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Molecular biology studies show that RNA N6-methyladenosine (m6A)

modifications may take part in the incidence and development of idiopathic

pulmonary fibrosis (IPF). Nonetheless, the roles of m6A regulators in IPF are not

fully demonstrated. In this study, 12 significant m6A regulators were filtered out

between healthy controls and IPF patients using GSE38958 dataset. Random forest

algorithmwas used to identify 11 candidatem6A regulators to predict the incidence

of IPF. The 11 candidate m6A regulators included leucine-rich PPR motif-

containing protein (LRPPRC), methyltransferase-like protein 3, FTO alpha-

ketoglutarate dependent dioxygenase (FTO), methyltransferase-like 14/16, zinc

finger CCCH domain-containing protein 13, protein virilizer homolog, Cbl

proto-oncogene like 1, fragile X messenger ribonucleoprotein 1 and YTH

domain containing 1/2. A nomogram model was constructed based on

11 candidate m6A regulators and considered beneficial to IPF patients using

decision curve analysis. Consensus clustering method was used to distinctly

divide IPF patients into two m6A patterns (clusterA and clusterB) based on

12 significant m6A regulators. M6A scores of all IPF patients were obtained

using principal component analysis to quantify the m6A patterns. Patients in

clusterB had higher m6A scores than those in clusterA. Furthermore, patients in

clusterB were correlated with Th17 and Treg cell infiltration, innate immunity and

Th1 immunity, while those in clusterA were correlated with adaptive immunity and

Th2 immunity. Patients in clusterB also had higher expressions of mesenchymal

markers and regulatory factors of fibrosis but lower expressions of epithelial

markers. Lastly and interestingly, two m6A regulators, LRPPRC (p = 0.011) and

FTO (p = 0.042), were identified as novel prognostic genes in IPF patients for the

first time using an external GSE93606 dataset. Both of them had a positive

correlation with a better prognosis and may serve as therapy targets. Thus, we

conducted virtual screening to discover potential drugs targeting LRPPRC and FTO

in the treatment of IPF. In conclusion, m6A regulators are crucial to the onset,

development and prognosis of IPF. Our study on m6A patterns may provide clues

for clinical diagnosis, prognosis and targeted therapeutic drugs development

for IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF), a chronic interstitial lung

disease of unknown causes, is characterized by diffuse alveolitis,

epithelial mesenchymal transformation (EMT), and disruption of

alveolar structure (Richeldi, Collard et al., 2017; Phan, Paliogiannis

et al., 2021). The clinical presentation of IPF is progressive dyspnoea

with an irritating dry cough, which usually continues to deteriorate and

eventually leads to death from respiratory failure (Moss, Ryter et al.,

2022).As thepathogenesis is unclear and there is nodefinitive treatment

available, it is of critical importance to identify the pathogenesis of IPF in

order to find an effective therapeutic target (Spagnolo, Kropski et al.,

2021). Based on the instant development of genomics and

bioinformatics methods, exploring the alteration of specific genetic

information and its regulatory mechanism during the development of

IPF cannot only gain a deep understanding the pathogenesis of IPF, but

more importantly toprovidepossible biomarkers for early diagnosis and

intervention of IPF.

Molecular biology studies had revealed that RNA N6-

methyladenosine (m6A) modifications might take part in the

development of respiratory diseases (Xiong, Hou et al., 2021).

M6A is one of the commonly epigenetic modifications, which

can regulate the expression level of certain genes after

transcription through chemical modification without changing

the mRNA sequence (Gui and Yuan 2021). Maladjustment of

RNA methylation can lead to many diseases, including chronic

obstructive pulmonary disease (COPD), respiratory tumors, IPF and

pulmonary artery hypertension (Huang, Lv et al., 2020; Hu, Wang

et al., 2021; Zhang, Huang et al., 2021).

