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Currently, the recovery of cognitive function has become an essential part of stroke
rehabilitation. DL-3-n-butylphthalide (NBP) is a neuroprotective reagent and has
been used in stroke treatment. Clinical studies have confirmed that NBP can achieve
better cognitive outcomes in ischemic stroke patients than in healthy controls. In this
study, we aimed to investigate the influences of NBP on cognitive function in an
ischemic reperfusion (I/R) rat model. Our results showed that NBP profoundly
decreased neurological scores, reduced cerebral infarct areas and enhanced
cerebral blood flow (CBF). NBP potently alleviated poststroke cognitive
impairment (PSCI) including depression-like behavior and learning, memory and
social cognition impairments, in I/R rats. NBP distinctly suppressed the activation of
microglia and astrocytes and improved neuron viability in the ischemic brain. NBP
inhibited the expression of inflammatory cytokines, including interleukin-6 (IL-6),
interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), by targeting the nuclear
factor kappa B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and decreased
cerebral oxidative stress factors, including reactive oxygen species (ROS) and
malondialdehyde (MDA), by targeting the kelch like ECH associated protein 1/
nuclear factor-erythroid 2 p45-related factor 2 (Keap1/Nrf2) pathway in the
ischemic brain. The current study revealed that NBP treatment improved
neurological function and ameliorated cognitive impairment in I/R rats, possibly
by synergistically suppressing inflammation and oxidative stress.
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Introduction

Currently, stroke is still the leading cause of disability and the second most common of
mortality worldwide (Mendelson and Prabhakaran, 2021). Stroke is generally classified into
hemorrhagic stroke and ischemic stroke and the latter accounts for 71% of all stroke cases
(Sacks et al., 2018). Functional outcomes of stroke involve not only physical disability, but also
cognitive impairment in approximately 1/3 of patients, severely affecting their capability to live
independently (Kalaria et al., 2016). Poststroke cognitive impairment (PSCI) is a type of
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vascular cognitive impairment and likely develops into dementia
(Teng et al., 2017). PSCI is quite common in acute ischemic stroke
patients, with an incidence ranging from 7.4% to 41.3% (Huang et al.,
2022). PSCI, including memory and learning disorders, emotional
disorders, attention disorders, sensory and perceptual disorders,
executive dysfunction, personality changes and behavioral
abnormalities, has become one of the primary challenges faced in
stroke rehabilitation (Liu et al., 2020). Lesions in cerebral areas, such as
the hippocampus, white matter, and cortex, induced by ischemic
reperfusion (I/R) might contribute to the pathogenesis of PSCI
(Sun et al., 2014). Currently, drugs available for PSCI treatment
mainly include calcium antagonists, excitatory amino acid receptor
antagonists and cholinesterase inhibitors (Grupke et al., 2015).
However, the effects of these reagents are still far from satisfactory,
necessitating the development of novel preventive approaches to
improve the cognitive function of AIS patients.

DL-3-n-butylphthalide (NBP) is a chiral compound synthesized from
L-3-n-butylphthalide, which was originally extracted from the seeds of
Apium graveolens Linn (Fan et al., 2022). NBP was licensed by the State
Food and Drug Administration of China (SFDA) in 2002 for ischemic
stroke treatment (Peng et al., 2013). Fundamental or clinical studies have
demonstrated that NBP could alleviate PSCI (Sun et al., 2017; Yan et al.,
2017).Multiplemechanisms are involved in the neuroprotective function of
NBP, such as inhibiting neuroinflammation (Wang et al., 2019), resisting
oxidative stress (Wang et al., 2021), promoting cerebral blood flow (CBF)
(Li et al., 2019), and reducing neuronal damage (Li H Q et al., 2021).
Oxidative stress and inflammation play essential roles in the pathogenesis of
cognitive deficits induced by various risk factors (Tiwari et al., 2009; Tiwari
and Chopra, 2012). Increasing evidence has suggested that
neuroinflammation is an important factor contributing to PSCI, and the
relevant mechanisms include neuronal cell injury, brain function
impairment and inflammasome activation (Gold et al., 2011; Swardfager
et al., 2013; Kim et al., 2020). Oxidative stress is another major mechanism
participating in the pathogenesis of PSCI. Augmenting of oxidative stress
levels damages neurons and contributes to aggravated PSCI (Bahader et al.,
2021). Both neuroinflammation and oxidative stress provide targets for
PSCI treatment (Zhang andBi, 2020). In the present study, we hypothesized
that NBP protects neurological function and alleviates PSCI, possibly by
synergistically suppressing inflammation and oxidative stress. Therefore,
the influences of NBP on neurological function and PSCI were investigated,
and the underlying mechanisms were further probed.

