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Immune checkpoint inhibitors (ICI) are monoclonal antibodies which bind to

immune checkpoints (IC) and their ligands to prevent inhibition of T-cell

activation by tumor cells. Currently, multiple ICI are approved targeting

Cytotoxic T-lymphocyte antigen 4 (CTLA-4), Programmed Death Protein 1

(PD-1) and its ligand PD-L1, and Lymphocyte-activation gene 3 (LAG-3). This

therapy has provided potent anti-tumor effects and improved prognosis for

many cancer patients. However, due to systemic effects, patients can develop

immune related adverse events (irAE), including possible life threatening

cardiovascular irAE, like atherosclerosis, myocarditis and cardiomyopathy.

Inhibition of vascular IC is associated with increased atherosclerotic burden

and plaque instability. IC protect against atherosclerosis by inhibiting T-cell

activity and cytokine production, promoting regulatory T-cell differentiation

and inducing T-cell exhaustion. In addition, PD-L1 on endothelial cells might

promote plaque stability by reducing apoptosis and increasing expression of

tight junctionmolecules. In the heart, IC downregulate the immune response to

protect against cardiac injury by reducing T-cell activity and migration. Here,

inhibition of IC could induce life-threatening T-cell-mediated-myocarditis.

One proposed purpose behind lymphocyte infiltration is reaction to cardiac

antigens, caused by decreased self-tolerance, and thereby increased

autoimmunity because of IC inhibition. In addition, there are several reports

of ICI-mediated cardiomyopathy with immunoglobulin G expression on

cardiomyocytes, indicating an autoimmune response. IC are mostly known

due to their cardiotoxicity. However, t his review compiles current knowledge

on mechanisms behind IC function in cardiovascular disease with the aim of

providing an overview of possible therapeutic targets in prevention or treatment

of cardiovascular irAEs.
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Introduction

Cancer therapy has taken tremendous strides over the course

of 2 decades by targeting immune checkpoints (IC). These T-cell

surface membrane receptors provide the secondary signal

required to either activate or inhibit the T-cell. As tumor cells

harness the ability to express the corresponding inhibitory

ligands, they can bind to IC and effectively inhibit T-cell

activation, thereby circumventing a potential anti-tumor

immune response (Sharma and Allison, 2015). Monoclonal

antibodies called immune checkpoints inhibitors (ICI) were

developed to prevent this interaction. ICI bind to IC on

T-cells or their corresponding ligands on tumor cells, block

the inhibitory effect of T-cell-tumor cell interaction and allow

opportunity for T-cell activation. Currently there are ICI

targeting Programmed Cell Death Protein-1 (PD-1) and its

ligand PD-L1, Cytotoxic T-Lymphocyte-Associated Protein 4

(CTLA-4) and Lymphocyte Activation Gene-3 (LAG-3), all of

which have shown remarkable and durable potency in various

types of tumors (Larkin et al., 2015; Wallin et al., 2016; Overman

et al., 2018; Lipson et al., 2021).

Despite tremendous success in cancer therapy, one of the major

drawbacks of ICI are immune related adverse effects (irAE). As IC

inhibition of T-cells is systemic and not localized to the tumor and

its environment, it can cause auto-immune damage to multiple

organs (Okazaki et al., 2003; Blansfield et al., 2005; Iwama et al.,

2014). Ameta-analysis showed an incidence of cardiovascular events

of 8.32% (95% CI = 6.35–10.53%) among over 21,000 patients

receiving ICI in randomized clinical and while that cardiovascular

irAE pose a serious threat to patient health, ranging in severity from

mild arrhythmias to myocarditis, the latter with a mortality of up to

50% trials (Salem et al., 2018; Xavier et al., 2022) (Xavier et al., 2022)

(Salem et al., 2018). This was prudently observed in another meta-

analysis which found that while cardiovascular irAEwere among the

three least occurring ones (8%), they were the second most leading

cause of death (25%) (Wang et al., 2018). Upon diagnosis of

cardiovascular irAE, current guidelines indicate temporary or

permanent cessation of ICI therapy and immediate treatment

with immunosuppressives (Andres and Ramalingam, 2019).

Unfortunately, not all patients respond to immunosuppressive

and in some cases this method of treatment even increases the

chance of death (Tison et al., 2019; Cautela et al., 2020).

There is a need for knowledge on the mechanisms of IC in the

cardiovascular system to improve treatment with the otherwise

very potent ICI therapy. Once understood, these mechanisms

could also provide insight into which patients are more

susceptible to developing these life-threatening cardiovascular

irAEs, and provide potential therapeutic targets. In this review,

we summarize current knowledge on the mechanisms of PD-1,

CTLA-4, and LAG-3 in the cardiovascular system and their role

in cardiovascular disease (CVD). In addition, we aim to provide

an overview of possible therapeutic targets in prevention or

treatment of cardiovascular irAEs.

Immune checkpoints

Immune checkpoint receptors such as PD-1, CTLA-4, and

LAG-3 are expressed on the surface of T-cells where they prevent

T-cell activation (Sharma and Allison, 2015). T-cell activation

occurs due binding of the T-cell receptor (TCR) to major

histocompatibility complex I or II (MCH-I/II) and additional

co-stimulation through CD28-CD80/CD86 binding, which

results in recruitment of multiple molecules, including

phosphoinositide 3-kinase (PI3K), to the intracellular part of

CD28 (Chen and Flies, 2013). PI3K recruitment activates the

PI3K/Akt pathway, which promotes proliferation, differentiation

and anti-apoptotic signaling in T-cells (Herrero-Sánchez et al.,

2016). The activation of T-cells results in differentiation of

CD8 cells into cytotoxic T-cells and CD4 cells into

stimulatory T helper cells (Th) or inhibitory regulatory T-cells

(Treg), depending on the cytokines in the environment (Vuong

et al., 2022). On the other hand, inhibitory IC can prevent

overactivation of the immune system and promote self-tolerance.