EMT is a reprogramming process of epithelial to mesenchymal

transition, in which epithelial cells lose intercellular adhesion and gain

a greater ability to migrate and invade similar to mesenchymal cells

(Phan, Paliogiannis et al., 2021). Lung epithelial cells can differentiate

into myofibroblasts through EMT, which accelerates the fibrosis

process (Moss, Ryter et al., 2022). A study demonstrated that

methyltransferase-like 3 (METTL3) and m6A RNA modification

were up-regulated in TGF-β-induced EMT of A549 and LC2/ad lung

cancer cells (Wanna-Udom, Terashima et al., 2020). An animal

experiment showed that m6A modification was activated in a

mouse model of bleomycin-induced pulmonary fibrosis (Zhang,

Huang et al., 2021). Recent research revealed that m6A inhibited

the conversion of pri-miRNA-126 to mature miR-126, which in turn

activated the downstream “PI3K-AKT-mTOR” signaling pathway,

causing fibrosis in lung tissue (Han, Chu et al., 2020). Nonetheless, the

roles of m6A modification in IPF are not fully demonstrated.

In our research, we comprehensively assessed the effects of

m6A regulators on the diagnosis and subtype categorization in

IPF using the GSE38958 dataset. We constructed a gene model

for prediction of IPF based on 11 candidate m6A regulators

[leucine-rich PPR motif-containing protein (LRPPRC),

METTL3, FTO alpha-ketoglutarate dependent dioxygenase

(FTO), methyltransferase-like 14/16 (METTL14/METTL16),

protein virilizer homolog (VIRMA), c-cbl-like 1 (CBLL1),

fragile X messenger ribonucleoprotein 1 (FMR1), YTH

domain containing 1/2 (YTHDC1/YTHDC2) and zinc finger

CCCH-type containing 13 (ZC3H13)]. As a result, IPF patients

could receive clinical benefits from this gene model. We also

discovered two distinct m6A patterns, one of which was highly

relevant to EMT, Th17 cell infiltration, Treg cell infiltration,

innate immunity and Th1 immunity. This showed that m6A

patterns could be applied to differentiate IPF and guide

subsequent treatment. In addition, we identified two novel

prognostic m6A regulators (LRPPRC and FTO) in IPF for the

first time and obtained a total of 100 compounds or natural

products as potential drugs targeting LRPPRC and FTO in the

treatment of IPF with the aid of virtual screening technology. The

workflow of this study is shown in Figure 1.

Materials and methods

Collection of IPF dataset

The GSE38958 dataset containing 45 healthy controls (HCs) and

70 IPF patients was downloaded fromGEOdatabase. The expressions

of 26m6A regulatorswere extracted from the dataset and further used

to identify significant m6A regulators between HCs and IPF patients.

The 26 m6A regulators were consisted of three parts, nine writers

(METTL3/14//16, WTAP, VIRMA, ZC3H13, RBM15, RBM15B and

CBLL1), fifteen readers (YTHDC1/2, YTHDF1/2/3, HNRNPC,

FMR1, LRPPRC, HNRNPA2B1, IGFBP1/2/3, RBMX,

ELAVL1 and IGF2BP1) and two erasers (FTO and ALKBH5)

(Ilieva and Uchida 2022; Xie, Zhang et al., 2022).

Optimal predicting model developed by
random forest (RF) and support vector
machine (SVM)

To develop a model to predict incidence of IPF, the RF and SVM

model were respectively built as training models. Residual-related

analysis and receiver operating characteristic (ROC) were utilized to

assess the accuracy of models. RF is a regression tree technique using

bootstrap aggregation and randomization of predictors to bring about a

highdegree of predictive accuracy based on the integration of traditional

decision tree. SVM is also a supervised learning model, which is usually

used for pattern recognition, classification (outlier detection) and

regression analysis. In our study, we built a RF model to screen out
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candidate m6A regulators to predict the incidence of IPF using the

“randomForest” package of R. The parameters were set as follow:

ntrees = “500” and mtry = “3”. The X-axis represents the number of

trees and Y-axis represents the error value of 10-fold cross validation. In

thisway,we selected the treewith aminimumerror value as the optimal

model for predicting the incidence of IPF. We also investigated the

importance of the significantm6Aregulators. In addition, a SVMmodel

was built with the “kernlab” and “caret” packages of R. Each data

point displayed in n-dimension spaces (“n” represents the amount of

m6A regulators). An optimal hyperplane was then identified to

perfectly distinguish IPF samples from HCs (Bao, Shi et al., 2020).

Construction of a nomogram model

To further predict the prevalence of IPF, a nomogrammodel was

built with the “rms” package of R based on the candidate m6A

regulators. A calibration curve was then applied to determine whether

the predictive value of the model was consistent with reality.

Furthermore, we used decision curve analysis (DCA) and plotted a

clinical impact curve to explore the benefit of decisions made by the

model to IPF patients (Iasonos, Schrag et al., 2008).