Materials and methods

Ischemic reperfusion (I/R) model

Animal experiments were licensed by the Institutional Animal
Care and Use Committee of Changsha Medical University. Animal
suffering was minimized according to the guidelines. Sprague-Dawley
(SD) rats with body weights ranging from 250 g to 280 g were
purchased from Hunan SJA Laboratory (Changsha, China). The
rats were housed in a room with a temperature of 20°C–24°C,
humidity of 45%–65% and 12-h light/dark cycle.

I/R models were established by middle cerebral artery occlusion
(MCAO) according to Longa’s method (Longa et al., 1989) with minor
modifications. The rats were anesthetized by pentobarbital sodium
(30 mg/kg i.p.,). The right common carotid artery, external carotid
artery (ECA) and internal carotid artery (ICA) were carefully

separated and exposed. The common carotid artery was first
ligated. A small incision was made at the ECA, and a Nylon suture
with a .36-mm diameter (Cinontech, Beijing, China) was inserted and
guided through the ICA to themiddle cerebral artery (MCA). After 1 h
of occlusion, the suture was withdrawn from the ICA for reperfusion.
The sham group was subjected to a surgical procedure similar to that
of the I/R group except for MCA occlusion. The rats in the vehicle +
I/R group (I/R group) were administered saline (450 μL, i. p.), and the
rats in the NBP + I/R group were administered NBP (9 mg/kg, i. p.)
(CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China). The
flowchart of the animal experiment is generalized in Figure 1.

Neurological deficit scoring

The neurological deficit score was evaluated on the 7th day after
surgery by researchers blinded to the animal grouping. No deficit was
scored 0; forelimb weakness was scored 1; circling to one side was
scored 2; inability to bear weight on the affected side was scored 3; and
no spontaneous motor activity was scored 4 (Shah et al., 2006). Rats
scored 0 after I/R surgery were deemed failed models and were
excluded from subsequent experiments.

Laser speckle imaging

Laser speckle imaging (RWD Life Technologies, Shenzhen, China)
was utilized to monitor CBF before MCAO, after MCAO, after
reperfusion and on the 7th day after I/R surgery. Briefly, a scalp
incision was made in the middle of the head. Bilateral skulls were
ground and polished by a cranial perforator until the scull was
sufficiently thin for CBF detection. The detector was positioned
above the skull. Videos were obtained, and CBF in the region of
interest (ROI) was recorded. Relative CBF for each rat was expressed
as the ratio of CBF in the right hemisphere to the left hemisphere.

Infarct area analysis

The cerebral infarct area was evaluated by 2,3,5-triphenyltetrazolium
chloride (TTC) staining (Solarbio, Beijing, China). Briefly, the rats were
anesthetized and sacrificed by cervical dislocation. Brains were rapidly
removed and cut into slices of approximately 2-mm thickness on ice. The
slices were immersed in TTC solution for 30 min at 37°C and fixed in 4%
paraformaldehyde for 2 h. Photos of the slices were obtained. The infarct
area was measured by ImageJ software (Media Cybernetics, Bethesda, MD,
United States). The infarct volume was calculated through multiplying the
area by the thickness of the slices. The percentage of the infarct volume was
calculated.

Sucrose preference test (SPT)

The SPT was performed to evaluate depression-like behavior (Lu
et al., 2017). During the SPT procedure, the rats were kept separately.
In the adaptation phase, each rat was supplied with two bottles of 1%
(w/v) sucrose. After 24 h, one bottle of sucrose was replaced with water
for another 24 h. Subsequently, the rat was deprived of water for 24 h.
In the test phase, the rat was simultaneously supplied with one bottle
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of water and one bottle of 1% sucrose for 2 h. Sucrose preference (SP)
was calculated according to the following formula: SP = sucrose
intake/(sucrose intake + water intake) × 100%.