PD-1 is expressed on the surface of T-cells and interacts with

two ligands, PD-L1 and PD-L2 (Ghiotto et al., 2010). PD-L2 is

mainly expressed on macrophages and DCs, whereas PD-L1 is

present on hematopoietic cells and tissue cells in various organs

(Vuong et al., 2022). Binding of PD-1 to either of its ligands leads

to downregulated T-cell activity through downstream SHP-2

signaling and subsequent dephosphorylation and inhibition of

the downstream PI3K-Akt pathway, resulting in decreased

inflammatory cytokine production, cell survival signals and

proliferation (Parry et al., 2005; Gato-Cañas et al., 2017;

Willsmore et al., 2021). It is suggested that PD-1 suppression

of T-cells normally takes place at later stages of an immune

response, in peripheral tissue (Buchbinder and Desai, 2016).

CTLA-4 is located intracellularly and translocated to the

surface upon T-cell activation (Parry et al., 2005; Rudd et al.,

2009). It binds to CD80 and CD86, with higher affinity than

CD28, and suppresses T-cell activation through PI3K

downstream signaling inhibition, similar to PD-1 inhibition

(Parry et al., 2005; Ronen et al., 2022). Additionally, CTLA-4

can interact with PP2A, which dephosphorylates AKT,

quenching the pathway further (Willsmore et al., 2021). This

reduces cytokine production in CD8 T-cells and promotes

differentiation of CD4 T-cells towards Treg cells (Chen et al.,

2009; Zhu et al., 2011). In contrast to PD-1, it is proposed that

CTLA-4 suppressed T-cell activation earlier on in an immune

response (Buchbinder and Desai, 2016).

LAG-3 is expressed on the surface of activated T-cells and

constitutively on Treg cells (Zhang et al., 2017). It is involved in

suppressing T-cell expansion, increasing cell death and in Treg

function. The receptor is homologous to CD4 and can bind

MHC-II with higher affinity (Chen and Flies, 2013; Zhang et al.,

2017). Besides MHC-II, additional ligands for LAG-3 include

liver sinusoidal endothelial cell lectin (LSECtin), Galectin-3 (Gal-

3), and fibrinogen-like protein 1 (FGL1) (Xu et al., 2014; Kouo
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et al., 2015; Wang et al., 2019). Its intracellular signaling

mechanisms remain largely unknown but suggested is an

association with and inhibition of the TCR/CD3 activating

pathway, resulting in reduced T-cell expansion, and inhibited

cytotoxic activity of CD8 cells (Anderson et al., 2016).

Vascular immune checkpoints

Atherosclerosis

Recently, studies have linked ICI treatment to an increased

risk of myocardial infarction and stroke (Drobni et al., 2020;

Oren et al., 2020). In a single-center, matched cohort study,

patients receiving ICI had a three-fold higher risk of

cardiovascular events, likely through accelerated progression

of atherosclerosis (Drobni et al., 2020). Therefore, IC

inhibition of T cells is thought to contribute to protection

against atherosclerosis, although long-term studies are still

lacking.

Programmed cell death protein 1 in
atherosclerosis

Protection against atherosclerosis by PD-1/PD-L1 is reflected

in knockout mice presenting with enlarged plaques containing

higher T-cell and macrophage numbers, increased Tumor

Necrosis Factor alpha (TNFα) levels and T-cell activation by

antigen presenting cells (APCs), and enhanced cytotoxic activity

FIGURE 1
The effect immune checkpoints PD-1, CTLA-4 and LAG-3 in protection against atherosclerosis, dilated cardiomyopathy, and myocarditis. (A).
Immune checkpoints have a protective role in atherosclerosis by reducing inflammation and increasing plaque stability. (B). Myocarditis is dampened
by IC through reduction of inflammation and T-cell migration, and suppression of autoimmunity. (C). In dilated cardiomyopathy, PD-1 and CTLA-4
are associated with suppressed autoimmunity and reduced cardiac injury. CTLA-4, Cytotoxic T-Lymphocyte-Associated Protein four; LSECtin,
liver sinusoidal endothelial cell lectin; LAG-3, Lymphocyte Activation Gene-3; MHC-II, major histocompatibility complex II; PD-1, programmed
death-1; PD-L1/2, programmed death-ligand 1/2. Created with BioRender.com.
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of CD8 T-cells, all of which increase inflammation and plaque

formation (Figure 1A) (Gotsman et al., 2007; Bu et al., 2011). In

addition, PD-1 binding to PD-L1-induced differentiated Treg

cells inhibits cytokine production of Th1 cells, including

interferon γ (IFNγ) and TNFα (Frostegård et al., 1999; Vuong

et al., 2022). As IFNγ has been identified as a key player in

atherogenesis by inducing T-cell and macrophage recruitment,

cytokine secretion, and enhanced antigen presentation by

endothelial cells, this binding reduces both plaque size and

inflammatory T cell responses as shown in Figure 1A

(Amento et al., 1991; Gotsman and Lichtman, 2007). IFNγ
also contributes to plaque instability by inhibiting vascular

