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siRNA interference, commonly referred to as gene silence, is a biological

mechanism that inhibits gene expression in disorders such as cancer. It may

enhance the precision, efficacy, and stability of medicines, especially genetic

therapies to some extent. However, obstacles such as the delivery of

oligonucleotide drugs to inaccessible areas of the body and the prevalence

of severe side effects must be overcome. To maximize their potential, it is thus

essential to optimize their distribution to target locations and limit their toxicity

to healthy cells. The action of siRNA may be harnessed to delete a similar

segment of mRNA that encodes a protein that causes sickness. The absence of

an efficient delivery mechanism that shields siRNA from nuclease degradation,

delivers it to cancer cells and releases it into the cytoplasm of specific cancer

cells without causing side effects is currently the greatest obstacle to the

practical implementation of siRNA therapy. This article focuses on

combinations of siRNA with chemotherapeutic drug delivery systems for the

treatment of cancer and gives an overview of several nanocarrier formulations

in both research and clinical applications.
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Introduction: Cancer and siRNA-based therapy

Cancer is a dangerous illness that threatens both human health and existence because

of its complexity, which includes several factors, multiple genes, and multiple pathways. It

is the second greatest cause of mortality in the globe, placing a heavy load on the

healthcare system. Cancer is a deadly, life-threatening illness that affects millions of

people throughout the globe, and early identification is the key to curing it (Sharma et al.,

2020; Singla et al., 2021). Cancer society stated that nearly 14.1 million cases of cancer and

approximately 8.2 million deaths have been reported, implying that one out of every seven

deaths is caused by cancer, which is greater than consolidated tuberculosis, Acquired

Immune Deficiency Syndrome (AIDS), and protozoal infections. With this trend, it is
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expected that by 2030, around 21.6 million new cases of cancer

and approximately 13.0 million deaths due to cancer would

arrive (Sharma et al., 2021).

Cancer can spread throughout organs in the body that differ

from its primary site of origin, and is primarily caused through

DNA (deoxyribose nucleic acid) mutations that occur

intracellularly (Bhattacharya et al., 2022). Cancer often

disrupts cell-to-cell communication, resulting in crucial gene

malfunction. During the cell cycle, this aggravation continues,

resulting in aberrant cell growth. Prostate, lung, colon, bronchi,

urinary bladder, and rectum cancers affect the majority of males.

The breast, lungs, colon, bronchi, rectum, thyroid, and urinary

corpus are the most frequent cancer sites in women (Hassanpour

and Dehghani, 2017; Kanugo et al., 2022). Cancer is a significant

target for RNA interferences (RNAi)-based therapeutic

approaches, but the major contest in cancer rehabilitation is

identifying and targeting the metastatic cells, that has been

spreading from the original tumor. The jury is still out on

whether small interfering RNA (siRNA) can be effectively

delivered to such cells and whether appropriate targets can be

identified to destroy the metastatic population (Kim and Rossi,

2007). Furthermore, in some cases, activation of immune system

in conjunction with siRNA-mediated silencing of genes may be

anticipated, resulting in improved therapeutic efficacy. As a

result, siRNAs comprising potent immunostimulatory motifs

may be employed for dealing with tumors and viral infections

(Marques and Williams, 2005).

RNA interference (RNAi) is a significant biological

mechanism in which the existence of double-stranded RNA

(dsRNA) inhibits the specific gene expressions with a

homologous sequence to the dsRNA (Oh and Park, 2009).

There are two types of RNA interference: small integrated

RNAs, or siRNAs, and micro RNAs, or miRNAs, which are

formed from poorly paired non-coding hairpin RNA structures.

In medical and pharmaceutical research, the siRNA is a double-

stranded RNA-based fragment that has a considerable deal of

therapeutic promise. Some clinical studies are now testing

numerous possible siRNA candidates to treat respiratory

illnesses, and cancer at this moment. While siRNA silences

genes by cleaving precisely complementary mRNA,

microRNAs arbitrate transcript deprivation and translational

suppression for targets that aren’t completely complementary

(de Fougerolles et al., 2007). As compared to conventional

clinical therapies, gene therapy exhibits higher sensitivity and

specificity in terms of prompting tailored gene expressions,

which display the extraordinary changes in the progression of

metastasis, tumorigenesis, and immune responses (Gao et al.,

2021).

Nontarget gene silencing may result in data interpretation

issues as well as potential noxiousness. To evade this problem,

designing and selecting the potent siRNAs ought to be done with

due care. The basic parameters for the selection of siRNAs

include the deliberation of internal-recurring sequences,

guanine-cytosine (GC) content, secondary structures,

appropriate siRNA length (i.e., 19–22 bps), and base

preference at the explicit positions in the sense strand. The

immune stimulation is another challenge faced by siRNA gene

therapy. The incorporation of too much siRNA leads to non-

specific proceedings owing to the initiation of innate immune

responses. Interferons and inflammatory cytokines have been

persuaded via Nuclear factor kappa (NF-kB) activation, and

interferon-regulatory factors, after the siRNA recognition by

toll-like receptors such as TLR7, TLR8, and TLR9 (Oh and

Park, 2009).

Mechanism of gene silencing by siRNA

The gene silencing demonstrates the potential of

effectiveness in both tumor cells and stromal cells via

inhibition of tumor-promoting genes (Vetvicka et al., 2021).

Mutated cancer suppressor genes, oncogenes, and several

other genes involved in the formation of cancers are

advantageous gene silencing targets using RNAi-based

techniques due to their distinct functional mechanism,

increased potential, and specificity of RNAi-based gene

silencing. The production of siRNA occurs in two steps.

During the initiation step, Dicer cleaves a lengthy double-

FIGURE 1
The mechanism of gene silencing by siRNAs.
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stranded RNA (200–500 bp) into pieces of 21–23 nucleotides,

producing siRNA. In the affecting phase, helicase divides the

double-stranded siRNA, following which the endogenous

endonucleases define the sense-strand and the antisense

strand guides the RNA-induced silencing complex (RISC) to

the target mRNA. As a member of the RISC, Argonate (Ago)

destroys this mRNA through ribonuclease activity in the piwi

region. As long as RISC continues to degrade the target mRNA,

gene expression is halted. mRNAmay be degraded in two distinct

ways. First, ribonuclease might degrade them, and then RNA

polymerase would create double-stranded RNA and bind it to the

homologous strands, resulting in the continuous interference

process (Mansoori et al., 2014; Sharma et al., 2022). The

mechanism of gene silencing by small interfering RNAs

(siRNAs) (Majumdar et al., 2017) is described in Figure 1.

Role of siRNA-based therapy in the
treatment of Cancer

The accessibility of the human genetic sequences has

revolutionized the strategies of employing nucleic acids with

complimentary sequences to explicit the target genes, and to

promote the drug discovery methodologies and target validation

(Devi, 2006). Dysregulation of gene expression is a common

characteristic of cancer. The potential therapeutic use of

suppressing an oncogene’s production at the mRNA level, as

opposed to the gene product’s activity, has sparked the

researchers’ curiosity for quite some time. Therefore, RNAi

provides interesting new potential to specifically target genes

that are dysregulated in a variety of diseases, including cancer.

RNA interference (RNAi) is a gene-silencing technology with

great potential in cancer therapy (Ali et al., 2012).

siRNA feats endogenous RNAi circuits, enabling the explicit

reduction of disease-linked genes, and may be administered to

any gene with a complementary sequence (Leung andWhittaker,

2005). Numerous targets are anticipated for siRNA-arbitrated

gene silencing, which may improve the potential of the immune

system toward cancer (Ghafouri-Fard and Ghafouri-Fard, 2012).