Novel object recognition (NOR) test

The NOR test was performed to evaluate animal learning andmemory
capability (Lueptow, 2017). In the adaptive phase, two identical objects were
placed in a square opaque box (20 cm × 20 cm). The rat was allowed to
acclimate to the box for 5 min and then removed from the box to its home
cage. In the test phase, one of the objects was replaced with a novel object
with different materials, shapes and colors. The rat was returned to the box
and allowed to freely explore for 5 min. The time spent sniffing or climbing
each object by the rat was analyzed by Smart software, version 3.0 (Panlab,
Spain). The Discrimination ratio was calculated according to the following
formula (Time Novel—Time Familiar)/(Time Novel + Time Familiar).

Social interaction (SI) test

The SI test was performed to evaluate animal social cognitive
capability (Liu et al., 2019). The device consisted three opaque square
boxes (40 × 40 × 40 cm), with a passage connecting the boxes. One
clear cage of the same size, sufficiently large to hold a rat, was
positioned in the left box and the right box. In the first phase, the
three boxes were separated with clear Plexiglas, and the subject rat was
placed in the middle box to acclimate for 5 min. In the second phase, a
stimulus rat (familiar rat) was placed to the left cage. The Plexiglas was
removed to allow the subject rat to explore freely in the three boxes for
10 min. In the third phase, a second rat (unfamiliar rat) was placed in
the right cage. The subject rat was allowed to freely explore for another
10 min. The time spent communicating with the familiar rat and the
unfamiliar rat by the subject rat was analyzed by Smart software,
version 3.0. The Discrimination ratio was calculated according to the
following formula (Time Unfamiliar—Time Familiar)/(Time Unfamiliar +
Time Familiar) × 100%.

Enzyme-linked immunosorbent assay (ELISA)

Inflammatory cytokines, including interleukin-6 (IL-6),
interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), in the
ischemic cerebral hemisphere were analyzed by ELISA kits according
to the manufacturer’s instructions (Meiman, Jiangsu, China). A dose

of 10 μL of supernatants of ischemic brain homogenate or standard
sample was mixed with 40 μL of sample diluent and added to the wells.
A dose of 100 μL of HRP-conjugated reagent was added to each well
except for the blank wells. The plate was incubated at 37°C for 1 h.
Chromogen Solution A (50 μL) and Chromogen Solution B (50 μL)
were added to each well. The plate was incubated at 37°C for 15 min in
the dark. The absorbance was measured at 450 nm.

Reactive oxygen species (ROS) and
malondialdehyde (MDA) analysis

The ischemic hemisphere of the brain was collected and
homogenized. The homogenate was centrifuged at 4000 × g at 4°C
for 20 min. The supernatant was collected. The protein concentration
was determined by a BCA Protein Assay Kit (Kangwei Century
Biotechnology, Jiangsu, China).

ROS were measured by an ROS assay kit (Jiancheng
Bioengineering Institute, Nanjing, China) according to the
manufacturer’s instructions. Briefly, 1 μL of sample, 5 μL of DCFH
probe (5 μM) and PBS were mixed into a 96-well plate and incubated
at 37°C for 40 min. The fluorescent value was measured under an
excitation wavelength of 500 nm and an emission wavelength of
525 nm. The ROS level was expressed as a fold change in the
fluorescent value compared with the sham group.

The MDA level was measured by an MDA assay kit (Jiancheng
Bioengineering Institute, Nanjing, China) according to the
manufacturer’s instructions. The test mixture contained 20 μL of
sample, 20 μL of solution I, 1 mL of solution II and 330 μL of
solution III. The blank mixture contained 20 μL of ethanol instead
of sample and the standard mixture contained 20 μL standard
substance (10 nM) instead of sample, with the other components
the same. All of the mixtures were incubated in 95°C water bath for
40 min and centrifuged at 1000 × g for 10 min. The absorbance value
at 532 nm was recorded. The MDA level was expressed as: OD Sample ×
10 nM/(OD Standard—OD Blank)/protein concentration (nM/mgprot).