smooth muscle cell proliferation and reducing collagen

synthesis. Contrarily, Treg cells reduce atherogenisis by

secreting anti-inflammatory cytokines, IL-10 and TGF-β, and
expressing multiple inhibitory IC, thereby suppressing the

proliferation of pro-inflammatory effector T-cells (Saigusa

et al., 2020). This is underlined by the observation in mice

that depletion of Treg, IL-10 deficiency or TGF-β disruption

worsens atherosclerotic disease (Robertson et al., 2003; Ait-

Oufella et al., 2006). Moreover, when T-cells are continuously

exposed to antigen or inflammatory signals, as with TGF-β and

IFNy in atherosclerotic lesions, they can become exhausted and

lose parts of their effector functions (Figure 1A). This entails

reduced T-cell proliferation and cytokine production, and

increased inhibitory IC expression, such as PD-1 and LAG-3

(Wherry and Kurachi, 2015). PD-1 expressing exhausted T-cells

have been found in atherosclerotic lesions, raising the possibility

that by inhibiting PD-1 with ICI, exhausted T-cells are

reactivated and contribute to acceleration and exacerbation of

atherosclerosis (Fernandez et al., 2019).

On a cellular level, PD-L1 expression on endothelial cells can

be induced by IFNγ and TNFα (Mazanet and Hughes, 2022). A

study on human umbilical cord vein endothelial cells (HUVECs)

demonstrates constitutive expression of PD-L2 and induced

expression of PD-L1 after IFNγ treatment (Chen et al., 2016).

Oxidized low-density lipoprotein (ox-LDL) impaired HUVECs

expressing PD-L1 were able to upregulate CTLA-4 and PD-1

expression on Treg cells and modulated their production of IL-10

and TGF-β. When treated with anti-PD-L1, HUVECs lost their

ability to upregulate the IC expression and cytokine production.

In addition to trans binding to PD-1 on T-cells, PD-L1 could

bind in cis to PD-1 on vascular endothelial cells (VECs). This

leads to reduced PD-L1 surface expression resulting in enhanced

CD8 T-cell toxicity, which causes VECs injury and apoptosis by

perforin, TNFα and IFNγ (Veluswamy et al., 2020).

Concordantly, endothelial PD-L1/2 blockade enhances IFNγ
secretion and lytic activity of CD8 T-cells (Rodig et al., 2003).

It is known from cancer cells expressing PD-L1 that the

intrinsic pathway interferes with IFNγ cytotoxicity by inhibiting
the downstream JAK/STAT3/caspase7-dependent pathway,

thereby protecting against IFNγ-induced apoptosis (Azuma

et al., 2008; Gato-Cañas et al., 2017). A similar function of

PD-L1 is described in a study in lymphatic endothelial cells

that shows protection against apoptosis in lymph node

contraction when expressing high levels of PD-L1 (Lucas

et al., 2018). All in all, PD-L1/2 expression on endothelial

cells demonstrated the ability to inhibit the immune system

by upregulating Treg activity and downregulating CD8 T-cell

activity, thereby protecting the endothelium against the pro-

atherosclerotic effects of immune damage.

Cytotoxic T-lymphocyte antigen 4 in
atherosclerosis

Comparable to PD-1/PD-L1, CTLA-4 knockout mice show

increased lesion size, and mice receiving anti-CTLA-4 blocking

antibodies showed increased progression of atherosclerosis

mainly driven by T-cell-induced inflammation (Figure 1A)

(Poels et al., 2020). Corresponding to CTLA-4 knockout

studies, mice overexpressing CTLA-4 or receiving CTLA-4

analog abatacept show decreased intimal thickening (58.5%

reduction), reduced CD4 T-cell numbers, less proliferation

activity and proinflammatory cytokine production (Ewing

et al., 2013; Matsumoto et al., 2016). With regards to cellular

expressions of CTLA-4 ligands, a study which treated induced

pluripotent stem cell derived cardiomyocytes (iPSC-CM) with

hypoxia, to mimic ischemic cardiac injury post-MI, found

increased levels of both CD80 and CD86 gene levels (Screever

et al., 2020). This was further strengthened in post-MI border

zones of mice, in which CD80/86 expression significantly

increased on both gene and protein levels. This murine model

recapitulated what is seen in patients, namely, that treatment

with abatacept ameliorated anti-CTLA-4 cardiac injury and

resulted in better survival compared.

Additionally, intracellular dendritic cell CD80/86 signaling

upon binding to CTLA-4 induces Indeolamine 2,3-dioxygenase

(IDO) expression (Grohmann et al., 2002). IDO upregulation

induces blockade of T-cell cycle progression, leading to reduced

T-cell activation and increased T-cell apoptosis (Lohr et al., 2003;

Orabona et al., 2004). Consequently, anti-CTLA-4 antibodies

probably lead to reduced CD80/86 signaling in DCs, thus

decreasing self-tolerance and increasing autoimmunity. This

raises the possibility that pre-existing autoimmunity could be

provoked by ICI therapy.