The main goal of siRNA-based therapy is to treat cancer via

silencing the genes, that are important for tumor development or

drug resistance. As a result, one of the rudiments for RNAi-based

therapy is the selection of appropriate gene targets. A candidate

gene should ideally: 1) important for the progression of tumor or

drug resistance, 2) preferentially expressed in targeted tumors,

and 3) associated with reliable biomarkers, utilized to measure

the clinical and biological responses to RNAi therapy (Wang

et al., 2017). Several siRNAs are undoubtedly designed to target

cancerous oncogenes, including viral oncogenes, dominant

oncogenes, and improperly regulated oncogenes. In addition,

siRNAs have been intensively studied for their propensity to

quiet target genes that are essential for tumor-host interactions

and radiation or chemotherapy resistance. Significant apoptotic

or anti-proliferative effects were seen when siRNAs were utilized

to silence cancer-associated risk genes (Pai et al., 2006).

Cancer growth, metastasis, and invasion are primarily

controlled by angiogenesis. The vascular endothelial growth

factor (VEGF) family has been identified as a crucial mediator

of these endothelial cell changes seen in several cancer types. By

inhibiting VEGFR-1 and VEGFR-2 using siRNAs, angiogenesis

might be prevented. The Wingless-related integration site (Wnt)

pathway plays a crucial part in the carcinogenic process. The

suppression of Wnt pathways by siRNAs may serve as a potential

anticancer drug since it has been utilized to target malignant stem

cells that respond poorly to chemotherapy (Chen and Huang,

2008). Novel delivery strategies are needed to improve siRNA

stability, tumor cell selectivity, non-specific immunostimulatory

effects, and off-target effects. These drug delivery systems must

be adapted for various tumors since the administration route

may vary (Dana et al., 2017). The description of the siRNA-based

delivery systems in cancer treatment is summarized in Table 1.

Lipid-based approaches for siRNA
delivery

For siRNA delivery, lipid-based nanoparticles are among the

most researched. Experiments conducted on them revealed that

these nanoparticles were the most promising for systemic siRNA

delivery. Thus, it is simple to build nanoparticles such that the

siRNA they carry accumulates at specific sites and is not rapidly

removed or degraded by the body. There are several types of

lipid-based nanoparticles, including liposomes, niosomes, solid

lipid nanoparticles, and micelles. Hydrophilic siRNA molecules

in the aqueous core of liposome nanoparticles are insulated from

nuclease activity, increasing their stability and half-life.

Encapsulating siRNA molecules helps them enter cells

(Buyens et al., 2012; Zhang et al., 2014).

The study of liposomes has led to the invention of several

manufacturing techniques, including the thin-film hydration

method, the heating method, and the ether injection

technique. To optimize the delivery of their therapeutic

payloads, these nanoparticles may now be manufactured using

a range of compositions and processes, allowing for more control

over the essential liposome features such as particle size and

surface charge (Allen and Cullis, 2013). The liposomes’ surface

charge will influence their dispersion and interaction with

biological surfaces. Cationic, anionic, or neutral surface

charges may all be achieved using liposomes. Phospholipids

employed in the creation of liposomes will determine the final

net surface charge.

Cationic liposomes may be made using cationic

phospholipids such as dioleoyl phosphatidylethanolamine, 1,2-

dioleoyl-3-trimethylammonium-propane (DOTAP), dioleoyl

phosphatidylethanolamine (DOPE), oleic acid (OA), and

dimethyl-dioctadecyl ammonium bromide (DDAB). For these
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liposomes to work, the medicine must have a negative charge,

which will result in the development of stable complexes.

Lipoplexes are the cationic liposomes and the negatively

charged medicines that form these complexes (Lee et al., 2013;

Ozpolat et al., 2014). As the siRNA molecules have a strong

negative charge and will thus combine with the cationic

liposomes, the distribution of the siRNA to the target location

will be boosted and remain unaltered. Liposome nanoparticles

that have a cationic charge on their surface are more likely to be

taken up by the target cells because of their increased contact with

the negatively charged cell membrane (Laouini et al., 2012).

However, specific toxicity issues must be addressed before

employing these cationic liposomes for medication delivery

purposes. Cationic liposomes have been shown to cause

hepatotoxicity and lung inflammation at varying doses,

according to many studies (Urban-Klein et al., 2005; Ozpolat

et al., 2014). After interacting with serum proteins such as

opsonins, the reticuloendothelial system identifies cationic

liposomes, resulting in rapid macrophage clearance of these

nanoparticles. Using cationic liposomes in lipoplexes with

negatively charged siRNA, Lipopolymers can encapsulate and

transfect siRNA with excellent efficiency. According to the

literature, this is the case. In the study of Chae et al.,

antisphingosine-1-phosphate receptor-1-siRNA was

synthesized and complexed with DOTAP-based cationic

liposomes. When transfected into lung cancer cells, these

lipoplexes dramatically lowered the expression of the target

protein (Chae et al., 2004). A lipoplex containing anti-

GADPH (glyceraldehyde-3-phosphate dehydrogenase) siRNA

was also made using cationic liposomes aimed at P-selectin, a

molecule involved in adhesion in cells. Lipoplexes has ability to

protect siRNA molecules and to deliver them effectively to target

cells and also can supress GADPH gene (Constantinescu et al.,

2019). Hattori et al. (2019) employed cationic lipids to create

siRNA-encapsulated liposomes. In a mouse model of lung

cancer, cationic liposomes carrying siRNA targeting protein

kinase N3 (PKN3) reduced tumor growth . Stabilized nucleic

acid-lipid particles (SNALPs) are cationic liposomes produced by

Tekmira Pharmaceuticals Corporation for the systemic

administration of siRNA. These liposomes use a variety of

ionizable cationic lipid components. Nanoparticles loaded

with siRNA are highly resistant to external conditions and

efficiently transport siRNA to target cells (Gomes-Da-Silva

et al., 2012; Shrivastava et al., 2020).

An anionic surface charge may be achieved by using anionic

phospholipids. Naturally occurring anionic phospholipids

include phosphatidylglycerol, phosphatidylinositol, and

phosphatidic acid (Draz et al., 2014). Anionic liposomes,

which are less toxic than cationic liposomes, have also been

extensively studied as a potential siRNA delivery vector (Tam

TABLE 1 Examples of siRNA delivery systems in the treatment of cancers.