Western blot

The proteins extracted from the ischemic brain (10 μg per lane)
were separated by 10% SDS‒PAGE gel and transferred to a .45 μm
nitrocellulose membrane (Boster Biological Technology, CA,
United States). The membranes were blocked with 5% nonfat
milk at room temperature for 1 h and incubated with primary

FIGURE 1
Schedule of the animal experiments including I/R model establishment, NBP dosing, cerebral infarction analysis, CBF analysis, neurological scoring and
behavioral tests.
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antibodies at 4°C overnight. After washing with TBST buffer
3 times, the membrane was incubated with HRP-conjugated
secondary antibody at room temperature for 70 min. The bands
were detected by an Odyssey Clx system (Li-COR Biosciences,
United States). The protein expression level was quantified by
ImageJ software and normalized to GAPDH. The primary
antibodies included anti-Keap1 antibody (1:1000, ab119403,
Abcam, United States), anti-Nrf2 antibody (1:500, ab92946,
Abcam, United States), anti-NF-lB P65 antibody (1:500,
ab194726, Abcam, United States), anti-iNOS antibody (1:500,
ab283655, Abcam, United States), and anti-GAPDH antibody (1:
2000, 10494-1-AP, ProteinTech, United States).

Immunohistochemistry

The rats were anesthetized and perfused with saline solution
and 4% paraformaldehyde. The brain was removed and
sequentially immersed in 4% paraformaldehyde, 15% sucrose,
30% sucrose and 35% sucrose, each step for 12 h and imbedded
into Tissue-Tek® O.C.T (Sakura Finetek, United States). The
brains were cut into slices with a thickness of 15 μm. The slices
were incubated with primary antibodies at 4°C overnight. After

washing with PBS, the slices were incubated with donkey anti-
rabbit and donkey anti-mouse secondary antibodies at room
temperature for 2 h. Subsequently, the slices were stained with
3,3′-diaminobenzidine (DAB) (ZSGB-BIO, Beijing, China) and
washed with PBS. The primary antibodies included anti-NeuN
antibody (1:200, ab177487, Abcam, United States), anti- GFAP
polyclonal antibody (1:200, ab7260, Abcam, United States), and
anti-Iba-1 antibody (1:200, 019-19741, Wako, Japan). The slides
were dehydrated by ethanol, cleared by xylene and sealed. The
same zone of brain sections was scanned using a Panoramic
250 FLASH II digital slide scanner (3DHISTECH, Budapest,
Hungary). The numbers of positive cells per field were counted
(×40 magnification). At least three sections for each rat were
analyzed.

Statistical analysis

The data are presented as the mean ± SEM and were analyzed
by Graphpad Prism software, version 8 (San Diego, CA,
United States). Group comparisons were performed by one-
way ANOVA followed by Tukey’s post hoc test. p < .05 was
considered significantly different.

FIGURE 2
Effects of NBP on neurological scores, cerebral infarction and CBF in I/R rats. (A) Effects of NBP on neurological scores (n = 16). Rats showed obvious
neurological deficits after I/R surgery, while NBP treatment significantly improved neurological function. (B and C) Effects of NBP on the infarct area in the
right hemisphere of the brains in I/R rats (n = 3). I/R surgery resulted in obvious infarction in the right hemisphere of the brain, while NBP significantly reduced
the infarct area in I/R rats. (D and E) Effects of NBP on CBF and the ratio of CBF in the right hemisphere to the left hemisphere (n = 3). Data are expressed
as the mean ± SEM and were analyzed by one-way ANOVA (post hoc analysis: Tukey’s post hoc analysis test). * (p < .05) and ** (p < .01) represent significance
compared to the I/R group. ## (p < .01) represents significance compared to the sham group. NBP dose: NBP + I/R, 9 mg/kg.
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Results

Effects of NBP on neurological scores,
cerebral infarction and CBF in I/R rats

Neurological function was evaluated on the 7th day after I/R
surgery. As shown in Figure 2A, the rats in the I/R group showed
obvious neurological deficits compared with the sham group. NBP
significantly improved neurological function (p < .05). TTC staining
results showed that an obvious infarct area was observed in the I/R
group, while NBP significantly reduced the infarct area in I/R rats (p <
.01) (Figures 2B, C). CBF was monitored during I/R surgery and, on
the 7th day after I/R surgery, by laser speckle imaging. CBF in the
ischemic hemisphere of I/R rats was obviously reduced after MCAO
and partially recovered after reperfusion, indicative of successful
cerebral blood occlusion and reperfusion. On the 7th day, NBP
significantly enhanced the CBF in the ischemic hemispheres of I/R
rats (p < .01) (Figures 2D, E).