Lymphocyte-activation gene 3 in
atherosclerosis

Atherosclerosis or coronary heart disease (CAD) cases have

not been reported for anti-LAG-3 therapy in clinical trials. Since

anti-LAG-3 therapy was only recently approved by the FDA, large

scale studies with long follow-up times are still lacking, so definitive

conclusions or suggestions on whether anti-LAG-3 therapy is
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associated with atherosclerotic disease have yet to be made. LAG-3

was, however, found to be independently, positively correlated with

CAD and present on exhausted T-cells in atherosclerotic plaques

(Wherry and Kurachi, 2015; Golden et al., 2016).

In mice, single LAG-3 knockout did not lead to development

of disease, but it was demonstrated that inhibition or deficiency

of Gal-3 activated CD8 T-cells specifically in the tumor

microenvironment, suggesting an anti-tumor effect much like

PD-L1 inhibition (Kouo et al., 2015). Also similar to PD-L1,

LAG-3-MHCII binding protects against Fas-mediated and drug-

induced apoptosis by upregulating both MAPK/Erk and PI3K/

Akt/mTOR pathways (Hemon et al., 2011). LAG-3 and PD-L1

thus might have similar functions in endothelial cells, protecting

against endothelial cell death and thereby enhancing plaque

stability.

Autoimmunity in atherosclerosis

An additional mechanism of ICI-induced atherosclerosis

could be through self-antigens. Several potential self-antigens

were described in CAD patients, including Keratin 8 (Mihailovic

et al., 2019a). Keratin eight did not increase PD-1 levels on CAD

human peripheral blood mononuclear cells (PBMCs), while it

did increase PD-1 mRNA levels in PBMCs obtained from

controls. This shows that PD-1 can be induced by self-

antigens to restrict the T-cell response, and that this

mechanism is aberrant in CAD patients (Mihailovic et al.,

2019b; Veluswamy et al., 2020). Additionally, gastric

adenocarcinoma cells with high PD-L1 expression increase the

uptake of lipids by increasing intracellular fatty acid binding

protein (Fabp4/5) levels. Blockade of PD-L1 decreased Fabp4/

5 expression, thereby also decreasing lipid uptake (Lin et al.,

2020). Speculating, a similar process in PD-L1 expressing cells

could cause reduced cellular lipid uptake upon anti-PD-

L1 therapy, thus elevating free fatty acid levels at the plaque

site, possibly worsening atherosclerosis. Another interesting self-

antigen is apoliprotein B (apoB), the core protein of LDL

cholesterol. A retrospective analysis in preprint found that

lipoproteins high in apoB were risk factors for poor ICI

response, especially in patients with ≥25 kg/m2 BMI receiving

combination therapy with chemotherapy (Hu et al., 2022). While

the interplay between apoB and IC remains to be elucidated, it is

suggested that apoB-specific CD4 T cells can drive autoimmunity

in atherosclerosis (Marchini et al., 2021).

Cardiac immune checkpoints

Myocarditis

An observational retrospective study which evaluated

association between ICI and cardiovascular events in a

database of over 30.000 people, found that death occurred in

50% of severe myocarditis cases (Salem et al., 2018). Additionally,

in the meta-analysis mentioned in the introduction, which found

cardiovascular irAE to be one of the least occurring kinds but

with a staggering 25% death rate, myocarditis had the highest

fatality rate of 40%—at least 15% higher than all the other

observed irAE in that review (Wang et al., 2018). The fatal

nature lies within the fact that ICI-mediated myocarditis can

be fulminant and result in cardiogenic shock and/or life-

threatening ventricular arrhythmias and complete heart block.

A major contributing factor in ICI-related myocarditis risk is the

treatment regimen. Inhibition of the PD-1/PD-L1 pathway

resulted in ICI-related myocarditis more often than inhibition

of the CTLA-4 pathway (0.41 vs. 0.07%, respectively) (Salem

et al., 2018). There are discrepancies in literature about this as

one study in 2018 found anti-CTLA-4 to induce more

myocarditis whereas a meta-analysis in 2021 again found

more myocarditis cases due to anti-PD-1 (69.4%) than CTLA-

4 (20%) (Mahmood et al., 2018; Rubio-Infante et al., 2021). The

one clear-cut recurrent finding is that combination therapy leads

to more ICI-mediated myocarditis than monotherapy. In the

observational study mentioned above, combination therapy of

anti-CTLA-4 with anti-PD-1 or anti-PD-L1 was indeed more

common than monotherapy (1.33%) and another

pharmacovigilance study suggested a 4.74-fold risk with anti-

CTLA-1/PD-1 combination compared to anti-PD-1 alone

(Johnson et al., 2016). Similarly, combined anti-PD-1/anti-

LAG-3 therapy in recent trials reported somewhat higher

numbers of myocarditis as compared to single anti-PD-

1 therapy (1.7 vs. 0.6%, respectively) (Tawbi et al., 2022).

With regards to other treatment modalities, there are several

case-reports and studies describing cardiotoxicity, especially

myocarditis, induced by combination or adjuvant therapy of

ICI and radiotherapy or chemotherapy (Semper et al., 2016;

Chang et al., 2018; Banfill et al., 2021; Liang et al., 2021).

Therefore, research into the different means of myocardial

damage inflicted by the method of treatment and the

combined effect of this in the case of combination therapy is

important to further optimize prevention or treatment of

cardiotoxicity.

