
Zuogui Wan ameliorates high
glucose-induced podocyte
apoptosis and improves diabetic
nephropathy in db/db mice

Bingbing Zhu1,2†, Ji Fang2†, Zhengcai Ju3, Ying Chen2, Li Wang2,
Hao Wang2, Lina Xing2* and Aili Cao1,2*
1Department of Nephrology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Department of Nephrology, PutuoHospital, Shanghai
University of Traditional Chinese Medicine, Shanghai, China, 3Shanghai Key Laboratory of Complex
Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese
Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Zuogui Wan (ZGW), a well-known traditional Chinesemedicine (TCM), has been

used to nourish “Kidney-Yin” for a long time in China, implying a protective

effect on the kidney. The aim of the present study is to investigate the effect of

ZGW on high glucose-induced podocyte apoptosis and diabetic nephropathy

(DN) in db/db mice. ZGW (1 g/kg−1/day−1) was administered intragastrically to

db/db mice for 8 weeks. HPLC was used for identifying the components of

ZGW, biochemical and histopathological approaches were used for evaluating

its therapeutic effects, and cultured mouse podocytes were used for further

exploring its underlying mechanism in vitro. ZGW improved renal function and

podocyte loss and also normalized kidney reactive oxygen species production

in db/db mice. The cytotoxicity of ZGW on mouse podocytes was assessed by

the LDH assay. The effect of ZGW on podocyte viability and apoptosis was

determined with CCK-8 and Annexin-V/PI staining by treatment with high

glucose. ZGW attenuated podocyte apoptosis, and oxidative stress was

detected by the peroxide-sensitive fluorescent probe 2′,7′-
dichlorodihydrofluorescein diacetate (DCF-DA) staining in a dose-dependent

manner. Furthermore, ZGW decreased the expression of caspase-3 and

phospho-p38 in both the kidney cortex and high glucose-treated

podocytes. Thus, our data from in vivo and in vitro studies demonstrated

that ZGW improved renal injury in diabetes by inhibiting oxidative stress and

podocyte apoptosis.
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Introduction

Diabetic nephropathy (DN), one of the most common

diabetic complications in diabetes, has become the most

frequent cause of chronic kidney disease that leads to end-

stage renal disease (ESRD) (Collaboration, 2020). Its

pathogenesis can be attributable to various factors. Podocyte,

a component of the glomerular basement membrane (GBM),

plays a major role in maintaining the glomerular filtration

barrier. Podocyte injury and loss result in glomerular disease

and progression of renal failure (Naylor et al., 2021). In previous

studies, it has been confirmed that high glucose-induced

apoptosis and ROS production contribute to podocyte loss

(Casalena et al., 2020; Li et al., 2021). Literature concerning

Chinese medicine therapies for treating DN in recent years

reveals that Chinese medicine has made some progress in the

pathogenesis and treatment of DN based on syndrome

differentiation (Yang et al., 2020; He et al., 2022).

As a traditional Chinese prescription described in the TCM

monograph Jing-Yue Quan Shu by the distinguished physician

Zhang Jing-Yue in the Ming Dynasty, ZGW has been long

utilized clinically in the treatment of kidney Yin deficiency

syndromes. It consists of eight Chinese crude drugs, namely,

Rehmanniae Radix Praeparata, Dioscoreae Rhizoma, Lycii

Fructus, Corni Fructus, Achyranthis Bidentatae Radix, Cervi

Cornus Colla, Testudinis Carapacis et Plastri Colla, and

Cuscutae Semen. It has been reported that ZGW can prevent

glucocorticoid-induced osteoporosis in rats by upregulating the

expression of the Wnt signal transduction pathway (Liu et al.,

2011). It also relieves axonal injury and promotes axonal

regeneration in rats with experimental autoimmune

encephalomyelitis (Wang et al., 2010). However, the

underlying activity of ZGW in preventing renal injury in DN

has not been fully understood. In this study, we investigated the

protective effects of ZGW on podocytes in mice with DN and

explored the molecular and cellular mechanisms underlying

these effects.