S.
No

Delivery
Systems

Property Target gene Animal
model

Type of
study

References

1 Liposome Cationic cardiolipin
liposome

Raf-1 Prostate cancer
xenograft

Down-regulation of gene expression in vivo Pal et al. (2005)

2 Liposome Liposome-
polycation-DNA

EGFR (Epidermal Growth
Factor Receptor)

Lung cancer
xenograft

EGFR silencing induces apoptosis, cell cycle
arrest, tumor cell growth inhibition, and
chemosensitization in vitro and in vivo

Li et al. (2008)

3 Liposome Neutral liposomes
(DOPC)

EphA2 (Ephrin
Receptor A2)

Ovarian cancer
xenograft

Primarily induce carcinogenic potential
through higher levels of the unphosphorylated
form in vivo

Landen et al.
(2005)

4 Liposome Immuno-liposome HER-2 (Human Epidermal
Growth Factor Receptor 2)

Breast cancer
xenograft

Inhibition of HER-2 expression in vivo, and
induce apoptosis in human breast carcinoma
tumors

Hogrefe et al.
(2006)

5 Liposome Cationic liposome CD31 (Cluster of
differentiation 31)

Prostate cancer
xenograft

Silencing of tumor-causing genes in vivo Santel et al.
(2006)

6 Liposome SNALP (Stable Nucleic
Acid Lipid Particles)

HBV (Hepatitis B virus) HBV vector-
based mouse
model

Potent and persistent in vivo anti-HBV activity
of chemically modified siRNAs

Morrissey et al.
(2005)

7 Liposome Neutral liposomes
(DOPC)

IL-8 (Interleukin 8) Ovarian cancer
xenograft

IL-8 gene silencing decreases tumor growth in
vivo through anti-angiogenic mechanisms

Merritt et al.
(2008)

8 Polymer Polyester amine (PEA) Akt1 Urethane-
induced lung
cancer

Suppression of lung tumorigenesis in vivo Xu et al. (2008)

9 Polymer Polyethylenimine (PEI) PTN (Pleiotrophin) Orthotopic
glioblastoma

Exerts antitumoral effects in glioblastoma
xenografts in vivo

Grzelinski et al.
(2006)

10 Polymer Polyethylenimine (PEI) HER-2 Ovarian cancer
xenograft

Reduction of tumor growth in vivo via siRNA-
mediated HER-2 downregulation

Urban-Klein
et al. (2005)
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et al., 2013). Using phosphatidylethanolamine-based anionic

liposomes, Yu and others were able to deliver VEGF-targeting

siRNA. Flow cytometry and Western blotting findings indicate

that the loaded anionic liposomes may transport siRNA into cells

and inhibit VEGF expression (Yu et al., 2019). Due to charge

repulsion, reduced encapsulation effectiveness of siRNA into

anionic liposomes may ensue if the siRNA molecules contain

a negative charge. Calcium ions and other divalent cationic

bridge ions were shown to be effective in solving this problem

(Urban-Klein et al., 2005; Hogrefe et al., 2006). Using calcium ion

bridges, Kapoor et al. were able to encapsulate siRNA with an

anionic liposome with 99 percent efficiency (Kapoor and

Burgess, 2012).

As an alternative to employing charged liposomes because of

safety concerns about their toxicity (Urban-Klein et al., 2005;

Zhang et al., 2014) thus to make neutral liposomes, researchers

have recommended employing neutral phospholipids such as

dioleoyl-n-glycerol-phosphatidylcholine (DOPC). As a

nanoparticle drug delivery method, neutral liposomes have an

excellent safety profile and minimal interaction with anti-

inflammatory opsonin, resulting in extended nanoparticle

circulation durations. Due to these advantages, several

researchers have used neutral liposomes for the administration

of various pharmaceuticals. Several medications, like Doxil, an

FDA-approved pharmaceutical comprising neutral liposomes

carrying doxorubicin, have been put on the market as a

consequence (Obeid et al., 2018). DaunoXome is yet another

FDA-approved medication for the administration of

daunorubicin through neutral liposomes. The

EphA2 oncoprotein and the cytokine interleukin 8 (IL-8) were

both targeted by Merritt et al. utilizing neutral liposome

formulations to deliver siRNA. On the ovarian cancer-bearing

animal, they evaluated this technique and found an efficient gene

knockdown (Morrissey et al., 2005).

Lipofectamine and Oligofectamine are often used for siRNA

transfection. Liposomes are the second-most-used siRNA

delivery method after lipofectamine and Oligofectamine.

Liposomes, impermeable phospholipid bilayer-encased

aqueous core containers, may hold both lipophilic and

hydrophilic medicines. Hydrophilic lipid bilayers encase

lipophilic molecules like genes and siRNA. By changing its

composition, size, and charge, liposomes may circulate and

encase malignant cells. Liposome PEGylation promotes

circulation retention (Fang et al., 2006; Romberg et al., 2008).

Liposomes’ lipids may be coupled with certain ligands to improve

their target selectivity (Guo et al., 2010). The capacity of cancer

stem cells to metastasize, propagate and resist chemotherapeutic

treatments has made CD44 expression on tumor cells a

biomarker of cancer stem cells (Jaggupilli and Elkord, 2012).

An association between CD44 expression and the JAK2/

STAT3 signaling pathway may play an important role in

TNBC’s aggressiveness (Ma et al., 2014). Liposomal

nanocarriers have been developed by Alshaer et al. (2018) for

the delivery of siRNA against MDA-MB-231. Luc-2 siRNA was

successfully loaded into a liposome containing an anti-CD44

aptamer. Researchers first encased siRNA in PEGylated

liposomes containing siRNA-condensed protamine peptides to

disseminate siRNA. Any residual siRNA on the liposome surface

was removed by enzymatic digestion. After siRNA was

encapsulated in PEGylated liposomes, Aptamer1 was added.

60 to 80 percent siRNA entrapment efficiency has been shown

for PEGylated liposomes at 2 nmol siRNA concentration. It was

shown that aptamer-1 siRNA/protamine-liposome complexes

resulted in a higher degree of gene silence in MDA-MB-

231 cell lines than siRNA/liposome complexes without

aptamer-1, perhaps due to the liposomes’ enhanced

absorption (Alshaer et al., 2018). Deng et al. proposed new

liposome-based nanocarriers for the simultaneous delivery of

siRNA and Doxorubicin in another study (Dox). The siRNA film

was positioned atop the dox, which was then decorated with a

targeting moiety. The medication and siRNA were successfully

delivered to their designated areas using this delivery system. An

in vitro examination of the nanocarrier’s capacity to carry dox

revealed its efficacy, and tumor volume dropped to one-eighth of

that of the control group. In addition, it does not indicate any

toxicity, enabling patients to have more therapy options

available. This layer-by-layer technique offers tremendous

promise for the delivery of siRNA and Dox in the battle

against aggressive and resistant triple-negative breast cancer

(Deng et al., 2013).

Fork head transcription factor (FOXM1) was shown to be

crucial in the development of chemoresistance and the decrease

in susceptibility to anticancer medicines (Abnous et al., 2018).

FOXM1 overexpression has been linked to a worse survival rate

in patients (Bektas et al., 2008). FOXM1 also plays a role in Dox

resistance via genetic alteration (Park et al., 2012). Single-

stranded DNA-aptamers have been created that can effectively

decrease FOXM1 transcriptional activity (Xiang et al., 2017). In

cancer cells, FOXM1apt mainly binds to FOXM1 and inhibits

FOXM1’s transcriptional activities (Abnous et al., 2018).

Ghandhariyoun et al. have created a liposomal structure based

on FOXM1 aptamers to deliver dox to breast cancer cells that are

resistant to treatment. While monotherapy was less effective, the

combination of liposomes, dox, and FOXM1 aptamer boosted

cytotoxic activity, perhaps as a result of the enhanced uptake of

dox by liposomes (Ghandhariyoun et al., 2020). To put it another

way, liposomes have a lot of promise as a nanocarrier to carry

anticancer medicines to treat triple-negative breast cancer.