Programmed cell death protein 1 in
immune checkpoint inhibitors-mediated
myocarditis

Pathology reports of patients with ICI-related myocarditis

show an imbalance in immune tolerance and autoimmunity

(Xavier et al., 2022). A report of two lethal cases of

myocarditis in melanoma patients receiving combination anti-

CTLA-4/anti-PD-1 therapy showed T-cell infiltrates in the

myocardium and skeletal muscle (Johnson et al., 2016). This

effect is supported by a primate study which demonstrated
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increased migration and activation of T-cells, and increased

phagocytosis and antigen presentation in the heart after

receiving PD-1, PD-L1 or CTLA-4 ICI (Ji et al., 2019). More

strikingly, in the same case study, injured cardiomyocytes

expressed PD-L1, indicating that direct interaction between

ICI and cardiomyocytes to promote self-tolerance is possible,

at least in cases of injury, and disruption by ICI therapy in this

situation might be detrimental (Figure 1B) (Johnson et al., 2016).

This is supported by an in vitro study which found that PD-L1

expression on cardiomyocytes suppressed T-cell function in mice

with cardiomyopathy through downregulation of pro-

inflammatory cytokines such as IFNγ (Tay et al., 2020).

Though the exact mechanism behind ICI-mediated

myocarditis is not understood, research has elucidated certain

aspects.

Expression of IC on the endothelial cell surface and

cardiomyocytes suggests a role in the protection against

myocarditis and cardiac injury. In mice with CD8 T-cell-

mediated myocarditis, PD-L1/2 upregulation was found on

endothelial cells (Grabie et al., 2019). The expression was

regulated by IFNγ and blocking IFNγ worsened the disease.

Subsequent PD-L1/2 knockout or blocking therapy resulted in

lethal myocarditis. Another study showed PD-L1/2 expression

on murine endothelial cells injured by myocarditis. However,

neither PD-L1 nor PD-L2 was detected on control mice

endothelial cells (Rodig et al., 2003). This indicates a

protective mechanism against cardiac injury by

downregulating immune activity via the PD-1 pathway

(Figure 1B). In addition, similarly to what is seen in PD-L1

expressing cancer cells, lymphatic endothelial cells and MHC-II

expressing melanoma, intracellular PD-L1 and MHC-II

signaling might inhibit apoptosis in cardiac endothelial cells

and cardiomyocytes via MAPK/Erk and PI3K/Akt pathways

(Azuma et al., 2008; Hemon et al., 2011; Gato-Cañas et al.,

2017).

Cytotoxic T-lymphocyte antigen 4 in
immune checkpoint inhibitors-mediated
myocarditis

A murine model by Wei at al. recapitulated ICI-mediated

myocarditis and demonstrated a functional interaction between

CTLA-1 and PD-1 (Wei et al., 2021). Mice with CTLA4

haploinsufficiency alone developed myocarditis, however of

the mice with complete Pdcd1 knockout, approximately 50%

of died within 3 months of age. CTLA4 haploinsufficient mice

treated with abatacept showed significant reduction in

mortality and reduced myocardial immune infiltrates early in

the disease.

Anti-CTLA-4-mediated myocarditis has been associated

with giant cell myocarditis (Rikhi et al., 2021). In this

CD4 T-cell predominant disease, chemokines such as C-X-C

Motif Chemokine Receptor 3 (CXCR3) play an important role.

CXCR2 is involved in several pathways, including MAP kinases

and PI3K/Akt, which in turn facilitate activation, differentiation,

and recruitment of CD4 T-cells. CXCR3 appears to favor

recruitment of CD4 T-cells compared to CD8 T-cells, which

are more associated with anti-PD-1 ICI. Additionally, increased

expression of CXCR3 and its chemokine ligands have been found

in giant cell myocarditis from CTLA-4 inhibition.

Lymphocyte-activation gene 3 in immune
checkpoint inhibitors-mediated
myocarditis

As LAG-3 is only recently FDA approved, not many cases on

ICI-mediated myocarditis have been reported yet. In a clinical

trial for relatlimab-nivolumab combination therapy, myocarditis

occurred in 1.7% of the combination group compared to 0.6% in

the nivolumab monotherapy group. With regards to LAG-3 in

animal experiments, as previously reported, knockout in mice

did not lead to development of disease (Kouo et al., 2015).

However, knockout of both LAG-3 and PD-1 led to the

development of lethal myocarditis with T-cell infiltration and

increased TNFα secretion but sustained repressive Treg function,

emulating trends from human clinical trials (Okazaki et al.,

2011).

Autoimmunity-induced T-cell infiltration

Recognition of shared antigens between the heart and the

tumor, such endothelial cells and cardiomyocytes expressing PD-

L1, or pre-existing immunity inducing an autoimmunity reaction

are mechanisms proposed to induce myocardial T-cell

infiltration. The latter is supported by the finding of elevated

anti-troponin T antibodies in a patient presenting with ICI

induced myocarditis after anti-PD-1 therapy (Martinez-Calle

et al., 2018). A case of a patient developing rhabdomyolysis

polymyositis after combination therapy with anti-PD-1 and anti-

CTLA-4, showed elevated levels of anti-striated muscle

antibodies (Bilen et al., 2016). Another candidate for

autoimmunity is alpha-myosin, a cardiac specific protein. A

study in preprint on the pathogenesis of ICI-mediated

myocarditis found that highly clonal TCRs from three

independent murine cardiac TCR repertoires were able to

recognize alpha-myosin epitopes (Balko et al., 2022).