Materials and methods

Chemicals and reagents

Eight individual medicinal materials of ZGW, including

Rehmanniae Radix Praeparata, Dioscoreae Rhizoma, Lycii

Fructus, Corni Fructus, Achyranthis Bidentatae Radix, Cervi

Cornus Colla, Testudinis Carapacis et Plastri Colla, and

Cuscutae Semen (See also in Table 1) were obtained from

Leiyunshang Pharmaceutical (Shanghai, China) and identified

by experts in pharmacognosy from the Institute of Chinese

Materia Medica, Shanghai University of Traditional Chinese

Medicine. The herbs were subjected to reflux extraction with

water for 1.5 h twice to obtain the water decoction and

concentrate. Then, 95% ethanol was added to regulate the

concentration of ethanol to be at 80%. The supernatant was

dried and mixed with Colla Cornus Cervi and Colla Plastri

Testudinis. The resulting dry extract was stored at −20°C until

usage. A total amount of 1.0 g extract powder equals to 3.0 g raw

herbs.

CCK-8 was purchased from DojindoLaboratorise (JPN), and

the Annexin V/PI Apoptosis Detection kit from Biovision

(Switzerland). LDH, SOD and CAT kits were obtained from

Cayman Chemical (United States). DCF-DA was from

Invitrogen (United States). Fasting blood glucose levels were

measured with the Omron HEA-230 Glucometer using one drop

of tail blood (JPN). Urinary albumin and creatinine were

monitored with the ELISA Kit (Biovision, United States), and

the urinary albumin to creatinine ratio (uACR) was used to

observe the kidney function. The primary antibodies phospho-

ERK, ERK, phospho-JNK, JNK, phospho-p38, p38, caspse-3, and

ß-actin for western blot analysis were purchased from Cell

Signaling Technology (United States). The primary antibody,

WT-1, was obtained from Abcam (United States). Alexa Fluor

488-labeled goat anti-rabbit IgG secondary antibody for

immunofluorescence staining and goat anti-rabbit HRP

secondary antibody for western blot were obtained from

Jackson ImmunoResearch (United States). The RIPA lysis

buffer and BCA Assay kit were obtained from Beyotime (China).

HPLC analysis

A three-dimensional high-performance liquid

chromatography (3D-HPLC) profile of ZGW is shown in

Figure 1. The analysis procedure was conducted according to

the previous study (Liang et al., 2009).

Animal groups and treatments

Six-week-old male nondiabetic db/m and diabetic db/db

mice (C57BLKS/J-leprdb/leprdb) were obtained from the

Model Animal Research Center of Nanjing University. The

experimental protocol was approved by the ethics committee

of Putuo Hospital, Shanghai University of Traditional Chinese

Medicine. The mice were given free access to food and water and

maintained in conditions of a 12/12 h light/dark cycle and

controlled temperature (23°C ± 2), and humidity (55 ± 5%).

At 8 weeks of age, they were divided into three groups: Group 1,

nondiabetic control db/m mice (n = 10); Group 2, diabetic

nephropathy db/db mice (n = 10); and Group 3, db/db mice

treated via intragastrical administration with 1 g/kg/day of ZGW

dissolved in 0.5% carboxymethyl cellulose (CMC). Group 1 and

2 received 0.5% CMC for 8 weeks. The dose we used was

calculated from the equivalent conversion by the body surface

area between animals and humans according to the
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recommended daily human dosage. Mice were housed in

individual metabolic cages for a 24 h urine collection. Body

weight, water intake, blood glucose, food intake, and ACR

were detected at 4-week intervals. At the end of the study, the

animals were killed, and both kidneys were removed

immediately. The renal cortex was divided into five parts for

histological examination, immunohistochemistry, electron

microscopy, ELISA, and western blot.

Histopathological, immunofluorescence,
and electron microcopy evaluation

For histological analysis, the renal cortex was fixed overnight

in 4% PFA and embedded in paraffin. Subsequently, paraffin-

embedded samples were cut into 4-μm thick slices and stained

with periodic acid-Schiff (PAS). For immunofluorescence,

kidney samples were transferred to 18% sucrose overnight and

then flash-frozen in OCT medium. For electron microscopy,

kidney samples were fixed in 2.5% glutaraldehyde.