Exploration of distinct patterns based on
the significant m6A regulators

Consensus clustering, as an unsupervised clustering method,

selects a certain number of samples by resampling and specifies the

number of clusters (k-means algorithm) to calculate the rationality

under different cluster numbers. It is usually used to discover new

disease subtypes, or to compare and analyze different disease

subtypes. In our study, it was applied to explore different m6A

patterns based on significant m6A regulators with the

“ConsensusClusterPlus” package of R. (Wilkerson and Hayes 2010).

Differentially expressed genes (DEGs)
between different m6A patterns and
functional analysis

DEGs analysis was conducted between different m6A

patterns using the “limma” package. The screening criteria

were set as follow: adjusted p < 0.05 and |logFC| ≥0.585. The
filtered DEGs were then used for GO enrichment analysis to

explore potential mechanisms involved in IPF using the

“clusterProfiler” package. Lastly, the results were displayed in

an enrichment circle diagram (Denny, Feuermann et al., 2018).

Estimation of the m6A gene signature

Principal component analysis (PCA) was conducted to

obtain the m6A scores of all the IPF patients to quantify the

m6A patterns. Initially, PCA was employed to recognize distinct

m6A patterns. M6A scores of each IPF patient were then

calculated using the formula: m6A score = PC1i, where

PC1 refers to the principal component 1, and i refers to the

DEGs expression (Zhang, Wu et al., 2020).

Estimation of immune cell infiltration

We conducted single sample GSEA algorithm using the

“GSVA”, “GSEABase”, and “limma” packages to calculate the

immune cell infiltration of each IPF patient based on 23 immune

cell gene sets. All members from the 23 immune cell gene sets

were ranked according to their expression levels and then

combined. As a result, the immune cell infiltration of each

IPF patient was obtained (Zhang, Zhao et al., 2020).

Survival analysis on significant m6A
regulators

The external GSE93606 dataset containing 57 IPF patients was

retrieved from GEO. We obtained clinical prognostic data and

normalized gene expression data. We then carried out

Kaplan–Meier overall survival (OS) analysis with the “survival”

and “survminer” package of R to investigate the correlation between

OS time and significant m6A regulators in IPF patients. The

FIGURE 1
The study workflow.

Frontiers in Pharmacology frontiersin.org03

Huang et al. 10.3389/fphar.2022.993567

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.993567


prognostic m6A regulators with a p < 0.05 were determined

statistically significant.

Virtual screening for potential drug

Virtual screening for potential drugs was carried out using the

Vina protocol on Yinfo Cloud Computing Platform (https://cloud.

yinfotek.com/). The crystal structures of two prognostic m6A

regulators, FTO (PDB code: 3LFM, resolution: 2.50 Å) and

LRPPRC (AF code: P42704-F1) were retrieved from RCSB Protein

Data Bank (http://www.rcsb.org/) or AlphaFold Database (https://

alphafold.ebi.ac.uk/). The Enamine HTS with about 175 million of

compounds and the ZINC with about 130 thousand of natural

products were used. Binding pocket was defined with the crystal

ligand and the binding sites could be found in UniProt (https://www.

uniprot.org/). If a protein did not have its binding crystal ligand and

its binding sites could not be obtained from UniProt, the POCASA

dataset (http://altair.sci.hokudai.ac.jp/g6/service/pocasa/) would be

used to predict its binding pocket. The binding pocket predicted

by POCASA with the maximum size was defined as the most

potential pocket. Finally, binding modes of the top 25 docked

compounds or natural products were visually analyzed and

manual selection of hits was performed. AutoDock Vina software

was utilized for semi-flexible docking (Trott and Olson 2010).

Statistical analyses

We used R software (4.1.0 version) with corresponding

packages mentioned above to carry out Linear regression

analyses (LRA), Kruskal-Wallis tests (K-W tests) and

Kaplan-Meier method (K-M method). LRA was utilized for

investigation of the relationship between writers and erasers.

K-W tests were utilized for the comparison of the differences

between groups. K-M method was utilized for the overall

survival analysis. In addition, two-tailed p < 0.05 was

regarded statistically significant.