Effects of NBP on cognitive behavior in I/R
rats

The sucrose consumption by I/R rats was significantly decreased
(p < .01). NBP significantly enhanced sucrose preference in I/R rats
(p < .05) (Figure 3A), indicating that NBP could alleviate depression-
like behavior in I/R rats. The SI test was performed to evaluate animal
social cognition. Compared with the sham group, the discrimination
ratio in the I/R group was significantly decreased (p < .001). NBP
treatment significantly increased the discrimination ratio (p < .05),
indicating that NBP could improve the social cognitive ability of I/R
rats (Figure 3B). The NOR test was performed to investigate animal
learning and memory capability. Compared with the sham group, the
I/R group exhibited a significantly decreased discrimination ratio (p <
.001). NBP treatment significantly increased the discrimination ratio

compared with the I/R group (p < .05), suggesting that NBP could
effectively improve the learning and memory abilities of I/R rats
(Figure 3C).

Effects of NBP on oxidative stress in I/R rats

To evaluate the effects of NBP on oxidative stress, the levels of ROS
and MDA in the right hemispheres of the rats were measured. The
results suggested that transient ischemia significantly elevated ROS
levels (p < .05) and MDA levels (p < .05). ROS (p < .01) and MDA (p <
.01) were significantly decreased in the NBP + I/R group compared
with the I/R group, indicating that NBP could suppress oxidative stress
in I/R rats (Figures 4A, B). The oxidative stress-associated kelch like
ECH associated protein 1/nuclear factor-erythroid 2 p45-related factor
2 (Keap1/Nrf2) pathway was further analyzed. The expression of both
Keap1 and Nrf2 was low in the sham group. Keap1 protein expression
was significantly elevated in the I/R group (p < .01). NBP significantly
downregulated Keap1 levels (p < .05) and upregulated Nrf2 levels (p <
.05), suggesting that NBP alleviated oxidative stress by targeting the
Keap1/Nrf2 pathway (Figures 4C, D).

Effects of NBP on neuroinflammation in I/R
rats

Cytokines including IL-6, IL-1β and TNF-α, in the ischemic brain were
assayed to investigate the effects of NBP on inflammatory levels in I/R rats.
The concentrations of cerebral cytokines (IL-6, p < .01; IL-1β, p < .01; TNF-
α, p < .01) were significantly increased after transient ischemia. NBP
significantly decreased IL-6 (p < .01), IL-1β (p < .001) and TNF-α (p < .01)
levels in the ischemic brains of the I/R rats (Figures 5A–C). The nuclear
factor kappa B/inducible nitric oxide synthase (NF-κB/iNOS) was further
analyzed. The expression of both NF-κB P65 (p < .05) and iNOS (p < .05)
was significantly increased in the I/R group. NBP significantly

FIGURE 3
Effects of NBP on the cognitive behavior of I/R rats. (A) Effects of NBP on depression-like behavior in I/R rats as assessed by the SPT. Sucrose
consumption was significantly decreased in I/R rats, while NBP significantly enhanced sucrose preference. (B) Effects of NBP on social cognition in I/R rats by
SI testing. The discrimination ratio was significantly decreased in the I/R group and significantly increased after NBP treatment on the SI test. (C) Effects of NBP
on study and memory in I/R rats by the NOR test. The discrimination ratio was significantly decreased in the I/R group and significantly increased after
NBP treatment on the NOR test. Data are expressed as the mean ± SEM (n = 10) and were analyzed by one-way ANOVA (post hoc analysis: Tukey’s post hoc
analysis test). * (p < .05), ** (p < .01) and *** (p < .001) represent significance compared to the sham group. # (p < .05) and ## (p < .01) represent significance
compared to the I/R group (p < .01). NBP dose: NBP + I/R, 9 mg/kg.
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downregulated NF-κB P65 (p < .05) and iNOS expression (p < .05). The
above data suggested that NBP attenuated neuroinflammation by targeting
the NF-κB/iNOS pathway (Figures 5D–F).