Concordantly, alpha-myosin expanded T cells from the

peripheral blood of two ICI-mediated myocarditis patients

shared TCR clonotypes with diseased heart muscle, suggesting

alpha-myosin to potentially be a clinically important autoantigen

in ICI-mediated myocarditis.
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Immune checkpoint inhibitorsImmune
checkpoint inhibitors-mediated
cardiomyopathy

In BALB/c mice, PD-1 knockout resulted in dilated

cardiomyopathy (DCM) with impaired contractile function

and premature mortality (Nishimura et al., 2001). The

affected heart showed immunoglobulin G (IgG) deposition on

the surface of cardiomyocytes and the mice had high levels of

circulating IgG autoantibodies against cardiac troponin I, with no

signs of infiltrating immune cells in the myocardium, indicating

an inflammatory basis for the cardiomyopathy as well as

cardiomyopathy through an altered electrophysiological

property of cardiomyocytes (Nishimura et al., 2001; Okazaki

et al., 2003). This suggests that PD-1/PD-L1 binding aids in

reducing cardiac injury (Figure 1C).

In dilated cardiomyopathy and myocardial infarction

patients, PD-L1 expression was found in the myocardium and

intercalated discs. In addition, they found a correlation between

PD-L1 expression and left ventricular size and function

(Kushnareva et al., 2022). The upregulation of PD-L1 in the

myocardium points towards a role in reducing cardiac injury for

PD-L1, either by downregulating the immune system through

inhibition of T-cell activity via PD-1 or via inhibition of

apoptosis as proposed earlier. As previously mentioned, an

in vitro study indicated that PD-L1 expression on injured

cardiomyocytes from mice with ICI-mediated DCM

suppressed T-cell function (Tay et al., 2020). The proposed

mechanism is that PD-1/PD-L1 interaction downregulates

secretion of pro-inflammatory cytokines such as TNFγ and

TNFα (Figure 1C).

A study comparing a healthy and a DCM cohort genotyped

the promotor and all four exons of the CTLA gene to assess

whether single-nucleotide-polymorphisms (SNPs) within it were

associated with the diagnosis and disease course of DCM. They

found a SNP in one of the exons that was significantly more

frequent in the DCM patients, as well is in an additional DCM

cohort they added for validation. While this CTLA4 SNP suggests

an involvement of enhanced autoimmunity in DCM (Figure 1C),

their follow-up of disease course was 1-year post-diagnosis, in

which it did not appear to have an influence.

Possible therapeutic targets in
downstream pathways

Currently, immunosuppressives are the recommended first-

line therapy treatment for patients with cardiovascular irAE

(Andres and Ramalingam, 2019; Berg et al., 2022). However,

considering varying responses to this treatment, the rapid

development and approval of ICI with potent anti-tumor

effects, and the fatal consequences cardiovascular irAE can

illicit, exploring alternative methods of treatment applicable to

more patients is necessary in order to prevent more harm. One

additional reason of note for finding alternatives is prompted by

the few cases in which patients treated with immunosuppressive

therapies, while recovering from irAE, presented with tumor

progression (Matzen et al., 2021). Downstream pathways of PD-

1, PD-L1, CTLA-4, CD80/86, LAG-3 and MHCII (Figure 2 and

Table 1) provide potential therapeutic targets for this as well as

for immunotherapy.

The JAK/STAT pathway is involved in both PD-L1/2 and

CD80/86 signaling, promoting transcription of multiple

cytokines seemingly involved in irAE (Kubo et al., 2014; Doi

et al., 2017). Multiple JAK inhibitors have been approved for

application in autoimmune disorders and can therefore

potentially also be used for treatment of cardiovascular irAE.

Two successful cases with PAN-JAK-inhibitor (tofacitinib)

treatment for ICI-mediated myocarditis in cancer patients are

described by Liu et al. (Liu and Jiang, 2020). Both patients

recovered from myocarditis rapidly, with no signs of adverse

effects. In a retrospective study comparing ICI-mediated

myocarditis patients responsive or resistant to corticosteroid

treatment, 11 resistant patients were treated with tofacitinib of

which 7 recovered with no adverse effects (Wang et al., 2021).

Notably, JAK/STAT3 has shown to be pro-oncogenic and

subsequently inhibition may result in a synergistic anti-tumor

effect with ICI (Berg et al., 2022). However, treatment with JAK/

STAT inhibitors requires caution with regards to pro-tumor

effects. Since STAT1 is known to be important in the

antitumor immune reaction through induction of IFNγ
secretion, inhibition of STAT1 via JAK1 or JAK2 may result

in reduced anti-tumor clearance. Therefore, specific inhibition of

JAK/STAT inhibition might be beneficial to treat irAE.

Alternatively, the MAPK/Erk and PI3K/Akt/mTOR

pathways are behind proliferation and inflammation (Table 1).

One of the targets that is currently investigated is mTOR.

Combined anti-PD-1 therapy and mTOR inhibition in a

melanoma patient with ICI-induced allograft rejection resulted

in retained anti-PD-1 tumor efficacy, while promoting tolerance

to the allograft (Esfahani et al., 2019). IFNγ-producing CD4 and
CD8 T-cells persisted in circulation, while proinflammatory

cytokines IL-6, TNFα and IL-17A returned to baseline levels.