Results

Landscape of 26 m6A regulators in IPF

We used the “limma” package of R to analyze differential

expressions of 26 m6A regulators between HCs and IPF

FIGURE 2
Landscape of m6A regulators in IPF. (A) Expression heatmap of 12 significant m6A regulators in healthy controls (Type: con) and IPF patients
(Type: treat). (B) Chromosomal positions of the 26 m6A regulators. (C) Differential expression histogram of 12 significant m6A regulators identified
between healthy controls (Type: con) and IPF patients (Type: treat). *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 3
Correlation between writers and erasers in IPF (A–E) Writer genes: CBLL1, METTL14, METTL16, VIRMA and ZC3H13; eraser genes:
ALKBH5 and FTO.

FIGURE 4
Construction of random forest (RF) model and support vector machine (SVM) model. (A) Reverse cumulative distribution of residual of RF and
SVM model. (B) Boxplots of residual of RF and SVM model. (C) Cross-validation curve of RF model. (D) The importance of the 12 significant m6A
regulators. (E) ROC curves of RF and SVM model.
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patients. In total, 24 m6A regulators with complete expression

data were retrieved where twelve significant m6A regulators

were identified and visualized in a heatmap and histogram.

They were IGF2BP1, METTL3, CBLL1, YTHDC1, METTL14,

YTHDC2, LRPPRC, FTO, FMR1, ZC3H13, METTL16, and

VIRMA. In contrast with HCs, IGF2BP1 had been upregulated

whereas the other 11 regulators had been downregulated in

IPF patients (Figures 2A,C). Using the “RCircos” package, the

26 m6A regulators were mapped onto chromosomes

(Figure 2B).

Correlation of writers and erasers in IPF

Based on linear regression analysis, we investigated the

correlation between writers’ and erasers’ expression levels in

IPF patients. A significant positive correlation between

ZC3H13 and FTO was observed in IPF patients

(Figure 3A). In addition, low expression levels of

METTL14, METTL16, VIRMA, and CBLL1 were observed

in IPF patients with high ALKBH5 expression levels (Figures

3B–E). Other writers did not show any correlation with

erasers. The results here show correlation between the

writers and erasers to varying degrees.

Construction of the RF model and SVM
model

Based on 12 significant m6A regulators, the RFmodel and SVM

model were successively built to identify candidate m6A regulators

in order to predict the incidence of IPF. According to the residual-

related analysis (Figures 4A,B), the RF model showed minimal

residuals, indicating that RF was a better method to predict the

incidence of IPF. The RF trees-error curve showed that the RFmodel

consisted of 11m6A regulators has the lowest error rate (Figure 4C).

Therefore, LRPPRC, METTL3, FTO, METTL16, METTL14,

VIRMA, CBLL1, FMR1, YTHDC2, ZC3H13, and YTHDC1 were

chosen as 11 candidate genes. After ranking each gene according to

its importance, we visualized the significant m6A regulators

(Figure 4D). Lastly, we plotted a ROC curve to measure the

accuracy of the model. The result suggested again that the RF

model was more accurate than SVM model (Figure 4E).

Construction of the nomogram model

To further predict the prevalence of IPF, a nomogram model

was built using the “rms” package of R based on the 11 candidate

m6A regulators (Figure 5A). The nomogram model was then

FIGURE 5
Construction of the nomogram model. (A) Nomogram model constructed by the 11 candidate m6A regulators. (B) Predictive value of
nomogrammodel through a calibration curve. (C)Decisions curve analysis of nomogrammodel showing benefits to IPF patients. (D)Clinical impact
curve of nomogram model.

Frontiers in Pharmacology frontiersin.org06

Huang et al. 10.3389/fphar.2022.993567

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.993567


verified for its accuracy by the calibration curves (Figure 5B). We

found that decisions based on the nomogram might be beneficial

to IPF patients according to the DCA curve. This was concluded

based on the observation that the majority of the red line was

higher than the black and grey lines ranging from zero to one

(Figure 5C). As shown by the clinical impact curve, the model

had an excellent predictive capacity (Figure 5D).