Exosomes

Most cell types in the body release exosomes, a class of

nanoparticles with a diameter of 30–120 nm (Record et al., 2011;

Vlassov et al., 2012). Blood, urine, amniotic fluid, saliva, and

cerebrospinal fluid are just a few of the extracellular fluids from
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which they may be extracted (Vlassov et al., 2012; Witwer et al.,

2013; Jia et al., 2014). To begin the production of exosomes,

endosomal membranes are first invaginated, creating

multivesicular bodies (MVBs) (Raposo et al., 1996). Exosomes

did not have characteristic to shed micro vesicles to originate

itself to cell membrane. Since lysosomal surface proteins

including LAMP (Lysosome-associated membrane

glycoproteins) and CD63 are present in the exosomal

membrane, the development of MVBs during exosome genesis

reveals some parallels with the MVBs generated during lysosome

genesis (Riteau et al., 2003; Caby et al., 2005). The so-called

endosomal sorting complex needed for transport (ESCRT),

which is also critical for lysosome formation (Raiborg and

Stenmark, 2009; Baietti et al., 2012), is essential for the

production of exosomes and the sorting of cargo into them. A

total of four main protein complexes, designated as ESCRT-

0–ESCRT-III, comprise the ESCRT machinery. To facilitate the

release of ubiquitinylated proteins in nanoparticles like

exosomes, the ESCRT machinery and many auxiliary proteins

are known to enhance endosomal sorting.

In several studies conducted in recent years, exosome-based

medication delivery systems have been proven to alleviate disease

states, including different cancer models. The development of an

exosome-based drug delivery system requires the selection and

control of several components to achieve maximum performance

and efficacy. Due to the fast degradation of interfering RNA

molecules in the circulatory system, exosome-based transport of

these RNA molecules is of significant interest (Tabernero et al.,

2013). Efficient delivery of MAPK1-siRNA into recipient

peripheral blood mononuclear cells was achieved using

exosomes from both cells and plasma (Wahlgren et al., 2012).

Both RAD51 and RAD52 siRNA were delivered using the same

manner to induce gene knockdown and reduce fibrosarcoma cell

survival and proliferation (Shtam et al., 2013). GAPDH and

BACE1 mRNA expression was downregulated in neurons

following targeted administration of siRNA-enriched

exosomes (Alvarez-Erviti et al., 2011). The use of short

hairpin RNAs (shRNAs) and so-called self-delivering RNAs as

therapeutic cargo in exosomes has been discussed in several

publications (Pan et al., 2012; Shtam et al., 2013). It has been

shown that shRNA-loaded exosomes may reduce HCV infection

in liver cells by targeting viral entry receptors and the hepatitis C

viral replication machinery (Pan et al., 2012).

Metastasis-related proteins that promote tumor growth and

metastasis include S100A4, which is a member of the S100 family

(Boye and Mælandsmo, 2010; Mishra et al., 2012; Grum-

Schwensen et al., 2015; Dahlmann et al., 2016; Liu et al.,

2019a). Upregulated S100A4 might provide a favorable milieu

for malignant breast cancer cells in addition to the establishment

of the pre-metastatic niche (PMN) (Boye and Mælandsmo, 2010;

Mishra et al., 2012; Grum-Schwensen et al., 2015). S100A4 has

eluded effective treatment for far too long. Simultaneous

induction of post-transcriptional gene silencing by siRNA, and

RNA interference (RNAi) has the potential to be used in the

treatment of genetic diseases and cancer. Silencing the expression

of S100A4 by siRNA (siS100A4) is well documented (Wilson and

Doudna, 2013; Grum-Schwensen et al., 2015).

Biomimetic nanoparticles (CBSA/siS100A4@Exosome) with

a CBSA/siS100A4 core and an exosome membrane shell have

been studied by researchers using cationic bovine serum albumin

(CBSA) (as shown in Figure 2) (Zhao et al., 2020). Postoperative

inhibition of lung metastases by the CBSA/siS100A4@Exosome

biomimetic was remarkable, and the biomimetic effectively

accumulated in the lungs and permitted gene silencing. Due

to its non-toxic, non-antigenic, and biodegradable

characteristics, serum album has been widely exploited as a

drug delivery medium (Liu et al., 2019b). Using cationic

amino groups to alter bovine serum albumin, new activities

were added to the protein without affecting its structure. On

account of CBSA’s positive charge, which makes it easier for it to

pass exosome membranes, the optimum pI values of CBSA have

been widely studied as a siRNA carrier (Bickel et al., 2001; Han

et al., 2014). Furthermore, CBSA/siRNA@Exosome showed

excellent biocompatibility and very robust suppression of lung

metastases as a result of the elevated accumulation in pulmonary

PMN of siRNA via organotropopism mediated by exosome

membranes.

Until recently, HeLa, HEK-293, and murine melanoma cell

lines were used to make exosomes. (Lee et al., 2011; Ohno et al.,

2013; Takahashi et al., 2013). Due to their surface-protein

composition, immature dendritic cells are good exosome

donor cells (Yin et al., 2013). The labor required to scale up

their manufacture and low exosome yield limit their clinical

translatability (Tian et al., 2014). Mesenchymal stem cells

(MSCs) offer superior exosome donor cells (Katakowski et al.,

2013; Munoz et al., 2013) since they generate bigger numbers of

exosomes and hence are ideal for therapeutic translatability

(Chen et al., 2011). MSC exosomes and microvesicles may

stimulate cancer, hence they should not be used in cancer

therapy (Yeo et al., 2013).

Researchers found bovine milk as a suitable source for

exosomes that might function as a medication delivery

platform due to the limitations of cell-derived exosomes (Aqil

et al., 2019). Bovine milk exosomes are a cost-effective,

biocompatible, tumor-targeting, and non-toxic alternative,

according to a new study. Due to their acidic stability, milk

exosomesmay be a better oral drug delivery vehicle (Melnik et al.,

2014; Aqil et al., 2017a). Researchers have proven that milk-

derived exosomes absorb, distribute, and transport small

chemicals. Bovine milk exosomes, which are biocompatible

and scalable nanoparticles (Munagala et al., 2016; Aqil et al.,

2017a; Aqil et al., 2017b), are capable of carrying exogenous

nucleic acids and, in cell culture assays, inducing target gene

silencing and antitumor activity against lung carcinoma

xenograft. Oral administration of milk-derived exosomes is

more effective in inhibiting tumor growth in xenografts
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derived from lung and ovarian malignancies, indicating that the

drug concentration within the tumor is higher. Exosomes alone

had a negligible effect on wild-type mice in a previous study

(Munagala et al., 2016), while bovine milk exosomes were shown

to have no systemic or immunotoxic effects on wild-type mice

(Agrawal et al., 2017).

Research by others (Sun et al., 2010; Kamerkar et al., 2017)

has demonstrated that exosomes can withstand the severe

environment of the stomach and are stable at low pH levels.

The distribution of macromolecules through exosomes has been

used just a few times before. Exosomes from immature murine

dendritic cells were electroporated by Alvarez-Erviti et al.

(Alvarez-Erviti et al., 2011) to transport siRNA. In vitro and

in vivo delivery of siRNA to neurons, microglia, and

oligodendrocytes in the mouse brain have been shown. They

also show that siRNA administration to wild-type mice results in

a considerable drop in the brain-amyloid levels. Exosomes

produced from normal fibroblast-like mesenchymal cells have

recently been extensively examined by Kamerkar et al. (2017).

Exosome-loaded exosomes decreased pancreatic cancer in

various mice models and dramatically improved overall

survival, according to the researchers. Moreover, this research

found that exosomes with the CD47 signal remained in the

circulation of mice longer than liposomes, which is likely related

to the protection of exosomes frommonocytes and macrophages.