Effects of NBP on neurons, microglia and
astrocytes in I/R rats

According to the immunohistochemistry results, neuron-specific
nuclear protein (NeuN)-positive cells were significantly decreased in
the I/R group compared with the sham group (p < .01). NBP

significantly increased the number of NeuN-positive cells in the
ischemic penumbra zone (p < .05) (Figures 6A, B), suggesting that
NBP could preserve the viability of neurons in I/R rats. Glial fibrillary
acidic protein (GFAP) and ionized calcium binding adaptor molecule
1 (Iba1) were analyzed to verify the activation of microglia and
astrocytes in the ischemic penumbra, respectively. Compared with
the sham group, GFAP-positive cells and Iba1-positive cells were
significantly increased in the I/R group (p < .01). NBP significantly
decreased GFAP-positive cells and Iba1-positive cells (p < .05),
indicating that NBP could effectively protect microglia and
astrocytes against overactivation (Figures 6A, C, D).

FIGURE 4
Effects of NBP on oxidative stress in the infarcted cerebral hemisphere in I/R rats. (A and B) Effects of NBP on ROS levels andMDA leves (n = 6). I/R surgery
significantly elevated ROS levels and MDA levels, while NBP significantly decreased ROS levels and MDA levels in I/R rats. (C–E) Effects of NBP on Keap1/
Nrf2 pathway (n = 3). NBP significantly downregulated Keap1 expression and upregulated Nrf2 expression in I/R rats. Data are expressed as the mean ± SEM
and were analyzed by one-way ANOVA (post hoc analysis: Tukey’s post hoc analysis test). * (p < .05) and ** (p < .01) represent significance compared to
the sham group. # (p < .05) and ## (p < .01) represent significance compared to the I/R group (p < .01). NBP dose: NBP + I/R, 9 mg/kg.
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Discussion

At the beginning of ischemic stroke, an irreversible necrotic zone
in the brain is first formed, followed by second-phase damage in the
peri-infarct area surrounding the core (Darwish et al., 2020). The peri-
infarct area, which is called the ischemic penumbra, plays an
important role in the clinical deficits of ischemic stroke and can be
recovered by rapid reperfusion or neuroprotective treatment (Belayev
et al., 2018). PSCI developing after stroke usually leads to worse
clinical outcomes (Douven et al., 2018). Compared with healthy
controls, ischemic stroke patients with even mild neurological
impairment exhibit PSCI, including depressive symptoms, fading
memory and decreased social cognitive performance (Pedroso
et al., 2018). The pathogenesis of ischemic stroke is quite complex.
It has been suggested that the injured brain following ischemic stroke

is a functional unit to be protected, and neuroprotective reagents with
multiple targets might be a promising option for PSCI treatment
(Terasaki et al., 2014).

Our study showed that NBP profoundly ameliorated
depression-like disorder, enhanced study and memory
competence and promotes social cognition as judged by the
SPT, NOR test and SI test, respectively. The protective effect of
NBP on neurological function was evaluated in our study.
According to neurological scoring and TTC staining results,
NBP potently attenuated neurological deficits and reduced
infarct volume, consistent with previously reported studies
(Zhang et al., 2012; Li et al., 2019). In addition, by laser speckle
imaging, we confirmed that NBP was able to enhance CBF in the
ischemic cerebral hemisphere in I/R rats, which has been reported
to be responsible for neurological deficits (El Amki and Wegener,

FIGURE 5
Effects of NBP on inflammation on the infarcted cerebral hemisphere in I/R rats. (A–C) Effects of NBP on inflammatory cytokines including IL-6, IL-1β and
TNF-α. The concentrations of the three cytokines were significantly increased after I/R surgery and significantly decreased after NBP treatment. (D–F) Effects
of NBP on the NF-κB/iNOS pathway. Data are expressed as the mean ± SEM and were analyzed by one-way ANOVA (post hoc analysis: Tukey’s post hoc
analysis test). * (p < .05), ** (p < .01) and *** (p < .001) represent significance compared to the sham group. # (p < .05) and ## (p < .01) represent significance
compared to the I/R group (p < .01). NBP dose: NBP + I/R, 9 mg/kg.
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2017). Loss of neurons, and excessive activation of microglia and
astrocytes play vital roles in cerebral injury and cognitive
dysfunction after ischemic stroke (Chamorro et al., 2016; Xu
et al., 2017). Suppression of microglia and astrocyte activation
and protection of neuronal viability contribute to functional
recovery in brain (Wang et al., 2022). In our study, we showed
that NBP significantly suppressed the activation of microglia and
astrocytes and protected neurons in the ischemic penumbra in I/R
rats, indicating that NBP is an effective neuroprotective reagent.