Cell culture and Zuogui Wan treatment

Conditionally immortalized mouse podocytes were kindly

provided by Dr. Peter Mundel and were conducted as previously

described (Saleem et al., 2002). All cells were grown in a dish

coated with type l collagen (Invitrogen, United States). Podocytes

were incubated at 33°C with 10 U/ml mouse recombinant

interferon-γ (IFN-γ, Peprotech, United States), 10% heat-

inactivated fetal calf serum, 100°U/ml penicillin and 100 μg/ml

streptomycin in RMPI 1640 for proliferation. At confluence

FIGURE 1
Three-dimensional HPLC profile of Zuogui pill.
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podocytes were incubated at 37°C for 14°days deprived of IFN-γ.
Differentiated podocytes were cultured for 24 h in RMPI

1640 with 1% FCS before various experimental conditions.

The cells were divided into normal glucose group, mannitol

group incubated in 5 mM d-glucose with 25 mM D-mannitol

(Sigma, United States), high glucose (HG) group incubated in

RPMI 1640 containing 30 mM d-glucose (Sigma, United States),

and ZGW group incubated in HG medium and treated with

different concentrations of ZGW. All of the experimental groups

were cultured in triplicate.

Determination of reactive oxygen species
and oxidative stress

ROS generation was measured as previously described

(Huntosova et al., 2021). Briefly, podocytes were incubated for

45 min at 37°C with 50 μM 2′,7′-dichlorodihydrofluorescin. The
DCF fluorescence was determined in a multiwall fluorescence

plate reader (Thermo Scientific Varioskan Flash, United States).

The oxidative stress markers, including activities of catalase

(CAT) and superoxide dismutase (SOD) in kidney cortex and

cultured mouse podocytes, were measured using the assay kits

according to the manufacturer’s instructions.

Lactate dehydrogenase assay

Necrotic cell death was assessed by the release of lactate

dehydrogenase (LDH) from the cytosol of the damaged cells into

the supernatant. The LDH cytotoxicity detection kit was

performed according to the manufacturer’s instructions.

Cell viability assay

Cell viability was assessed by the CCK-8 kit according to the

manufacturer’s protocol. Podocytes were plated in 96-well plates

at 2 × 104 cells per well and differentiated at 37°C for 12 days.

Then, cells were treated with or without Zuoggui Wan for

12–48 h. CCK-8 was added to each well and incubated for

2 h. The cell viability was determined by absorbance at a

wavelength of 450 nm. The relative cell viability was

calculated from: Cell Viability (%) = (1 – mean absorbance of

cells in sample groups/mean absorbance of cells in control

groups) ×100.

Apoptosis assay

Apoptosis was determined by Annexin V/propidium iodide

(PI) as described in the manufacturer’s protocol. After 24 h of

treatment, podocytes were washed twice with cold phosphate-

buffered saline (PBS) on ice, trypsinized, and pelleted by

centrifugation at 1000 rpm for 5 min. Then, they were

resuspended in binding buffer and stained with annexin V/PI

and analyzed for apoptosis using a FACS scan (Merk Millipore,

United States).

Western blotting

Kidney cortex or cultured podocytes were lysed in lysis buffer

using a sonicator and then centrifuged at 12,000 g for 5 min at 4°C.

The total protein concentration from the supernatant was

determined by the BCA protein assay. Cell lysates (40 μg protein/

lane) were resolved by electrophoresis on 10%–15% sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and then

transferred onto equilibrated polyvinylidene fluoride (PVDF)

membranes. After blocking using 5% skimmed milk, the

membrane was incubated with primary antibodies individually (1:

1000 dilution for each) at 4°C overnight. The bound antibodies were

incubated with horse-radish peroxidase-labelled goat anti-rabbit IgG

and detected by the ECL plus Kit.

Statistical analysis

All experiments were repeated at least three times. The

mean ± standard deviation (SD) was determined for each

group. Statistical analysis was performed with one-way

analysis of variance (one-way ANOVA) and the

Newman–Keuls multiple comparison test between three

groups or an unpaired t test between two groups. Differences

at p < 0.05 were considered statistically significant. Statistical

analyses were conducted with Graphpad Prism software

5 software (United States).