Alvarez-Erviti et al. (2011) have shown the efficient use of

exosomes in siRNA delivery. Mice dendritic cells have been

transfected with the exosomal membrane protein Lamp2b and

the neuronal-targeting ligand RVG (Rabies Virus Glycoprotein).

The cells generated exosomes that contained this protein. We

recovered exosomes using electroporation, processed them, and

then loaded them with siRNA directed against BACE1, a critical

protein in the genesis of Alzheimer’s. Three days after

intravenous injection of modified exosomes, BACE1 mRNA in

the cerebral cortex of wild-type mice was found to be 60 percent

lower. Injection of the modified exosomes did not increase blood

levels of interleukin-6, interferon gamma-induced protein, tumor

necrosis factor-alpha, or interferon-alpha, showing that the

modified exosomes were immunologically inert. Alvarez-Erviti

et al. used a biotechnological technique to construct exosome-

based drug delivery devices that exhibited efficient in vivo siRNA

dispersion. In 2012, Wahlgren and others successfully injected

human exosomes with exogenous siRNAs and used them to

deliver siRNA to human mononuclear blood cells in vitro

(Wahlgren et al., 2012). To silence the MAPK-1 gene

specifically, plasma exosomes transported the siRNA to the

FIGURE 2
Postoperative breast cancer metastatic suppression via exosome-mediated siRNA delivery.
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target cells with high efficiency. Exosomes have been used in

several ways to transport siRNA in vitro and in vivo (El-

Andaloussi et al., 2012; Kooijmans et al., 2012; Koppers-Lalic

et al., 2013).

It was then determined that exosome-delivered siRNA was

functional and produced post-transcriptional gene silence in

recipient cells. Exosomes carrying siRNA against the

RAD51 transcript down-regulated the RAD51 gene in HeLa

and HT1080 cells co-cultured with exosomes. Researchers

found that exosomes transported siRNA to target cells, which

silenced certain genes and resulted in the death of reproductive

cancer cells (Shtam et al., 2013). RAD51 gene knockdown

exhibited the same effect on HeLa cells and HT1080 cells.

Exosome absorption by these two kinds of cancer cells seems

comparable. According to the published results, exosomes loaded

with siRNA through chemical loading were unsuccessful because

the surplus of micelles (siRNA encapsulated in lipid micelles)

could not be eliminated. Exosomes or an excess of micelles may

transport the nucleic acid of interest to cells, but this is uncertain;

consequently, the long-term use of this technique in vivo does not

guarantee the safety of siRNA administration through exosomes.

Exosomes were electroporated with siRNA targeting RAD51 to

test this hypothesis. Electroporated exosomes were used as a test

system to enhance HeLa cell transfection. Electroporation was

utilized to insert heterologous siRNA into exosomes; however,

the method may need to be modified for each exosome and

cell type.

Dendrimers as siRNA carriers

For the last several years, dendrimers have been actively

researched as possible nucleic acid carriers (Boas and Heegaard,

2004; Cheng et al., 2008). It refers to macromolecules having

highly symmetric, hyperbranched, spherical architectures, a

broad range of molecular sizes, and variable surface charges.

Due to its unique structural features, including chemical

homogeneity, the possibility for enhanced production by

repeating attachment of chemical groups, and a high surface

density of functional groups, dendrimers are a promising

polymer candidate for various biological applications. As

medication and gene carriers, PAMAM (Polyamidoamine)

and PPI (Poly-propylene imine) dendrimers, as well as other

polycationic dendrimers, have been extensively investigated

(Eichman et al., 2000; Gao et al., 2008). Dendrimers’ promise

as a siRNA delivery vector, on the other hand, is yet largely

untapped.

Cationic amphiphilic dendrimers (Yu et al., 2012; Liu et al.,

2014a; Liu et al., 2016) have recently been developed that

combine the multivalent cooperativity of dendrimer vectors

with the self-assembling property of lipid vectors, thus

capitalizing on the advantages of both lipid and dendrimer

vectors for efficient delivery of therapeutic agents. When it

comes to siRNA distribution, a multivalent self-assembling

dendrimer is known as AD (amphiphilic dendrimers)

performs very well for many cell types, including human

primary and stem cells (Liu et al., 2014a). It’s also worth

noting that AD can transport siRNA to tumors in xenograft

mice for effective gene silencing and powerful anticancer action

in vivo (Liu et al., 2014a).

Dong et al. (2018), to further enhance AD-mediated siRNA

delivery, aimed to provide AD the potential to target cancer cells

specifically inside tumor lesions. By attaching a targeting moiety

to the delivery system, active targeting may be achieved by

interacting and binding to cell-surface receptors and/or

molecules known as ligands (Bertrand et al., 2014). Thus, the

therapeutic cargo may be delivered directly to the target cells,

resulting in enhanced therapeutic effectiveness while sparing

other cells from toxicity to achieve this goal. To build active

targeting systems, several targeting agents, including antibodies

and tiny molecule ligands, have been used (Davis et al., 2010;

Wong et al., 2014). With its ability to target both tumors and

healthy cells in one short section, the RGDK peptide is an

excellent cancer-targeting peptide (Sugahara et al., 2009). On

the one hand, RGD (arginine-glycine-aspartic acid) may interact

with the overexpressed v3 integrin in tumor vasculature to target

tumor endothelium; on the other, RGDK can bind to the

neuropilin-1 (Nrp-1) receptor on tumor cells, facilitating

cancer cell penetration and uptake (Teesalu et al., 2009;

Desgrosellier and Cheresh, 2010; Marelli et al., 2013).

Using a poly (amidoamine) PAMAM dendrimer of

generation 5 (G5) decorated with the same targeting peptide,

researchers previously demonstrated the validity of this dual

targeting method for siRNA delivery and improved performance

in gene silencing (Liu et al., 2014b). PC-3 prostate cancer cells

have integrin and neuropilin-1 receptor molecules on their

surface, and RGDK was able to bind to and interact with

these molecules. As a consequence, the siRNA was able to

evade immune cells more effectively, resulting in a more

robust anticancer impact in castration-resistant prostate

cancer models both in vitro and in vivo, as compared to the

non-targeted system. In addition, the targeted delivery method

did not cause in vitro cytotoxicity, acute in vivo toxicity, or

generated in vivo inflammation. Results from this study show

that siRNA delivery using this targeting technique may result in

gene silence with an anti-cancer effect.

Nanocarriers based on lipid-triblock PAMAM have recently

been created for the co-delivery of small molecule drugs and

siRNAs (Biswas et al., 2013). According to the findings, these

hybrid nanocarriers were more efficient in loading doxorubicin

and capturing siRNA in cells. For high-risk HPV-induced

cervical cancer, PAMAM-nanodiamond hybrid

nanocomplexes were used for the delivery of E7 or

E6 oncoprotein-suppressing siRNA (Lim et al., 2017).

According to the findings, the hybrid nanocomplexes

demonstrated very minimal cell cytotoxicity and substantial
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suppressive effects. When PAMAM-hybrid was taken up by cells,

the pH and mechanical stress of endosomes were lowered,

allowing for the release of the siRNA.

Nanoparticles

Traditional siRNA delivery mechanisms may be replaced

with cyclodextrin. When combined with different payloads, the

cyclodextrin may create inclusion complexes that have

hydrophobic interiors and hydrophilic exteriors.

