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Immune checkpoint inhibitors have emerged as a novel therapeutic strategy for

many different tumors, including clear cell renal cell carcinoma (ccRCC). However,

these drugs are only effective in some ccRCC patients, and can produce a wide

range of immune-related adverse reactions. Previous studies have found that

ccRCC is different from other tumors, and common biomarkers such as tumor

mutational burden, HLA type, and degree of immunological infiltration cannot

predict the response of ccRCC to immunotherapy. Therefore, it is necessary to

further research and construct corresponding clinical predictionmodels to predict

the efficacy of Immune checkpoint inhibitors. We integrated PBRM1mutation data,

transcriptome data, endogenous retrovirus data, and gene copy number data from

123 patients with advanced ccRCC who participated in prospective clinical trials of

PD-1 inhibitors (including CheckMate 009, CheckMate 010, and CheckMate

025 trials). We used AI to optimize mutation data interpretation and established

clinical prediction models for survival (for overall survival AUC: 0.931; for

progression-free survival AUC: 0.795) and response (ORR AUC: 0.763) to

immunotherapy of ccRCC. The models were internally validated by

bootstrap. Well-fitted calibration curves were also generated for the nomogram

models. Our models showed good performance in predicting survival and

response to immunotherapy of ccRCC.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is a common kidney tumorwhich naturally resistant

to chemotherapy and radiotherapy. The immune checkpoint blockade (ICB) has become an

essential part of standard care for patientswith advanced/metastatic ccRCC.However, only a low

proportion of these patients benefit from immunotherapy (Braun et al., 2020). It is critical to

identify these appropriate patients whomay respond to ICB agents and avoid highmedical costs

and potential adverse effects for some patients who do not respond to ICBs. Thus, developing

clinical predictive models for ICBs efficacy is an urgent unmet medical need.

ccRCC carries a modest tumor mutational burden (TMB) [median of 1.42 mutations

per megabase (mut/mb)] (de Velasco et al., 2016), 10-fold lower than melanoma and
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comparable to immune ‘‘cold’’ tumors (Alexandrov et al., 2013).

Unlike other cancer, TMB, human leukocyte antigen (HLA)

subtype, and immune cell infiltration does not predict

response to ICB agents (Braun et al., 2020; Au et al., 2021).

Thus, ccRCC specified investigations are required.

PBRM1 truncation mutations have been shown to respond to

ICB agents (Miao et al., 2018; Braun et al., 2019). Truncating

mutations indicate nonsense mutations, frameshift insertions

and deletions, and splice-site mutations. However, In-frame

insertions and deletions, missense mutations, and other

alterations are not included in the two studies. Chromosomal

losses of 9p21.3 and 10q23.31, human endogenous retroviruses

(ERVE-4, ERV4700, ERV2282, and ERV3382), transcriptions of

ADAMTS14, PARP1, KCNN4, RUFY4, MUC20, LAG3, and

PDCD1 were also shown to associate with ICB response

(Smith et al., 2019; Braun et al., 2020; Wu et al., 2021; Xue

et al., 2022a; Chen et al., 2022b; Cui et al., 2022; Hagiwara et al.,

2022; Miao et al., 2022). These biomarkers require further

validation in multivariate analyses (Wu et al., 2021).

This study aimed to develop and internally validate models

that predict the survival and response of PD-1 agents. In this

study, we used deep learning-based MutFormer to stratify

missense mutations, In-frame insertions and deletions of

PBRM1 (Jiang et al., 2021). We established the clinical

predictive models integrating genetic and transcriptomic data

from 592 advanced-stage ccRCC patients.

Materials and methods

Clinical cohorts

We used the pan-cancer IMPACT2018 dataset described by

Samstein et al. (2019). It includes 1,661 patients who represented

a variety of cancer types and received immune checkpoint

inhibitor (ICI) therapy (atezolizumab, avelumab, durvalumab,

ipilimumab, nivolumab, pembrolizumab, or tremelimumab as

monotherapy or in combination). Overall survival was measured

from the date of first ICI therapy to the event of death or the last

follow-up.

Patient data from three clinical trials of the anti-PD-1 agent

nivolumab in advanced/metastatic clear cell renal cell carcinoma

(ccRCC) were used in this study: CheckMate 009 (CM-009;

NCT01358721) (Choueiri et al., 2016), CheckMate 010 (CM-010;

NCT01354431) (Motzer et al., 2015) and CheckMate 025 (CM-025;

NCT01668784) (Motzer et al., 2018). Corresponding genomic and

transcriptomic data were described by Braun et al. (2020).

