication, immunomodulation, and energy

metabolism. Increasing studies of COVID-19 patients

showed that SARS-Cov-2 infects and replicates in

endothelial cells in multiple organs, such as the heart, lung,

kidney, and liver (Dashtban et al., 2022; Giovannini et al., 2022;

John et al., 2022; Kumar et al., 2022; Schold et al., 2022; Zheng

et al., 2022). In addition, the enriched pathway p53 signaling

was identified as a key pathway of genomic stability and cell

cycle progression, it even plays a great part in the suppression

of viral replication (Kumar et al., 2022). Those augments

further explained the genes we explored were hub genes

FIGURE 7
Functional enrichment analysis based on the DEGs from high-risk and low-risk groups in training cohort. (A) The results of GO pathway
enrichment analysis. (B) The results of KEGG pathway analysis. (C) The enriched hallmarks of GSEA results based of the risk signature.
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involved in the pathological course of COVID-19. These hub

genes of COVID-19 further were further analyzed in the

patients with IPF, eight of them were identified as the

differentially expressed prognostic genes in IPF. Finally, we

constructed a risk signature in three genes (MET, UCHL1,

IGF1) correlated to COVID-19 in IPF by conducting Lasso Cox

Regression analyses. The K-M and Roc analyses both revealed

that the risk signature can well predict the survival of the IPF

patients at 1-, 2-, and 5-years. Subsequently, the prognostic

value of the risk signature we constructed was evaluated in our

test set and total set, the results both demonstrated the risk

signature was stable and considerable. Furthermore, the

expression levels of those three genes were validated in our

clinical samples. Univariate and multivariate cox regression

was performed to validate the risk score was an independent

risk factor by combining age and gender. More clinical

information on IPF patients, such as their grades, smoking

frequency, and treatments research should be collected to test

this risk signature.

The results of functional enrichment analyses demonstrated

that the DEGs between high-risk and low-risk groups were

mainly enriched in immune-related pathways, such as

monocyte chemotaxis, lymphocyte chemotaxis, chemokine

receptor binding, chemokine activity, cytokine, cytokine

receptor interaction, and IL-17 signaling pathway. The results

of GSEA also indicated that the immune-related pathways were

activated in high-risk groups, like TNFβ signaling, IL2-STAT5

signaling, TNFα signaling viaNFκB, and inflammatory response.

C-MET was reported that can increase the invasiveness of

monocytes and play a role in regulating monocyte-

macrophage function (Beilmann et al., 2000; Galimi et al.,

2001). What’s more, a study showed that TGF-beta-1-2-, as

well as IFN-beta,a induce HGF secretion by microglia and

that antibodies to the HGF receptor c-Met abrogate OPC

chemotaxis induced by TGF-beta2-treated microglia (Lalive

et al., 2005). Neither mAb 10G10, which recognizes an

epitope distinct from the one recognized by mAb 4B2, nor

mAb UCHL-1, a CD45RO-specific antibody, induced any

FIGURE 8
The immune infiltrating cell analysis based on the risk score in training cohort. (A) The infiltrating levels of twenty-three cells in high-risk and
low-risk group. (B) Association between the infiltrating levels and risk score. (C)Correlation betweenMET, UCHL1, IGF1, and infiltrated immune cells.
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significant increase in TNF-alpha transcription (Estoppey et al.,

1996). Inhibiting the classical NF-κB signaling pathway blocks

growth hormone (GH) or insulin-like growth factor (IGF-1)

signaling, suppresses cell proliferation, and suppresses bone

morphogenetic protein 2 (BMP2) expression, thereby

promoting apoptosis (Jimi et al., 2019). Most importantly,

these three genes were all involved a lot in the inflammatory

response (Zhang Z. et al., 2021; Zhu et al., 2021; Li et al., 2022),

stating that inflammatory response was a main regulated

pathway in IPF and these three genes could modulate the

pathological process of IPF through this pathway.

Therefore, we speculated that these key genes from COVID-

19 can also regulate the immune response in IPF patients.

Moreover, we found that there were great differences in

immune cell infiltrating between the high-risk and low-risk

groups (naïve B cells, M0 macrophages, resting dendritic cells,

resting mast cells, activated NK cells, and activated mast cells).

What’s more, the correlation between those three genes and

different immune cells was also validated. IPF was first depicted

as a lung disease caused by inflammation (2000). Then the

clinical trials for immunosuppressive agents in IPF showed no

benefit, some were even indicated to be harmful (Izumi et al.,

2012). In a murine model of fibrosis, alveolar macrophages from

monocytes showed expansion by expression of profibrotic genes

in lineage-tracing experiments. And if this line of macrophages

was deleted, the fibrosis would be attenuated (Misharin et al.,

2017; McCubbrey et al., 2018). Macrophages release multiple

cytokines during lung injury, such as IL-6, IL-1, TNFα, and
TNFβ, which can regulate epithelial cell proliferation. It also

reported that macrophages may secret MMPs inhibitors to

restrict fibrosis (Wick et al., 2013). Furthermore, it was

reported that increased monocyte count and red cell width

may present negative prognostic biomarkers in patients with

IPF (Karampitsakos et al., 2021). Those results suggested that

macrophages and monocytes play a causal role in IPF. For mast

cells, there was a study showed that the density of mast cells

related to many clinical characteristics of IPF. IPF patients would

experience an acute deterioration when mast cells significantly

decrease (Salonen et al., 2022). NK cells were also identified to

involve in the progression of IPF in a cell analysis according to

single-cell transcriptome data (Cruz et al., 2021). The activity and

proportion of NK cells in lung tissue from IPF patients were

decreased (Huang et al., 2021). So these three genes were

speculated to regulate the immune response in IPF through

immune cells and immune-related pathways.

The present study has some limitations. Firstly,

transcriptome analysis does not reflect changes in overall

immune status. Secondly, the sample size was too small to

provide complete clinical information. Third, because the

database provides limited information on clinical

characteristics, some important factors, such as typing and

grading, were not included in our analysis. Fourth, we didn’t

perform cell and sample experiments in vitro and vivo.

Therefore, very careful extrapolations based on these findings

must be made.

Taken together, our study initially explored the key genes

involved in the progression of COVID-19 and IPF. Then a risk

signature was constructed in IPF based on the genes chosen from

COVID-19. What’s more, the gene correlation study

comprehensively these three genes in IPF according to their

potential functions, related pathways, efficacy values, and clinical

applications. Our study provides a new angle to understanding

the association between COVID-19 and IPF. The survival-related

genes from COVID-19 explored in our study showed the

potential to predict the prognosis of IPF patients and could be

valuable as candidate biomarkers and potential targets for the

therapy in IPF patients and IPF patients with COVID-19 in the

future.
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