Cyclodextrin’s tiny size, safety profile, and cationic nature

make it an ideal delivery method for siRNA. However,

adamantane, a hydrophobic molecule, is employed as an

inclusion in the cyclodextrin cavity for higher transfection

effectiveness (Bellocq et al., 2003). Targeted delivery of gene

therapies against cancer cells was made possible by conjugating

transferrin to the adamatane-cyclodextrin inclusion complex

(Davis, 2009). For the first time, a targeted siRNA therapy

was tested in humans using a cyclodextrin-polymer

nanoparticle. As a targeted ligand, cyclodextrin, PEG, and

human transferrin (Tf) were included in this nanoparticle

system (CALAA-01). CALAA-01 effectively delivered siRNA

targeting the RRM2 M2 subunit to human cancer cells

overexpressing the transferrin receptor. CALAA-01’s safety

profile in humans was examined in this phase I of clinical

research (Zuckerman et al., 2014). For the most part, research

on cyclodextrin-siRNA nanoparticles has been focused on

in vitro effectiveness.

Hydrophobicity and transfection efficiency with siRNA has

been improved by modifying chitosan with carboxymethyl

groups Carboxymethyl chitosan, a pH-sensitive polymer, aided

in the distribution of siRNA from a liposome formulation using

pH sensitivity (Yao et al., 2015). To deliver siRNA/drug

combinations into cancer models, hydrophobically modified

glycol chitosan was used (Yoon et al., 2014) in the

conventional method. Sequential administration of

doxorubicin and BCl2 siRNA with 5-cholanic acid-modified

glycol chitosan nanoparticles resulted in significantly

improved anti-cancer activity over the long term. Other

polymers and chitosan combine to generate hybrid

nanosystems that boost transfection effectiveness for siRNA-

based cancer treatment (Li et al., 2014; Xie et al., 2014; Zhong

et al., 2015).

An excellent transporter of therapeutic nucleic acids in vitro

and in vivo is magnetic iron oxide nanoparticles. Simple chemical

approaches may be used to make these nanoparticles smaller

(Reddy et al., 2012; Narsireddy et al., 2014). Nanoparticles’

surfaces may be coated with a variety of polymers that can

assist in covalently or non-covalently attaching siRNA or

DNA and prevent degradation. With the addition of

polymers, such as chitosan or PEI (Polyethylenimine),

magnetic iron oxide nanoparticles have a net positive surface

charge, which aids in the electrostatic interaction with siRNA

(Liu et al., 2011; Wang et al., 2016). Furthermore, these polymer

coverings have many ligand-binding sites. Magnetic

nanoparticles, such as iron oxide nanoparticles, can contain

therapeutic siRNA, as well as the ability to display super

paramagnetism (SPIO) when an external magnetic field is

applied. An external magnetic field was used to transfect

DNA using PEI-coated superparamagnetic nanoparticles

in vitro and in vivo, as described by Scherer et al. The non-

viral vectors often take longer to do focused transfections than

viral vectors. It was later established that magnetofection may be

used for the delivery of small interfering RNA (siRNA) into HeLa

cells (Scherer et al., 2002). It has been shown that SPIONs may be

used to minimize the accumulation and toxicity of siRNA in

healthy tissues when they are delivered intravenously, directed by

an external magnetic field (Arora et al., 2013).

IOMNPs may be used as a combination imaging and delivery

technique for siRNA in breast cancers in mice, according to new

research (Kumar et al., 2010). For NIR (Near-Infrared) imaging,

IOMNP cores coated with dextran are triple-conjugated to

peptide sequences (which selectively bind to tumor-specific

antigen uMUC-1), the dye Cy5.5, and siRNA molecules (that

binds the tumor-specific antiapoptotic gene BIRC5). Nano drug

MN-EPPT-siBIRC5 was subsequently intravenously

administered into subcutaneous mice models containing

human breast cancers, and the in vivo quantitative MRI

indicated that after 24 h of injection, the tumor T2 relaxation

times were significantly decreased. NIR imaging indicated that

MN-EPPT-siBIRC5 was preferentially taken up by the tumor,

and a substantial reduction in tumor growth rate was seen as well.

Clinical trials might be carried out using the IOMNP-based

siRNA delivery method since various IOMNPs have

previously been authorized.

IOMNPs’ theranostic function has also been shown in several

other research, including those mentioned above. As an example,

Lee et al. (2009)created a multifunctional manganese-doped

IOMNPs (MnMEIO) coated with bovine serum albumin,

which has a PEG decorated cell-specific targeting ligand

(cyclic RGD peptide) and a fluorescent dye (Cy5) labeled

siRNA (siGFP). In this work, breast cancer and lung cancer

cells were employed as two different cell lines and treated with

MnMEIO-siGFP-Cy5/PEG-RGD nanocomplexes, respectively.

Increased 1/T2 signal strength in breast cancer cell lines with

increasing quantities of the nanoparticles was seen in MR

imaging of breast cancer cell lines. Lung-carcinoma cell lines

did not show any difference, in contrast, indicating that these

RGD-labelled nanocomplexes can only be taken up by cell lines

expressing integrin. Fluorescence imaging of the Cy5 dye and

GFP expression level were used to track the subcellular

distribution and knockdown efficacy of MnMEIO-siGFP-Cy5/

PEG-RGD nanocomplexes. In all, the findings showed that an

imaging-guided siRNA distribution technique might provide

prospective advantages, including therapeutic treatment and
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visualization for in vivo and future clinical investigations

simultaneously.

Genes that cause resistance to chemotherapeutic

medicines like cisplatin, paclitaxel, and doxorubicin when

overexpressed are another category of possible targets (Bao

et al., 2017). The MDR gene product P-glycoprotein (P-gp),

encoded by ABCB1, was the focus of Yang et al. (Yang et al.,

2015). Cancer cells overexpressing the cell surface protein

CD44 were targeted with HA nanoparticles containing siRNA

against ABCB1. P-gp levels were reduced for up to 120 h after

HA-NP administration in OVCAR8TR paclitaxel resistance

cells, indicating that the introduction of HA might be

employed as an effective therapy to restore cells’ ability to

respond to paclitaxel treatment. Treatment was given

intravenously to mice with human MDR OVCAR8TR

tumor xenograft models, and the animals were observed for

35 days. In HA-PEI/HA-PEG nanoparticle-treated groups, the

expression of the target gene is reduced and tumor

development is inhibited (Yang et al., 2015).

A transcription factor known as TWIST, which is linked to

inducing chemotherapy resistance and cancer cell stemness, is

also linked to ovarian cancer medication resistance (Vesuna et al.,

2009). As a result, cancer cells are more susceptible to

chemotherapeutics when TWIST is down-regulated, according

to research (Finlay et al., 2015a). The siRNA targeting TWIST

(siTWIST) was delivered to cisplatin-resistant ovarian cancer

cells using PAMAM dendrimers and mesoporous silica

nanoparticles (A2780R) (Roberts et al., 2017). They predicted

that knocking down TWIST would cause inducing

chemotherapeutic resistance. To confirm that the dendrimer-

siTWIST combination was absorbed by A2780R cells,

researchers employed fluorescence microscopy. After 1 week

of treatment, Western blots showed that the siRNA therapy

effectively reduced the TWIST protein product relative to the

nontargeting siRNA and untreated controls, indicating that the

siRNA treatment was effective (Finlay et al., 2015b). Si419H with

cisplatin reduced tumor weight in mice treated intraperitoneally

with OVCAR8 cells sixfold, as evidenced by in vivo tests. TWIST

was shown to be a viable target for siRNA treatments and

nanoparticle delivery in this study (Roberts et al., 2017).