MutFormer prediction

MutFormer is a context-dependent transformer-based deep

learning model to predict the consequence of missense mutation,

in-frame insertions and deletions (Jiang et al., 2021). Mutated

sequences were mapped to hg19 genome assembly. Predictions

were conducted in a server with AMD EPYC 7502 and

GTX3090 GPU. Paired-protein sequences (concatenation of

the wildtype and mutated protein sequence of PBRM1) were

used to predict the consequence of these mutations.

Candidate variable selection

The candidate predictors were selected based on literature,

clinical importance, the ease of measurement in the real world,

and the sample size of the datasets. A complete set analysis was

used because missing transcription data can not be imputed

using a multiple imputation approach.

FIGURE 1
Predicting consequence of PBRM1 mutation by MutFormer. (A) The Kaplan-Meier curves of overall survival stratified by truncation mutation,
missense/in frame del, wildtype of PBRM1 in the IMPACT2018 datasets. (B) The Kaplan-Meier curves of overall survival stratified by loss of function or
wildtype/normal function mutation of PBRM1 in the IMPACT2018 datasets. LOF is short for loss of function. NF is short for normal function.
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Model build and validation

Multivariate predictive models estimate a patient’s probability

that a specific event will occur in the future (prognostic models) or a

particular condition is present (such as complete response) based on

multiple features for that patient. A backward stepwise approachwas

applied to multivariate COX or logistic models. Models were

compared using Akaike information criterion. Minimum

10 events per effective variables were considered during the

building process. The models were internal validation by bootstrap.

Statistical analysis

Kaplan-Meier survival analysis of progression-free survival

(PFS) and overall survival (OS) with hazard ratios (HRs) and 95%

confidence intervals (CIs) were stratified by mutation categories

or high or low value of integrated PBRM1 score. The cut-off value

was defined by the method described by Lausen et al. (2004).

Univariate and multivariate Cox regressions were conducted to

establish predictive models for OS and PFS. Univariate and

multivariate logistic regressions were conducted to establish

predictive models for objective response rate (ORR). R 3.6.1

(http://www.r-project.org/) was used for statistical analysis. A

p-value of < 0.05 was considered statistically significant.

Differential gene analysis was performed by package limma 3.

42 with a false discovery rate of 0.05 (Ritchie et al., 2015). Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis was

performed by package ClusterProfiler 3.14 (Yu et al., 2012).

Results

Predicting consequence of
PBRM1 mutation by MutFormer

To analyze the role of the missense mutation, in-frame

deletions and insertions of PBRM1, we selected a pan-cancer

FIGURE 2
Integrated PBRM1 score outperforms both genomic and transcriptional variable of PBRM1. (A) The Kaplan-Meier curves of overall survival
stratified by loss of function or wildtype/normal function mutation of PBRM1 in the CheckMate 009, CheckMate 010 and CheckMate 025 datasets.
(B) The Kaplan-Meier curves of progression free survival stratified by loss of function or wildtype/normal function mutation of PBRM1 in the
CheckMate 009, CheckMate 010 and CheckMate 025 datasets. (C) The Kaplan-Meier curves of overall survival stratified by high or low
integrated PBRM1 score in the CheckMate 009, CheckMate 010 and CheckMate 025 datasets. (D) The Kaplan-Meier curves of progression free
survival stratified by high or low integrated PBRM1 score in the CheckMate 009, CheckMate 010 and CheckMate 025 datasets. LOF is short for loss of
function. NF is short for normal function.
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dataset IMPACT2018 with relatively more cases of

PBRM1 missense mutation, in-frame deletions (Samstein

et al., 2019) (no in-frame insertion in this dataset). This

dataset contained the clinical and genomic data of

1,662 advanced cancer patients treated with immune

checkpoint inhibitors (ICI). The demographic data has been

described by Samstein et al. (2019). As shown in Figure 1A,

the curve of the missense mutation, in-frame deletions located

between the wildtype PBRM1 and truncation mutations in the

IMPACT2018 datasets. The comparison of the three groups was

no statistical significance (p = 0.12).

Using the MutFormer, we classified the missense mutation,

in-frame deletions and insertions cases into the loss of function

(LOF) or normal function group. The LOF group significantly

had better survival than the normal function group in the

IMPACT2018 dataset (p = 0.0055, Figure 1B).

Integrated PBRM1 score outperforms both
genomic and transcriptional variables of
PBRM1

Previous studies have shown that PBRM1’s truncation

mutation correlates with the response to immunotherapy,

while its transcription does not correlate with the response to

immunotherapy (Braun et al., 2020). It is quite reasonable as

PBRM1’s truncation mutation affects translation rather than

transcription. In monoallelic mutation, theocratically, a half

transcript can be translated into functional BAF180 protein.