This suggests a possible new target for reduction of anti-PD-

1 induced toxicity, while maintaining anti-tumor efficacy. MNK1/

2 is a factor activated downstream of both MAPK/Erk and PI3K/

Akt/mTOR pathways and facilitates transcription of mRNAs that

promote cell proliferation and survival. Inhibition of MNK1/2 has

demonstrated reduced oncogenicity and metastasis in melanoma

patients (Zhan et al., 2017). Contrarily, MNK1/2 is also involved in

production of proinflammatory cytokines IL-6 and TNFα (Joshi

and Platanias, 2014).

Finally, the tryptophane catalyzing pathway induced by

CD80/86 signaling in DCs is associated with reduced T-cell

activity and increased self-tolerance (Fallarino et al., 2003). An

important molecule in the tryptophan catalyzation is
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indoleamine 2,3-dioxygenase 1 (IDO1). Therefore, this may be

an additional downstream target for cancer immunotherapy, as

IDO has also been reported to be overexpressed in some tumor

types causing immune evasion. Multiple clinical trials targeting

IDO as cancer therapy are ongoing, including inhibitors and a

vaccine (Tang et al., 2021). Additionally, a clinical phase I/II with

an IDO inhibitor (BMS-986205) in combination with nivolumab

showed promising results, with response rates of 46% in bladder

cancer and 25% in cervical cancer (Blocking IDO1 Helps Shrink

Bladder, Cervical Tumors, 2018). Subsequently, a phase III trial

was started, in addition to clinical trials to study the IDO

inhibitor in combination with ipilimumab and relatlimab

(Long et al., 2019; Tang et al., 2021). However, the failure of a

phase III trial looking into pembrolizumab (anti-PD-1) in

combination with anti-IDO put a hold to the development of

IDO1 inhibitors and demanded more insight in the mechanism

behind IDO1 inhibitors.

Perspective

PD-1, PD-L1, CTLA-4, and LAG-3 are currently approved

therapeutical targets in cancer therapy. However, in nearly 10%

of patients treated with ICI potentially life-threatening

cardiovascular irAE occur (Xavier et al., 2022). And with the

growing number of ICI being approved and used in the clinics,

the incidence of cardiovascular irAE is expected to increase. IC

downregulate the immune system by modulating several

pathways that are involved in T-cell activation, differentiation,

and survival, thereby reducing inflammation, and promoting

tolerance. Additionally, the IC ligands have shown to have

additional intracellular signaling mechanisms to reduce

apoptosis and promote self-tolerance in target cells like

endothelial cells and cardiomyocytes. The exact mechanisms

behind the three ICI-mediated diseases, atherosclerosis,

myocarditis and cardiomyopathy, are not completely

understood and future studies are warranted. Currently, irAE

management with corticosteroids is not beneficial for everyone

and downstream targets are urgently needed. Cases with

successful treatment for ICI-mediated myocarditis, e.g.

Abatacept (NCT05335928), have been reported with and

randomized trials are underway. Additionally, more research

focusing on downstream pathways of IC ligand host-cells, such as

the JAK/STAT, MAP/Erk/mTOR, PI3K/Akt pathways and

IDO1, as possible therapeutic targets is required.

While understanding the role of IC in the CV system is

important, surveillance and prevention play an equally important

role in the clinical setting. Serial monitoring with

echocardiography (ECG), electrocardiogram and biomarkers

(i.e. troponin) is advised for immunotherapy, chemotherapy

and radiotherapy (Banfill et al., 2021; Stein-Merlob et al.,

2021; Huang et al., 2022). According to the latest guidelines of

the European Society of Cardiology, all ICI-treated patients

should have ECG and troponin measured at baseline, with

additional ECG monitoring in patients with elevated baseline

troponin levels (Lyon et al., 2022). In cases of newly developed

ECG abnormalities, biomarker changes or cardiac symptoms at

any time during the course of ICI treatment, the guidelines

recommend immediate cardio-oncology evaluation with

additional ECG for left ventricular ejection fraction and strain

FIGURE 2
Downstream signaling and effect of immune checkpoint ligands PD-L1/2, CD80/86 and MHC-II in APCs. PD-1/PD-L1/2 interaction results in
inhibition of apoptosis by interference with the IFN induced STAT3/CASP7 pathway. Blocking of this pathway by anti-PD-1 or anti-PD-L1/2 leads to
less inhibition of the STAT3/CASP7 pathway and therefore increased apoptotic signaling in the presence of IFN signaling. CTLA-4/CD80/86 binding
increases self-tolerance by inducing tryptophane catalyzation. Blocking of CTLA-4 leads to reduced tryptophane catalyzation and reduced
self-tolerance. MHC-II/LAG-3 binding results in activation of the PI3K/Akt pathway leading to an increase in survival signals. Therefore, blocking LAG-
3 results in less PI3K/Akt activation and a reduction in survival signals. CTLA-4, Cytotoxic T-Lymphocyte-Associated Protein four; FGL1, fibrinogen-
like protein one; Gal3, Galectin three; IFN, Interferon; LSECtin, liver sinusoidal endothelial cell lectin; LAG-3, Lymphocyte Activation Gene-3; MHC-II,
major histocompatibility complex II; PD-1, programmed cell death-1; PD-L1/2, programmed cell death-ligand 1/2. Created with BioRender.com.
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TABLE 1 Outcomes and potential therapeutic targets based on immune checkpoints data. From left to right: current ICI targets, corresponding CVD,
literature models, cardiovascular outcomes and potential therapeutic targets. CTLA-4, Cytotoxic T-Lymphocyte-Associated Protein four; FGL1,
fibrinogen-like protein one; Gal3, Galectin three; IFNy, Interferon gamma; LSECtin, liver sinusoidal endothelial cell lectin; LAG-3, Lymphocyte
Activation Gene-3; MHC-II, major histocompatibility complex II; PD-1, programmed cell death-1; PD-L1/2, programmed cell death-ligand 1/2.