Using a gold nanoparticle-based aptamer-siRNA chimera

delivery system, Chen et al. set out to inhibit the expression of

NOTCH3, which encodes a marker for ovarian cancer recurrence

and treatment resistance (Chen et al., 2017). An overexpressed

form of vascular endothelial growth factor (VEGF) was

discovered to behave as a receptor for the gold nanoparticles,

which were then combined with ferric (II, III) oxide (Fe2O3), PEI,

and an aptamer-siRNA to target ovarian cancer cells (Cho et al.,

2012). Due to its positive (+20 mV) electrical charge, the aptamer

could engage with the negatively charged cell membrane and

enable clathrin-mediated endocytosis more quickly than if it had

been neutrally charged (Kaksonen and Roux, 2018). When the

aptamer was used in combination with the nanoparticle-chimera

delivery method, it was shown to be more efficient than

lipofectamine or siRNA alone in cisplatin-resistant SKOV-3/

DDP cells in knocking down NOTCH3 expression. In

addition, SKOV-3/DDP cells’ viability was reduced by a factor

of two when compared to the untreated control. It seems that this

aptamer-siRNA chimera delivery method is an effective method

for reducing ovarian cancer medication resistance via the use of

nanoparticles (Chen et al., 2017).

Nanoparticles of chitosan and siRNA were utilized to

inhibit P-gp expression in the blood-brain barrier by

Malmo et al. (2013). As a result of this method, the flow of

medications from the blood to the brain would be improved.

To test this theory, the researchers employed a type of rat

brain endothelial cell line, RBE4, often used as a BBB model to

transfect siRNA against P-gp. However, the effectiveness of

the PEC nanoparticles to silence P-gp was dependent on the

N/P ratio employed to produce the chitosan/siRNA

nanoparticles. Increasing the N/P ratio lowered the

quantity of internalized siRNA given by PEC nanoparticles,

but high N/P ratios were required to achieve the greatest

knockdown of P-gp expression. Success in transfecting

RBE4 cells with siRNA showed that P-gp expression had

been reduced in vitro and that efflux capability had

decreased. As a model drug, doxorubicin was shown to be

more effectively administered to the cells, resulting in an

increased level of bioactivity. The authors’ findings imply

that transfection of a siRNA targeted to quiet P-gp into

blood-brain barrier endothelial cells might be utilized as a

general technique to increase medication delivery to the brain,

which is still a bottleneck for effective therapy for many kinds

of disorders (Malmo et al., 2013). The ability of siRNA/

chitosan PEC nanoparticles to suppress the expression of

the P-gp and boost the efficacy of active delivery in the

brain will only be completely shown in vivo investigations.

In addition to doxorubicin, several other relevant medications

will need to be considered for delivery to the brain as part of

the method’s validation.

Using chitosan/siRNA PEC nanoparticles, Fernandes et al.

(2012) studied the in vitro transfection efficacy of a siRNA

directed against the Sjogren Syndrome antigen (SSB, GenBank

accession number NM009278) on cell lines from cervical

cancer, ovarian cancer, and osteosarcoma. In contrast to

the third cell line, MG-63, two of the cell lines tested, HeLa

and OV-3, expressed folate receptors on the cell membrane. A

nanoparticle targeting strategy was tested by making chitosan

nanoparticles containing folic acid residues to see how

effective it was. It was hypothesized that including a

targeting ligand in the siRNA delivery system would

enhance the siRNA’s transfection efficiency in the cells that

would be receiving it. Folate chitosan/siRNA PEC

nanoparticles improved transfection efficiency in two folate

receptor-positive cell lines, HeLa and OV-3. Targeting folate

receptor-expressing cancer cells using nanoparticles coated
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with folate groups on their surface was the goal of this

research. Contrary to what was expected, the presence of

the targeting ligand on the PEC nanoparticles did not

influence MG-63 cells’ ability to transfect siRNA

(Fernandes et al., 2012). HeLa cells were utilized to test the

cytotoxicity of various molecular weights of chitosan

employed in the manufacture of chitosan/siRNA PEC

nanoparticles. In comparison to chitosans of 10, 25, and

50 kDa, the chitosans of 2, 5, and 10 kDa are more

cytotoxic (IC50 = 0.21 mg/ml). Chitosans 10 and 25 kDa

had the lowest cytotoxicity, with an IC50 of 2.2 mg/ml. The

cell survival was unaffected by the chitosan/siRNA ratio in the

PEC nanoparticles up to a ratio of 100 when using chitosan

with a molecular weight greater than 10 kDa. Furthermore,

the decreased cytotoxicity of the targeted siRNA delivery

method to folate receptor-positive cells was associated with

the better transfection efficiency obtained with the folate-

chitosan nanoparticles. If the folate receptor overexpression

is seen in multiple forms of cancer and inflammatory disease-

causing cells such as those found in arthritis, this should spur

more research into cell-specific delivery of siRNA.

It has been shown that nanospheres coated with chitosan

may deliver and preserve siRNA directed against an oncogene

implicated in radio-induced thyroid cancer tumorogenesis,

such as RET/PTC1 (De Martimprey et al., 2008). A significant

level of suppression of the RET/PTC1 junction oncogene

expression was seen when the shRNA was transfected into

cells using lipofectamine and even reversed the phenotypic of

NIH/3T3 cells containing the RET/PTC1 oncogene. For

in vitro investigations, lipofectamine was chosen as a

transfection agent due to the lack of suppression of the

target gene when PIBCA nanospheres were transfected with

siRNA-loaded chitosan. In vitro, the nanosphere-carrying

siRNA was completely ineffective in suppressing the

expression of the target gene, but intratumoral delivery of

the siRNA with these nanospheres resulted in a considerable

suppression of tumor development (De Martimprey et al.,

2008). It was shown that the chitosan-coated PIBCA

nanospheres were effective in protecting siRNA from

nuclease degradation in tumoral tissue over 48 h, pointing

in the direction of the antitumoral activity hypothesis.

Nanospheres were also able to transport the siRNA to

cancer cells, based on their ability to disrupt cancer cell

interferon activity.

As part of the first investigation, a siRNA was delivered

that was meant to halt the production of the green fluorescent

protein gene. For 5 days, patients received chitosan/siRNA

PEC nanoparticles intranasally every day (Howard et al.,

2006). A decrease in green fluorescent protein expression in

lung bronchiole epithelial cells was seen even though the

medication was well tolerated and no overall harm was

noted. When compared to the expression levels in

untreated animals, the inhibition percentage was 43%.

Chitosan/Cy3-labeled siRNA PEC nanoparticles were

aerosolized using an intratracheal catheter and inhibited

the production of green fluorescent protein by 68 percent

in comparison to control tests by Gianfelici et al. (2012). Using

PEC nanoparticles, siRNA can transport to the lung in an

active state. They have a positive outlook on the findings,

citing applicable lung disease models as an example.

Specific targeted delivery

siRNA had been combined with the chimera and aptamer

for the cell specific delivery of siRNA. A key benefit of this

technology is that it uses just RNA (in the form of an RNA

aptamer coupled to a siRNA), rather than proteins or other

regularly used reagents, which have several adverse effects.