Despite genomic mutation, epigenetic silencing of PBRM1 can

also lead to a lack of functional BAF180 protein. We asked

whether the integration of both PBRM1’s genomic and

transcriptional variables would surpass the PBRM1’s genomic

data. We validated this hypothesis in a merged advanced ccRCC

dataset with CheckMate 009 (CM-009; NCT01358721),

CheckMate 010 (CM-010; NCT01354431) and CheckMate 025

(CM-025; NCT01668784) (Motzer et al., 2018). The

demographic data of the merged dataset has been described

by Braun et al. (Braun et al., 2020). We built the integrated

PBRM1 score with the transcriptional value of PBRM1, reduced

the transcriptional value by half if it is a monoallelic mutation

and set the transcriptional value to zero if it is a biallelic mutation.

The classification of the LOF group and wildtype/normal

function group was achieved by MutFormer. The LOF

mutations in PBRM1 were associated with improved OS and

PFS survival following PD-1 blockade (p = 0.0054 and p = 0.052)

(Figures 2A,B). The integrated PBRM1 score showed a better

separation of the high and low PBRM1 score groups for both OS

(p = 0.00015) and PFS (p = 0.049) (Figures 2C,D).

FIGURE 3
Univariate analysis of candidate biomarkers in the control
cohort. (A) The univariate analysis based on Cox regression was
used to assess the correlation between OS and candidate
biomarkers in the control cohort. (B) The univariate analysis
based on Cox regression was used to assess the correlation
between PFS and candidate biomarkers in the control cohort. (C)
The univariate analysis based on logistic regression was used to
assess the correlation between ORR and candidate biomarkers in
the control cohort.
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Univariate analysis of candidate
biomarkers

Chromosomal losses of 9p21.3 and 10q23.31, human

endogenous retroviruses (ERVE-4, ERV4700, ERV2282,

ERV3382), transcriptions of ADAMTS14, PARP1, KCNN4,

RUFY4, MUC20, LAG3 and PDCD1 which previously shown to

associate with ICB response were included in the univariate analysis

(Smith et al., 2019; Braun et al., 2020; Wu et al., 2021; Xue et al.,

2022a; Chen et al., 2022b; Cui et al., 2022;Hagiwara et al., 2022;Miao

et al., 2022). Transcriptions of CDKN2A, CDKN2B, CDKN2B_AS1,

andMTAP were included because these genes are located at 9p21.3,

and they are also potential tumor suppressors (Girgis et al., 2012).

TKT was included because it is located close to 9p21.3.

The univariate cox analysis in control groups in which

patients were treated with everolimus showed that LAG3 was

associated with OS (p = 0.009) and PFS (p = 0.02) survival

(Figures 3A,B). MUC20 was also associated with PFS (p = 0.01)

survival (Figure 3B). Similar results can be found in Figure 3C.

These results indicated that LAG3 and MUC20 were survival

predictors rather than predictors for immunotherapy efficacy.

The univariate cox analysis in PD-1 groups showed that

integrated PBRM1 score (p = 0.008), transcription of PARP1 (p =

0.003), KCNN4 (p < 0.001), RUFY4 (p = 0.026), deletion of

10q23.31 were associated with OS (Figure 4A). The correlations

between integrated PBRM1 score, ERV2282, deletion of 9p21.3,

transcription of MTAP, and PFS have the lowest p values (p =

0.09) among all analyzed variables (Figure 4B). None of these

variables had a p value < 0.05, maybe due to the small sample size.

The integrated PBRM1 score (p = 0.031) and deletion of 10q23.31

(p = 0.005) were associated with ORR in the univariate logistic

analysis (Figure 4C).

Multivariate predictive models

All candidate biomarkers with p values < 0.2 in the univariate

analysis were included in themultivariate analysis. Variable selection

was achieved by backward stepwise selection. The predictive COX

model for OS was built and included integrated PBRM1 score,

KCNN4, deletion of 10q23.31, and CDKN2B_AS1, with an area

under the curve (AUC) 5 0.931 (Figures 5A,B). The predictive COX

model for PFS was built and included an integrated PBRM1 score,

transcript of PARP1 and MTAP, ERV4700, and ERV2282, with an

AUC of 0.795 (Figures 5C,D). The predictive logistic model for ORR

was built and included integrated PBRM1 score, sex, ERV2282, and

deletion of 10q23.31, with an AUC 5 0.763 (95% 0.661–0.864)

(Figures 5E,F). The predictive models were internally validated by

bootstrap. The bootstrap validating c-index for the prediction of OS

was 0.700 (95%CI 0.68–0.707), close to the training c-index of 0.712

(95% CI 0.653–0.770). The bootstrap validating c-index for the

prediction of PFS was 0.603 (95% CI 0.575–0.620), close to the

training c-index of 0.631 (95% CI 0.564–0.685).