Identification of two different m6A
patterns by significant m6A regulators

By using “ConsensusClusterPlus” package of R, we conducted

the consensus clustering analysis for identification of different m6A

patterns based on the 12 significant regulators. As shown in Figures

6A–D, 70 IPF patients were distinctly divided into two m6A

patterns, clusterA (43 cases) and clusterB (27 cases). Heatmaps

and histograms were used to demonstrate the differences in

expression levels of the 12 significant m6A regulators. As seen in

Figures 5E,F, when compare to clusterA, METTL3, METTL14,

METTL16, VIRMA, ZC3H13, CBLL1, YTHDC1, YTHDC2,

FMR1, LRPPRC, and FTO showed lower expression levels in

clusterB while IGF2BP1 showed the opposite. According to the

PCA, we could completely differentiate the two m6A patterns

(Figure 5G). 402 m6A-related DEGs, with an adjusted p <
0.05 and a |logFC| ≥0.585, were then screened out from the two

m6A patterns for further GO enrichment analysis. Detailed results

of the 402m6A-related DEGs can be found in Supplementary Table

FIGURE 6
Consensus clustering of 12 significant m6A regulators in IPF. (A–D) Consensus matrices with cluster count from 2 to 5 showing an optimal
cluster (clusterA and cluster B) with k = 2. (E) Expression heatmap in clusterA and clusterB. (F) Differential expression histogram in clusterA and
clusterB. (G) Principal component analysis based on 12 significant m6A regulators showing a notable distinction between clusterA and clusterB. (H)
Gene ontology enrichment showing potential biological functions of 402 m6A-related differentially expressed genes (DEGs) on the
etiopathogenesis of IPF. *p < 0.05, **p < 0.01, and ***p < 0.001.
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S1. As shown in Figure 6H, potential functions of the 402 DEGs

were mainly involved in ncRNA metabolic process (GO:0034660),

ncRNA processing (GO:0034470), neutrophil activation involved in

immune response (GO:0002283), neutrophil degranulation (GO:

0043312) and ribosome biogenesis (GO:0042254).

In addition, ssGSEA was conducted to obtain the number of

immune cells in IPF patients and to explore the correlation of

12 significant m6A regulators with different immune cells. We

observed that most of the m6A regulators, except for IGF2BP1,

had positive correlations with activated CD4+ and CD8+ T cells,

B cells, Th2 cells, and CD56− natural killer cell, but negative

correlations with Th17 cells, Treg cells, monocytes, dendritic

cells, macrophages, mast cells and neutrophils (Figure 7A). We

also found that IPF patients with higher LRPPRC and FTO

expression levels had an enhanced adaptive immune cell

infiltration and reduced innate immune cell infiltration in

contrast to those with lower expression levels (Figures 7B,C).

Lastly, the two m6A patterns were compared for their differential

immune cell infiltration. The results demonstrated that clusterA

had a linkage with adaptive immunity and Th2-dominant

immunity while clusterB had a linkage with Th17 cell

infiltration, Treg cell infiltration, innate immunity and Th1-

dominant immunity (Figure 7D).

Identification of two different m6A gene
patterns and generation of the m6A gene
signature

In order to verify the m6A patterns, IPF patients were once

again grouped into different genomic patterns using the

consensus clustering analysis based on 402 m6A-related

DEGs. Two different m6A gene patterns (gene clusterA and

gene clusterB) were identified and found to be accordant with the

grouping of m6A patterns (Figures 8A–D). Similar differentially

expressed levels of the 12 significant m6A regulators and immune

cells infiltration were observed in two different identified m6A

gene patterns in contrast to two m6A patterns (Figures 8E,F).

This also confirmed that grouping by consensus clustering

algorithm was accurate. PCA algorithm was then used to

obtain m6A scores for all IPF patients to quantify the m6A

patterns. M6A scores of two different m6A patterns then

compared, as well as the two different m6A gene patterns. As

a result, clusterB or gene clusterB had higher m6A scores than

clusterA or gene clusterA (Figures 8G,H). Sankey diagrams were

used to visualize the relationship among m6A patterns, m6A

gene patterns and m6A scores (Figure 9A).

Role of m6A patterns in distinguishing IPF

For a further insight into roles of m6A patterns in IPF, we

explored the correlations between m6A patterns and EMT-

related gene set. The EMT-related gene set was consisted of

epithelial markers, mesenchymal markers and regulatory factors

of fibrosis, seen in Table 1. Epithelial markers were proven to be

downregulated in fibrotic diseases, while mesenchymal markers

and regulatory factors of fibrosis were confirmed to be positively

correlated with the development of fibrosis. The results showed

clusterB and gene clusterB had lower expressions of epithelial

markers but higher expressions of mesenchymal markers

(Figures 9B,C). Moreover, regulatory factors of fibrosis were

highly expressed in clusterB and gene clusterB in contrast to

those in clusterA and gene clusterA (Figures 9D,E). The above

results indicated that both clusterB and gene clusterB were

closely related to IPF featured with the EMT.