Aptamer siRNA chimeras do provide various benefits for in

vivo use. The immunogenicity of aptamers and siRNAs is

minimal. Large amounts may be produced cheaply, and

chemical changes can be made to increase their resistance

to degradation and enhance their pharmacokinetics in the

body. Aptamers are easier to distribute in vivo because of their

reduced size compared to antibodies, which allows for greater

tissue penetration. The PSMA-specific aptamer–siRNA

chimeric RNAs were created to target siRNAs to cells that

express PSMA on the cell surface. Binding between PSMA and

A10 (aptamer) occurs via this component. PLK1 (A10-Plk1)

and BCL2 (A10-BCL2) are the two survival genes targeted by

the siRNA component (A10-Bcl2). They used RNAi to target

anti-apoptotic genes in cancer cells that expressed the cell-

surface PSMA receptor (McNamara et al., 2006). Targeted cell

growth and apoptosis were reduced after depletion of the

targeted gene products. The aptamer part of the chimeras

interacted with PSMA on the cell surface to help them target

cells with the cellular RNAs.

A mutant chimeric RNA with two-point mutations in the

aptamer region responsible for binding to PSMA lost its

binding activity. It was shown that chimeras targeted LNCaP

cells that had been depleted of the PSMA protein by 5-

adihydrotestosterone treatment, but not PC-3 cells or

LNCaP cells that had not been depleted of PSMA.

Additionally, PSMA-specific antibodies competed with the

chimeras for binding to the LNCaP cell surface. Using

monoclonal antibodies and RNAi-mediated gene silencing,

Song and others present a novel technique for delivering

siRNA to cells (Dassie et al., 2009). With the F105–protamine

method, siRNA may be efficiently transported across the cell

membrane and targeted to certain cell types. The avoidance

of silencing in cells not implicated in the particular illness is

one conceivable advantage of a tissue- and cell-type specific

administration. This should increase the number of genes

that can be targeted using a siRNA therapeutic strategy to

non-target cells. In addition, administration to certain
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structures (such as tumor cells) may limit the activation of

the interferon pathway, which has been documented for

siRNA delivery to plasmacytoid dendritic cells when

confined to those structures alone. Jiang et al. used

quantum dots (QDots) to identify HA derivatives and

studied the impact of HA (Hyaluronic acid) alteration on

receptor-mediated endocytosis (Song et al., 2005).

Endocytosis mediated by the HA receptor seemed to take

up HAQDot conjugates with a degree of modification less

than around 25 mol percent more effectively than QDots

alone in B16F1 cells. Target-specific intracellular delivery of

siRNA was established based on bioimaging studies using

polyethyleneimine, PEI-HA compound with 24.2 mol

percent PEI concentration. In B16F1 cells expressing HA

receptors, the siRNA/PEI-HA combination suppressed more

genes than the siRNA/PEI complex alone. According to the

results, the PGL3-Luc gene was silenced between 50% and

85%, depending on the serum content of the siRNA/PEI/HA

combination. siRNA/PEI-HA combination accumulated

mostly in organs having HA receptors, such as liver,

kidney, and tumor, according to in vivo biodistribution

tests. Furthermore, intratumoral injection of anti-VEGF

siRNA/PEI/HA complex resulted in an efficient reduction

of tumor development in C57BL/6 mice through the HA

receptor-mediated endocytosis to tumor cells (Jiang et al.,

2009). Similarly, Cao et al. (2019) studied the effect of

pH responsive micelles based on siRNA for the targeted

delivery in hepatocellular carcinoma.

Conclusion and future directions

Despite preclinical and clinical research showing

improvement, siRNAs as cancer treatments face hurdles.

Unsolved concerns include siRNA’s stability in blood and

tumor microenvironments, selective absorption into tumor

cells, immunological adverse effects, carrier toxicity, and

commercialization hurdles. Initially, chemical changes to

siRNAs were thought to be required for in vivo

application. Several siRNA alterations impair RNAi

activity and therapeutic index. To address siRNA’s lack of

tumor-site accessibility, delivery techniques that increase

tumor cell uptake are needed. New delivery materials were

expected to render chemically modified siRNAs

uneconomical. If cost limits can be addressed, combining

delivery modalities with chemically modified siRNAs may

improve siRNA stability in blood and tumor

microenvironments.

In most siRNA-based anti-cancer studies, just one gene

has been targeted. siRNA monotherapy has modest anticancer

effects despite suppressing the target protein in malignant

tissues. Due to cancer’s polygenic pathogenesis and existing

therapy, silencing a single protein is unlikely to eliminate this

complex and persistent organism. The ALN-VSP02 strategy,

which uses dual siRNAs to target two tumor-essential

proteins, may be more practicable for clinical studies.

Anticancer siRNAs may be more effective when used with

chemotherapy. Anticancer siRNA may be used as a

chemosensitizer or a radiation-sensitizer to make resistant

cancers more sensitive to treatment. Most siRNA nanoparticle

delivery techniques rely on the EPR effect to enhance tumor

accumulation. EPR effects may boost siRNA nanoparticle

distribution to organs including the liver, lung, spleen, and

kidney, whereas unbound siRNAs may be delivered more

effectively to tumor tissues. Numerous research has

exclusively concentrated on silencing siRNA target genes in

tumor tissues, disregarding other tissues. Before using siRNA

to quiet a target gene in other places of the body, clinical

studies must detect any negative effects. siRNAs introduced

into the tumor microenvironment don’t always reach tumor

cells. A siRNA ligand might be added to delivery systems to

boost cancer cell absorption.

According to past studies, ligonucleotides may improve

tumor cell absorption rather than siRNA delivery. This is

exciting, but it raises questions about whether ligand change

affects animals and people similarly. Extrapolating ligand-

modified delivery system results in human trials requires

care. Anticancer siRNAs must be able to infiltrate tumor

tissues for delivery strategies to be effective. After accessing

tumor tissue, a new medication delivery system is contracted.

Enzymatic breakdown of 100 nm nanoparticles into smaller

nanoparticles in the tumor environment improves

penetration. Future therapies may combine chemically

modified siRNAs with tumor microenvironment-sensitive

delivery techniques. RNA interference is less damaging

than standard chemotherapeutics and is used to treat

cancer. siRNAs may heal genetic faults, skin ailments,

cardiovascular difficulties, infectious illnesses, and

malignancies. If protein-based medications or comparable

small molecules can’t be employed, siRNA may help treat

cancer. siRNA in cancer therapy is safe, efficient, flexible, and

precise. Many methods for delivering siRNA have been

developed. The design, size, and content of effective

delivery systems vary greatly, however, there are criteria

for focused distribution. Nanoparticle distribution

networks should include particles between 20 and 200 nm

to avoid renal filtration and impair phagocytosis clearance.

Exogenous or endogenous trigger-binding affinity helps

cancer cells absorb siRNA. Despite research showing

siRNA’s promise in cancer treatment, this revolutionary

drug delivery technique hasn’t reached its full potential.

Future studies should concentrate on the safety and

effectiveness of nanoparticle delivery techniques with

unwanted cytotoxicity and immune activation, such as

composites, cationic lipids, dendrimers, and inorganic

NPs. SiRNA-based cancer treatment relies on easy
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approaches for defining rules and evaluating

biocompatibility, biodegradability, and environmental

safety in clinical trials. SiRNA-based therapies need an

effective delivery mechanism. Due to advances in siRNA

delivery techniques, the siRNA drug sector, especially the

chemotherapeutic agent industry, is in a strong position after

this breakthrough.
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