It has been demonstrated that NBP is a multitarget
neuroprotectant that suppresses neuroinflammation, reduces
oxidative stress, improves mitochondrial function and inhibits
neuronal apoptosis (Yang et al., 2015). It is proposed in our study
that NBP alleviates PSCI by targeting multiple signaling pathways.

Oxidative stress plays a pivotal role in the progression of ischemic
stroke by initiating a series of biochemical cascades. ROS are essential
signaling molecules that are overexpressed during cerebral ischemia
and reperfusion and cause cellular damage and death (Li W et al.,
2021). MDA, a kind of lipid peroxide, is another major oxidative stress
indicator reflecting the degree of lipid peroxidation and cell damage in
the injured brain (Hua et al., 2015). In our study, we show that NBP
significantly inhibits ROS and MDA production, indicating that NBP
is a potent antioxidant. Nrf2 is a key regulator in antioxidative
response. Nrf2 initiates the transcription of a number of
antioxidative genes by binding nucleus antioxidant response
elements (AREs) after redox stimulation (Hassanein et al., 2020).
The cytoplasmic protein Keap1 is a negative regulator of Nrf2.
Overexpression of Keap1 inhibits Nrf2 levels and aggravates

FIGURE 6
Effects of NBP on nerve cells in the ischemic penumbra in I/R rats. (A) NeuN, GFAP and Iba1 staining by immunochemistry (scale bar = 20 μm). NBP
significantly increased NeuN-positive cells (B) and decreased GFAP-positive cells (C) and Iba1-positive cells (D), suggesting that NBP could preserve the
viability of neurons and protect microglia and astrocytes against overactivation in I/R rats. Data are expressed as the mean ± SEM (n = 3) and were analyzed by
one-way ANOVA (post hoc analysis: Tukey’s post hoc analysis test). ** (p < .01) represents significance compared to the sham group. # (p < .05)
represents significance compared to the I/R group (p < .01). NBP dose: NBP + I/R, 9 mg/kg.

Frontiers in Pharmacology frontiersin.org08

Zhang et al. 10.3389/fphar.2022.987293

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.987293


oxidative stress induced brain injury. In contrast, inhibition of
Keap1 releases Nrf2 to the nucleus, thus activating the antioxidant
defense system (Byun and Lee, 2015). Recently, a clinical study showed
that NBP exerts a neuroprotective effect on ischemic stroke patients by
regulating the Keap1/Nrf2 pathway (Zhang et al., 2022). In addition,
activation of the Nrf2 pathway suppresses oxidative stress and further
attenuates brain injury and improves PSCI in I/R rats (Zhang et al.,
2021). Combined with the above research and our results, it is
concluded that the Keap1/Nrf2 pathway is also associated with
PSCI alleviation by NBP.

Conversely, increasing evidences has shown that
inflammation after ischemic stroke poses a second wave of
damage to the brain (Veltkamp and Gill, 2016).
Neuroinflammation provides potential targets for the treatment
of neurological diseases (Chopra et al., 2010; Sharma et al., 2019).
It has been proved in both clinical studies and animal experiments
that the NF-κB signaling pathway plays an important role in
inflammation-induced injury in ischemic stroke (Ran et al.,
2021). The involvement of the NF-κB pathway in ischemic
stroke makes it an attractive target for the development of
anti-inflammatory drugs to treat ischemia-reperfusion injury
(Howell and Bidwell, 2020). Our data showed that the levels of
inflammatory cytokines, including IL-6, IL-1β and TNF-α, were
significantly increased and that NF-κB and iNOS were
significantly overexpressed in I/R rats. NBP significantly
downregulated the cytokine, NF-κB protein and iNOS protein
expression levels, indicating that the NF-κB/iNOS pathway is
another important target for NBP.

Conclusion

In summary, our data suggest that NBP effectively protects
neurological function and alleviates PSCI in I/R rats by
synergistically suppressing inflammation and oxidative stress by
targeting the Keap1/Nrf2 pathway and NF-κB/iNOS pathway,
respectively. Therefore, NBP is a promising neuroprotective agent
for PSCI treatment.
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