Clinical prognostic value of significant
m6A regulators in IPF

To explore the clinical prognostic value of significant m6A

regulators in IPF, we conducted OS analysis with an external

GSE93606 dataset. The endpoint of OS was defined as death or a

decline in FVC >10% over a 6-month period. We identified two

OS-related genes, LRPPRC (p = 0.011) and FTO (p = 0.042), from

11 significant m6A regulators (Figures 10A,B). The higher

expression levels of both LRPPRC and FTO were associated

with a longer survival time or a better lung function in IPF

patients.

Virtual screening for potential drugs
targeting LRPPRC and FTO

Vina protocol on Yinfo Cloud Computing Platform was used

to conduct virtual screening for potential drugs targeting

LRPPRC and FTO. Binding pocket of LRPPRC was predicted

by POCASA and shown in Figure 10C. Binding pocket of FTO

was defined with crystal ligand (Han, Niu et al., 2010; Huang,

Yan et al., 2015; Wang, Hong et al., 2015), shown in Figure 10D.

We chose the top 25 docked compounds with an affinity lower

than −9.6 kcal/mol (the top five: Z109823102, Z79383944,

Z18792881, Z31753778, Z16009222) from Enamine HTS and

top 25 docked natural products with an affinity lower

than −10.2 kcal/mol (the top five: ZINC68568380,

ZINC68563949, ZINC70706523, ZINC85907291,

ZINC70706097) from ZINC as potential drugs for targeting

LRPPRC (Figures 11A,B). Similarly, we chose the top

25 docked compounds with an affinity lower than −9.3 kcal/

mol (the top five: Z28140847, Z316147040, Z31323863,

Z335602852, Z45588056) from Enamine HTS and top

25 docked natural products with an affinity lower

than −10.6 kcal/mol (ZINC03875800, ZINC70665164,

ZINC04404594, ZINC68569433, ZINC05220992) from ZINC

as potential drugs for targeting FTO (Figures 12A,B). All the
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virtual screening scores and the detailed information and

structure of 100 potential drugs targeting LRPPRC and FTO

were attached as Supplementary Tables S2–S5.

Discussion

IPF is a chronic inflammatory interstitial lung disease of

unknown origin, characterized by diffuse alveolitis and

disruption of alveolar structure, leading to diffuse interstitial

lung fibrosis (Richeldi, Collard et al., 2017; Phan, Paliogiannis

et al., 2021). Molecular biology studies have revealed that

aberrant m6A modifications exert influence on the

progression of many diseases and may be critical to

respiratory diseases (Jiang, Liu et al., 2021; Xiong, Hou et al.,

2021). Nonetheless, the role of m6A regulators in IPF has not

been fully understood. In our study, we aimed to explore roles of

m6A regulators in IPF and to investigate potential therapeutic

targets on this basis.

Firstly, 12 significant m6A regulators were screened out through

DEGs analysis between HCs and IPF patients. An RF model was

then constructed to choose 11 candidate m6A regulators (LRPPRC,

METTL3, FTO, METTL16, METTL14, VIRMA, CBLL1, FMR1,

YTHDC2, ZC3H13, and YTHDC1) to predict the incidence of IPF.

On this basis, a nomogram model was built, and the DCA curve

suggested that decisions according to the model may be beneficial to

IPF patients. IGF2BP1, a subtype of the IGF2BPs family, serves as a

m6A reader that recognizes GG (m6A)C sequence of thousands of

mRNA, thus enhances its targetingmRNAs’ stability and translation

in anm6A-depedent way (Huang,Weng et al., 2018). CBLL1 is a key

part of the m6A methyltransferase complex that mediates m6A

methylation of RNAs (Růžička, Zhang et al., 2017; Yue, Liu et al.,

2018). The m6A reader YTHDC1 modulates mRNA splicing by

regulation and chemotaxis of pre-mRNA splicing factors so that it

FIGURE 7
Single sample GSEA for immune infiltration. (A)Heatmap revealing relationship between immune cells and the 12 significant m6A regulators. (B)
Distinction of immune cells infiltration between high and low LRPPRC expression subgroups. (C) Distinction of immune cells infiltration between
high and low FTO expression subgroups. (D) Distinction of immune cells infiltration between clusterA and clusterB. *p < 0.05, **p < 0.01, and ***p <
0.001.
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can reach the binding domains of its target mRNAs (Xiao, Adhikari