Results

HPLC fingerprint of Zuogui Wan

The typical HPLC fingerprint of ZGW is shown in

Figure 1. An effective and reliable method (Liang et al.,

2009) has been established to analyze and quantify the

constituents of ZGW. Ten compounds including gallic acid

(203 μg/g), 5-HMF (1329 μg/g), Morroniside (632 μg/g),

Sweroside (53 μg/g), Loganin (472 μg/g), Ecdysterone

(15 μg/g), Rutin (17 μg/g), Hyperoside (68 μg/g), Quercetin

(8 μg/g), and kaempferide (55 μg/g) were analyzed and

quantified. In our study, by comparison with the retention

times of the reference standards, eight compounds including

gallic acid, 5-HMF, morroniside, loganin, rutin,

hyperoside, quercetin, and kaempferide in ZGW were

identified.
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Effect of Zuogui Wan on biochemical and
physical parameters

Db/dbmice are used to model phases 1 to 3 of diabetes type II

and obesity (King, 2012). During the experiment, diabetic db/db

mice had higher body weight, blood glucose, food intake, and

water intake compared with normal db/m mice. In db/db mice,

treatment with ZGW failed to reduce body weight, water intake,

and blood glucose (Figures 2A–C) but decreased food intake

(Figure 2D). As compared to db/m mice, db/db mice developed

time-dependent progressive ACR. Administration of ZGW

significantly improved the development of albuminuria

(Figure 2E).

Zuogui Wan ameliorated renal
histopathology in db/db mice

Consistent with the attenuation of albuminuria, ZGW

significantly ameliorated renal injury in db/db mice. Figure 3A

FIGURE 2
Effects of ZGW (ZGW) onmetabolic parameters in db/dbmice. Eight-week-old db/dbmicewere treated with ZGW for 8 consecutive weeks. (A)
Body weight, (B)water intake, (C) blood glucose, (D) food intake, and (E) ACR. The results aremean ± SD. Statistical analysis was performedwith one-
way ANOVA and the Newman–Keuls multiple comparison test. **p < 0.01, compared with db/m mice. #p < 0.05 compared with db/db mice.
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shows representative renal pathology. Relative to nondiabetic db/m

mice, mesangial expansion was severe in diabetic db/db mice.

However, in the ZGW treatment group, mesangial expansion and

glomerular hypertrophy were markedly improved.

Semiquantitative data further confirmed these observations

(Figure 3B,C).

Podocytes play an important role in glomerular function.

Together with endothelial cells and mesangial cells, they form

a glomerular filtration barrier, a key player in the

development of proteinuria. Increasing evidence suggests

that primary lesions in renal podocytes are the early cause

of end-stage renal failure (Jefferson et al., 2011; Fogo, 2015).

Wilm’s tumor 1 (WT-1) gene is expressed in

podocytes throughout life and is used as a podocyte

marker to evaluate the podocyte lesion (Guo et al., 2002;

Su et al., 2010). In our experiment, immunofluorescence

staining of WT-1 revealed marked podocyte lesion in db/

db mice, while ZGW effectively prevented podocyte loss

(Figure 3D,E).

Zuogui Wan improved oxidative stress and
the p38/MAPK signaling pathway in db/db
mice

Diabetes is a chronic disease; sustained hyperglycemia stimulates

microvessels and macrovessels throughout the body (Barrett et al.,

2017). Diabetes imbalances the production of reactive oxygen species

(ROS) and thus results in increased oxidative stress. Chronic

oxidative stress leads to cellular homeostasis and generates other

ROS, creating further damage in DN (Han et al., 2018; Galvan et al.,

2019). The antioxidant defense system of the cell is crucial for

oxidative stress. In diabetes, the activities of antioxidant defense

enzymes such as SOD and CAT are responsible for scavenging free

radicals and regulating redox homeostasis (Linke et al., 2005). Hence,

we examinedwhether improvement in renal function was ascribed to

suppression of oxidative stress in the kidney cortex. As shown in

Figure 4A,B, relative to nondiabetic db/mmice, CAT and SOD levels

in diabetic db/db mice were markedly low but showed a significant

increase by treatment with ZGW.