FIGURE 4
Univariateanalysisofcandidatebiomarkers in thePD-1cohort. (A)The
univariate analysis based on Cox regression was used to assess the
correlation between OS and candidate biomarkers in the PD-1 cohort. (B)
The univariate analysis based on Cox regression was used to assess
the correlation between PFS and candidate biomarkers in the PD-1 cohort.
(C) The univariate analysis based on logistic regression was used to assess
thecorrelationbetweenORRandcandidatebiomarkers in thePD-1cohort.
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FIGURE 5
Multivariate analysis of candidate biomarkers in the PD-1 cohort. (A) The multivariate analysis based on Cox regression was used to assess the
correlation between OS and candidate biomarkers in the PD-1 cohort. (B) The ROC curve of predictive model of OS. (C) The multivariate analysis
based on Cox regression was used to assess the correlation between PFS and candidate biomarkers in the PD-1 cohort. (D) The ROC curve of
predictive model of PFS. (E) The multivariate analysis based on logistic regression was used to assess the correlation between ORR and
candidate biomarkers in the PD-1 cohort. (F) The ROC curve of predictive model of ORR.
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Calibration and nomogram

The calibration curves for the probability of OS, PFS, and

ORR showed that the prediction models had good consistency

with the actual observation (Figure 6). To visualize the predictive

models, nomograms were generated to facilitate the prediction of

OS, PFS, and ORR (Figure 7).

Differential genes and pathways between
high and low-risk groups

We attempted to explore the transcriptomic differences

between high and low risk groups of the OS predictive model.

We found that KCNN4 is the top differential genes. All the

differential genes were demonstrated in Supplementary Table S1.

KEGG pathway analysis indicated that the differentially

expressed genes were mostly enriched in amino acid

metabolism, fatty acid degradation, and HIF−1 signaling

pathway (Supplementary Figure S1).

Discussion

With the advent of immunotherapy, we already target

some of the immune system pathways in ccRCC, but ICIs are

only effective in some ccRCC patients. Thus, it would be

important to predict prognosis/response for specified

patients. New prognostic and responsive biomarkers and

integrative predictive models are required for clinical

practices. We developed nomograms that will be clinically

useful and forecast clinical outcomes from checkpoint

FIGURE 6
The calibration curves for the probability of OS, PFS, and ORR. (A–C) The calibration curves for the probability of OS (A), PFS (B), and ORR (C).
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inhibitor immunotherapy in advanced ccRCC. Compared

with these previous researches, we used the real clinical

outcomes and survival data from patients with anti-PD1

immunotherapy, which are more reasonable and reliable.

Xie et al. (2021) and Chen et al. (2021) established and

validated predictive models with a panel of immune-related

genes. However, they predicted the survival of all ccRCC

patients, even though these patients may not receive

immunotherapy at all (Chen et al., 2021; Xie et al., 2021).

Gao et al. (2021) trained predictive models with a dependent

variable which were predicted using machine learning

algorithms rather than real patient responses (Charoentong

et al., 2017). Furthermore, we found that LAG3 and

MUC20 were associated with prognosis in the control

group that did not receive immunotherapy, which indicated

that LAG3 and MUC20 are universal prognosis predictors

rather than predictors for immunotherapy.

Another prognostic model MSKCC was developed based on

patients’ data between 1975 and 1996 when PD-1 therapy has not

been developed (Motzer et al., 1999). It includes Karnofsky

performance status, lactate dehydrogenase, serum albumin,

corrected serum calcium, and time from diagnosis to systemic

treatment (Motzer et al., 1999). However, this model has not been

validated in the modern era of ICI. No evidence has shown it

predict response to immunotherapy. In addition, MSKCC tend to

categorize the bulk of the patients into the intermediate-risk

category. Revised models that consider the response to

immunotherapy are needed.

The adverse effect of immunotherapy included colitis,

diarrhea, nausea, vomiting, headache, itching, skin

photosensitivity and arthritis-type pain (Brahmer et al., 2021).

With the predictive models, we can filter unresponsive patients

and avoid these patients exposed to the potential risk of ICIs.