IC/IC
ligand

CVD Model Outcome Possible
target

CTLA-4 Atherosclerosis PD-1/PD-L1 KO: Increased plaque size; higher T-cell
numbers; increased TNFα; increased T-cell activation;
enhanced cytotoxic T-cell activity (Gotsman et al., 2007;
Bu et al., 2011)

-1.5-3-fold increase in aortic lesion
areas

TNFα

-2-fold increase in lesion of aortic arch

High PD-1 expression on T-cells in the atherosclerotic
plaque (Fernandez et al., 2019)

-Significantly more PD-1 on
CD8 T-cells in plaque than blood

Pdl1−/− increased lymphatic endothelial cell apoptosis
(Lucas et al., 2018)

-±20% more caspases Caspases

PD-L1 block: no/reduced upregulation of surface IC and
cytokine production in Treg (Chen et al., 2016; Mazanet
and Hughes, 2022)

-26.43% less PD-1 Treg, IL-10 and
TGF-βIFNγ-15.63% less CTLA-4

-3.8-fold decrease in IL-10

-2-fold decrease in TGF-β1
Endothelial PD-L1/2 block: enhanced IFNγ secretion by
CD8 T-cells (Rodig et al., 2003)

-±35% more IFNγ with PD-L1 block IFNγ
-±45% more IFNγ with PD-L2 block

Myocarditis PD-L1/2−/−CMy-mOva mice: lethal myocarditis; PD-L1
upregulation is IFNγ dependent (Grabie et al., 2007)

-Mortality down by 50% at day 10

Atherosclerosis and Myocarditis PD-L1 signaling: inhibition of IFNγ-induced apoptosis
in cancer cells through STAT3/Casp7 (Azuma et al.,
2008; Gato-Cañas et al., 2017)

-Silencing of STAT3 and
CASP7 abrogated IFNβ lethality

STAT3/Casp7

Cardiomyopathy BALB/c–PD-1 KO mice: DCM with impaired
contractile function; IgG deposition on cardiomyocytes;
high levels of circulating anti-troponin IgG (Nishimura
et al., 2001; Okazaki et al., 2003)

-Premature death in PD-1−/− at as early
as 5 weeks

-57% decrease in ventricular fractional
shortening

-28.5% reduction of ejection fraction

DCM: associated with increased and widespread cardiac
PD-L1 expression (Kushnareva et al., 2022)

-PD-L1 on endothelial cells and
membrane surface

Atherosclerosis Anti-CTLA-4 in Ldlr−/− mice: increased plaque size
(Poels et al., 2020)

-Doubled plaque area (0.8–3.2 mm2)

-±5% increase in necrotic core

CTLA-4-Tg/Apoe−/− mice: Reduced plaque formation;
reduced CD4 T-cell numbers; reduced T-cell
proliferation; reduced proinflammatory cytokine
production (Matsumoto et al., 2016)

-35% decrease in lesion size in males
mice

-26% decrease in lesion size in female
mice

Cardiomyopathy CLTA4 gene variant led to increased risk of DCM
(Ruppert et al., 2010)

-CTLA4 SNP 7.4% more frequent in
DCM patients

CD80/86 Myocarditis Increased self- tolerance by inducing tryptophan
catabolism (Grohmann et al., 2002)

-Long-term islet engraftment in mice
when CTLA-4 activation was blocked

Tryptophan, IDO,
IFNγ

CTLA-4 and
PD-1/PD-L1

Myocarditis Myocarditis in ICI treated patients: increased with
combination therapy (Johnson et al., 2016)

-0.27% chance of myocarditis with
combination ICI vs. 0.07 with anti-
PD-1

Ctla4+/− Pdcd1−/− mice: myocarditis with cardiac T-cell
infiltration; reduced Treg counts

-50% mortality by 3 months

Abatacept treatment reduced mortality (Wei et al.,
2021)

-Abatacept increased survival

LAG-3 Atherosclerosis, hypertension,
myocarditis, and
cardiomyopathy

LAG-3 KO mice: no disease onset -Maximum IFNγ levels in LAG-3−/−

mice

Gal-3 depletion: increased pro-inflammatory immune
cells (Kouo et al., 2015)

-Significantly more T-cells and
dendritic cells upon Gal-3 depletion

(Continued on following page)
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analysis. Cardiac magnetic resonance is recommended when

myocarditis is suspected.

Conclusion

ICI therapies have provided for successful therapeutic

options and improved prognosis for a large group of cancer

patients, however their interaction with the cardiovascular

system can be detrimental. Inhibition of IC ligand

interactions have been indicated to accelerate onset and

development of atherosclerosis, increase inflammation and

myocardial infiltration which causes fatal myocarditis, and it

is proposed that it induces autoimmunity and

electrophysiological alterations of cardiomyocytes leading

to cardiomyopathy. Insights into the mechanisms behind IC

and cardiovascular irAE are important to investigate in order

to: 1) determine preexisting risk factors for better patient

selection, 2) unravel treatment possibilities for

cardiovascular irAE with, ideally, sustained anti-tumor ICI

efficacy, and 3) indicate possible new targets for cancer

therapy.
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