FIGURE 3
ZGW ameliorated renal histopathology in diabetic db/db mice. (A) Pathological changes of the kidney in different groups observed by PAS
staining. (B) Glomerular size. (C) Mesangial expansion. (D) Immunofluorescence analysis of Wilms’ tumor suppressor gene 1 (WT-1). (E)
Quantification of WT-1-positive podocyte number per glomerulus. Magnification: x200 in A and D. The results are expressed as the mean ± SD.
Statistical analysis was performed with one-way ANOVA and the Newman–Keuls multiple comparison test. **p < 0.01, compared with db/m
mice. #p < 0.05, ##p < 0.01 compared with db/db mice.
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Oxidative stress activates the MAPK signaling pathway

(Hole et al., 2013; Lu et al., 2021). ZGW decreased the

activation of p38/MAPK rather than JNK and ERK

(Figure 4C). The activation of MAPK in response to

oxidative stress through the generation of ROS can have

proapoptotic effects. Here, cleaved caspase-3 in db/db mice

was increased and ZGW abolished this effect (Figure 4D),

strongly suggesting the regulating role of ZGW in oxidative

stress and oxidative stress-induced apoptosis.

Zuogui Wan inhibited high glucose-
induced apoptosis in podocytes

In order to examine the effect of ZGW on cell viability,

podocytes were treated with increasing concentrations of

ZGW (0–10,000 μg/ml) for 12–48 h. As shown in

Figure 5A, there were few dead podocytes at the

concentration of 1,000 μg/ml, while 3,000 μg/ml ZGW

significantly decreased the survival of podocytes. On the

other hand, to evaluate ZGW-induced necrosis, the release

of LDH in the extracellular medium was determined. As

shown in Figure 5B, the level of released LDH was

relatively low at a concentration of 1,000 μg/ml. Thus,

1,000 μg/ml was used as the highest concentration of ZGW

for further study.

High glucose is a proapoptotic factor and leads to

podocyte apoptosis by inducing oxidative stress (Wang

et al., 2020). We further confirmed the protective effect of

ZGW on high glucose-induced apoptosis in podocytes by

FACS after Annexin-V-FITC and PI staining. As shown in

Figure 5C,D, exposure to HG for 24 h resulted in

significant apoptotic cell death relative to control cells.

Mannitol had no effect on cell apoptosis. However, ZGW

reduced the podocyte apoptosis at concentrations of 100, 300,

and 1,000 μg/ml. Meanwhile, the activation of caspase-3 was

inhibited by ZGW treatment in HG-triggered podocytes

(Figure 5E).

FIGURE 4
ZGW elevated activities of CAT and SOD, inhibited caspase-3, and regulated p38/MAPK signaling in db/db mice. The effects of ZGW on (A) CAT
and (B) SOD were detected by ELISA. Representative immunoblots of MAPK signaling (C) and cleaved caspase-3 (D). Statistical analysis was
performed with one-way ANOVA and an unpaired t test. **p < 0.05, **p < 0.01, compared with db/mmice. #p < 0.05, ##p < 0.01 compared with db/
db mice.
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ZuoguiWan reduced HG-induced reactive
oxygen species production, oxidative
stress, and p38/MAPK signaling pathway in
podocytes

Next, to evaluate the effects of ZGW on ROS generation,

podocytes were stained with DCF-DA. Compared with the

control group, exposure to HG for 24 h significantly induced

ROS production. Mannitol kept ROS levels unchanged, while

ZGW reduced HG-induced ROS production (Figure 6A).

Moreover, the activities of SOD and CAT in cultured

podocytes were measured as shown in Figure 6B,C. Exposure

to HG for 24 h led to a remarkable decrease in both SOD and

CAT levels, and preincubation with ZGW increased their levels.

Meanwhile, HG resulted in elevated expression of phospho-p38

in podocytes, which was abrogated by ZGW treatment in a dose-

dependent manner (Figure 6D).