Apart from that, developing and validating predictive biomarkers

FIGURE 7
The nomogram calculator for OS, PFS, and ORR. (A–C) The nomogram calculator for OS (A), PFS (B), and ORR (C).
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for the early identification of at-risk patients are also another

important area of research (Brahmer et al., 2021). The current

predictive models were mainly trained and internally validated

with patients who use ICIs as second-line treatment. The

prediction efficacy of the models in patients using first-line

ICIs or combined treatment was still unclear. Further research

is required.

As a functional PBRM1 interactedwith other components of the

PRAF complex with its c-terminal, a truncation mutation

theoretically always leads to PBRM1 loss of function (Gao et al.,

2017). However, a point missense mutation or an in-frame deletion

or insertion does not always cause functional alterations (Gao et al.,

2017). We used the deep learning-based model MutFormer which

receives long protein sequence inputs and make predictions based

on contexts. While some tools only work for missense mutations

(Jordan et al., 2011; Tang and Thomas, 2016). With MutFormer, we

could analyze the consequence of all categories of mutations,

including nonsense mutation, frame shift mutation, missense

mutation, in-frame deletion and insertion.

PBRM1 was presented in each predictive model. PARP1 and

MTAP were presented only in the predictive model for PFS. Poly

(ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating

enzyme that plays roles in DNA repair, maintenance of

genomic integrity, and transcriptional regulation (Caldecott,

2022). More interestingly, the interplay between PARP1 and

PBRM1 has been found (Lanillos et al., 2022). In vivo studies have

shown that PARP1 and ATR inhibition are synthetic lethal with

PBRM1 defects (Chabanon et al., 2021). However, further

investigation is required for PARP1’s effect on ccRCC treated

with tyrosine kinase inhibitors required further investigation.

PARP1 is associated with PFS in ccRCC treated with sunitinib. In

summary, PARP1 can be not only a predictor but also a potential

treatment target for ccRCC. Methylthioadenosine phosphorylase

(MTAP) is a key enzyme in the methionine salvage pathway,

responsible for regenerating methionine and adenine (Marjon

et al., 2016). MTAP frequently becomes deficient in cancer and

reprograms the metabolism by building up methylthioadenosine.

Unlike the tumor suppressor role reported by other literature, in

the both univariate and multivariate COX analysis for PFS and

univariate logistic analysis for ORR, higher MTAP expression

was associated with shorter PFS and lower ORR, which is

consistent with the results reported by Alhalabi et al. (2021).

Accumulating methylthioadenosine could inhibit the

methylation of STAT1, leading inhibition of interferon

signaling pathways (Mowen et al., 2001). Defects in the

interferon pathway may compromise antitumor immune

responses (Gao et al., 2016). LncRNA CDKN2B_AS1 is

associated with the prognosis of thyroid cancer and the status

of the immune microenvironment (Xue et al., 2022b). It also

interacts with mitogen-activated protein kinase (MAPK)

inactivator dual-specificity phosphatase 1 (DUSP1) and

inhibits DUSP1’s activity (Pan et al., 2021). KCNN4 was a

potentially heterotetrameric voltage-independent potassium

channel that is activated by intracellular calcium in

T-lymphocytes. It was selected as one of the variables for the

OS predictive model. It was also differentially expressed in the

low and high-risk groups. KCNN4 expression was correlated to

tumor mutational burden and microsatellite instability levels in

14 types and 12 types of pan-cancers (Chen et al., 2022a).

KCNN4 influences tumor microenvironment by remodeling

tumor-infiltrating immune cell profiles (Chen et al., 2022a). It

may regulate immune response via raising Tregs and diminishing

resting mast cells in ccRCC, which may cause the differential

clinical outcomes (Cui et al., 2022).

More interestingly, multiple metabolism pathways, especially

various amino acid metabolism pathways, were enriched in the

KEGG analysis. Tryptophan metabolism has been extensively

investigated for its immunosuppressive role in the tumor

microenvironment (Zhang et al., 2022). Leucine is a nutrient

signal that activates complex 1 of the mammalian target of

rapamycin (mTORC1), which is a critical regulator of T cell

proliferation, differentiation, and function (Ananieva et al.,

2016). Furthermore, arginine could be important to T-cell

activation and thus modulate innate and adaptive immunity

to promote tumor survival and growth (Kim et al., 2018). In

summary, multiple amino acid metabolism pathways were

enriched in ccRCC, which is consistent with that ccRCC is

generally considered a metabolic disease (Qi et al., 2021).

Our study had several limitations. First, although we

collected data from three large prospective clinical trials, a

proportion of patients had missing genomic and

transcriptomic data. We used a complete set analysis which

can cause bias. The effective sample size is small. Multiple

imputation tests might not be appropriate for transcription

data. Second, the clinical predictive models required external

validations in new datasets.
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