Discussion

Approximately one-third of patients with type 1 diabetes and

half of patients with type 2 diabetes will develop DN. DN is the

leading cause of CKD worldwide (Collaboration, 2020). Over

time, high blood glucose and pressure can damage various areas

of the body, including the cardiovascular system, and be the

major cause of long-term kidney disease and ESRD. ESRD is the

last stage of kidney disease and can lead to kidney failure and

death (Thomas et al., 2015). The inability of kidney cells to

downregulate glucose transport in response to high glucose levels

leads to an overwhelming flux of intracellular glucose, which

triggers the generation of pathogenetic mediators that contribute

to the development of DN (Hong et al., 2018; Cao et al., 2021).

Many steps can be taken to prevent or delay kidney damage. Due

to reduced renal excretion, many antidiabetic drugs are either

contraindicated or require dose adjustments in DN patients to

prevent hypoglycemia (Rangaswami et al., 2020). A number of

glucose-lowering medications are available, but only a fraction of

them can be used safely in CKD (Xie et al., 2020). There remains

an unmet need for innovative treatment strategies to prevent,

arrest, treat, and reverse DN.

TCM has a long history of treating diseases in China and other

Asian countries, including Japan and Korea, and several herbal

medications have been reported as being effective in treating DN

(Tang et al., 2021). Analyzing the evolution of the TCM syndrome

of DN, they were all deficient in root and excelled in branch. DN

with yin and yang deficiency is an important subject of pathogenesis

throughout the course of disease (Lu et al., 2004). Kidney-yin

FIGURE 5
Effects of ZGW on viability, necrosis, and apoptosis. Podocytes were incubated with increasing concentrations of Zuogui pill (0, 1, 3, 10, 30, 100,
300, 1,000, 3,000, and 10,000 μg/ml). (A)Cell viability was examined using CCK-8 assay after 12, 24, and 48 h treatment with Zuogui pill. (B)Necrotic
cell death was assessed by the release of LDH after 24 h treatment with Zuogui pill. (C) Podocytes were preincubated with Zuogui pill by 100, 300,
and 1,000 μg/ml for 1 h then exposed to high glucose (30 mM). Effects of Zuogui pill on apoptosis were assessed by FACS after annexin V/PI
staining. Representative flow cytometry results for podocytes under different culture conditions. (D) Semiquantitative data showing percentage of
apoptotic podocytes. (E) Representative immunoblots of cleaved caspase-3. Statistical analysis was performed with one-way ANOVA and the
Newman–Keuls multiple comparison test. **p < 0.01 compared with the control group. #p < 0.05, ##p < 0.05 comparedwith the high glucose group.
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deficiency results in the dysregulation of lipid and glucose

metabolism (Chen et al., 2021). ZGW, a classic traditional

medicine to treat kidney-yin deficiency, has been described in

Jingyue Quanshu by Jingyue Zhang (1563–1640 A.D.). ZGW is

also indicated in the Chinese Pharmacopoeia for treating kidney-yin

deficiency and associated with glycemic control in gestational

diabetes (Xu et al., 2019). Meanwhile, the medicine alleviated

maternal kidney-yin deficiency-induced thymic epithelial cell

dysfunction (Chen et al., 2021). Protecting podocytes against

hyperglycemia can prevent diabetes-associated albuminuria

FIGURE 6
ZGW dose-dependently inhibited high glucose-induced ROS generation, elevated CAT, SOD, and regulated p38 MAPK in podocytes.
Podocytes were preincubated with 100, 300, and 1,000 μg/ml ZGW for 1 h and then exposed to normal, mannitol (5 mM glucose and 25 mM
mannitol), and high glucose (30 mM). The effects of Zuogui pill on ROSwere determined by (A)DCF-DA staining. The effect of Zuogui pill on (B)CAT
and (C) SOD was detected by ELISA. (D) Representative immunoblots of MAPK signaling. Statistical analysis was performed with one-way
ANOVA and the Newman–Keuls multiple comparison test. **p < 0.01, compared with the control group. #p < 0.05, ##p < 0.01 compared with high
glucose.

TABLE 1 Zuogui Wan’s composition.

Chinese name English name Botanical name Family Weight (g) Part used

Shu Di Huang Rehmanniae Radix Praeparata Rehmannia glutinosa Libosch Scrophulariaceae 200 Root

Shan Yao Dioscoreae Rhizoma Dioscorea opposite Thunb. Dioscoreaceae 100 Rhizome

Gou Qi Zi Lycii Fructus Lycium barbarum L. Solanaceae 100 Fruit

Shan Zhu Yu Corni Fructus Cornus officinalis Sieb. et Zucc. Cornaceae 100 Sarcocarp

Niu Xi Achyranthis Bidentatae Radix Achyranthes bidentata Bl. Amaranthaceae 75 Root

Lu Jiao Cervi Cornus Colla Cervus elaphus Linnaeus Cervidae 100 Horn

Gui Ban Jiao Testudinis Carapacis et Plastri Colla Chinemys reevesii (Gray) Emydidae 100 Shell

Tu Si Zi Cuscutae Semem Cuscuta chinnensis Lam. Solanaceae 100 Seed
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without the need of restoring normal levels of glucose. In the present

study, ZGW did not improve the blood glucose in db/db mice but

alleviated kidney function, suggesting its vital role in podocytes.

A large body of evidence describes the relationship between

podocytes and albuminuria (Feng et al., 2021; Makino et al., 2021).

Since podocytes are unable to divide, injury and dysfunction of these

cells lead to the leakage of protein into urine. The mechanisms

underlying podocyte apoptosis are the focus of intense research.

High doses of albumin contribute to podocyte loss and apoptosis

(Cao et al., 2016). Here, changes in renal function, renal

histopathology, podocyte loss and apoptosis were observed in

db/db mice and high glucose-stimulated podocytes. ZGW

treatment ameliorated these changes and increased the

expression of the podocyte marker WT-1 in diabetic mice.

High glucose treatment results in cytoskeleton rearrangements

through mitochondrial dysfunction (Wang et al., 2022), and high

glucose induces apoptosis by stimulating ROS production (Fan et al.,

2019). Complex I and III, as two major sources of cellular ROS,

generate ROS when electron transport is slowed by high

mitochondrial membrane potential. Proper levels of ROS play a

vital role in signaling pathways, while excess ROS production

overwhelms the cellular antioxidant capacity and induces cell

apoptosis (Begum et al., 2022). The present study showed high

glucose induced ROS generation in podocytes, which was in

accordance with previous studies (He et al., 2022). ZGW dose-

dependently reduced ROS production and prevented podocyte

apoptosis. Examination of the effects of ZGW on the activities of

antioxidant enzymes (CAT and SOD) showed the decreases of both

CAT and SOD activities in podocytes exposed to high glucose, which

was effectively inhibited by ZGW treatment and further confirmed in

vivo study. Thus, ZGW inhibited podocyte apoptosis induced by high

glucose and improved renal injury in db/db mice via an antioxidant

signaling pathway.

The activation of caspase enzymes is an important biochemical

change in apoptosis. Activation of caspase-3, which operates as the

key effector enzyme in cell apoptosis through death-receptor and

mitochondria, is the vital determinant of apoptosis (Van

Opdenbosch and Lamkanfi, 2019). The experimental results

revealed the activation of cleaved caspase-3 was a result of high

glucose, indicating the caspase pathwaywas involved in the process of

high glucose-induced apoptosis in podocytes. ZGWreduced caspase-

3 activation in vitro and in vivo.

MAPK, as an important intracellular transduction signal in renal

cell death and the development of DN, has three major subfamilies,

namely, ERK1/2, JNK, and p38 MAPK, which are shown to be

related to the pathogenesis of DN (Nicholas et al., 2010; Loeffler et al.,

2011). In our study, high glucose, instead of upregulating phospho-

JNK and total JNK, significantly enhanced the phosphorylation levels

of p38 in podocytes and diabetic mice and was effectively suppressed

by ZGW. Therefore, ZGW is likely to inhibit podocyte apoptosis by

regulation of the p38 MAPK pathway.

In summary, the present study suggests that ZGW may be a

potential therapeutic approach for DN. ZGW inhibited apoptosis in

vivo and in vitro through reducing ROS generation, apoptosis and

regulating phospho-p38 signaling. Therefore, a potential protective

mechanism of ZGW toward the kidney was confirmed, which

strengthens the therapeutic rationale for treating DN.
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