et al., 2016). METTL14, a critical part of methyltransferase complex,

functions together with METTL3, thus combined into a stabile

structure that plays an integral role inm6A deposition and enhances

catalysis (Liu, Yue et al., 2014). YTHDC2, one of YTH proteins,

selectively fuses with the motif of m6A, thereby increasing the

translation effect of its targets and reducingmRNAabundance (Hsu,

Zhu et al., 2017). LRPPRC conducts as an RNA-binding protein that

regulates mRNAs encoded by mitochondria DNA and

transactivates nuclear DNAs(Zhang, Gu et al., 2020).

Furthermore, LRPPRC regulates various biological functions,

such as energy metabolism and maturation (Cui, Wang et al.,

2019). FTO localizes in nuclear speckles and serves as an erase to

remove the m6A modifications in RNA and to regulate mRNA

splicing (Jia, Fu et al., 2011; Zhao, Yang et al., 2014). FMR1, an RNA

binding protein highly expressed in brain neurons, regulates the

transcription and translation of synapse-related genes by

modulating stability of its m6A-marked mRNAs (Zhang, Kang

et al., 2018). ZC3H13, one of the zinc finger proteins, anchors

WTAP, VIRMA and CBLL1 in the caryon to enhance m6A

methylation (Wen, Lv et al., 2018). As part of the

methyltransferase complex, METTL16 catalyzes m6A

modification and acts as a methyltransferase of U6 spliceosomal

small nuclear RNA (Pendleton, Chen et al., 2017). VIRMA is

another essential part of the intact m6A methyltransferase

complex, which not only preferentially regulates m6A

methylation in 3′UTR and near stop codon, but also correlates

with polyadenylation (Yue, Liu et al., 2018). These 11 candidate

FIGURE 8
Consensus clustering of the 402m6A-related DEGs in IPF. (A–D)Consensusmatrices with cluster count from 2 to 5 showing an optimal cluster
(gene clusterA and gene cluster B) with k = 2. (E)Differential expression histogram in gene clusterA and gene clusterB. (F)Distinction of immune cells
infiltration between gene clusterA and gene clusterB. (G) Distinction of m6A score between clusterA and clusterB. (H) Distinction of m6A score
between gene clusterA and gene clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 9
Effect of m6A patterns on differentiation of IPF. (A) Sankey diagram revealing relevance between m6A patterns, m6A gene patterns, and m6A
scores. (B)Different expression level of epithelial markers andmesenchymal markers between clusterA and clusterB. (C)Different expression level of
epithelial markers andmesenchymalmarkers between gene clusterA and gene clusterB. (D)Different expression level of regulatory factors of fibrosis
between clusterA and clusterB. (E) Different expression level of regulatory factors of fibrosis between gene clusterA and gene clusterB. *p <
0.05, **p < 0.01, and ***p < 0.001.

TABLE 1 The EMT-related gene set consisted of epithelial markers, mesenchymal markers and regulatory factors of fibrosis.

Type Protein name Gene symbol

Epithelial markers E-cadherin/β-catenin/ZO-1/Cytokeratin/Desmoplakin CDH1/CTNNB1/TJP1/KRT1/DSP

Mesenchymal
markers

Vimentin/N-cadherin/Snail Family Transcriptional Repressor 1/Snail
Family Transcriptional Repressor 2/Twist Family BHLH Transcription
Factor 1/Twist Family BHLH Transcription Factor 2/Matrix
Metallopeptidase 2/Matrix Metallopeptidase 3/Matrix Metallopeptidase 9/
Zinc Finger E-Box Binding Homeobox 2/Fibronectin

VIM/CDH2/SNAI1/SNAI2/TWIST1/TWIST2/MMP2/MMP3/
MMP9/ZEB2/FN1

Regulatory factors of
fibrosis

Integrin Linked Kinase/Rhodopsin/Transforming Growth Factor Beta 1/
Transforming Growth Factor Beta 2/Transforming Growth Factor Beta 3/
SMAD Family Member 3/Notch Receptor 1/Notch Receptor 2/Notch
Receptor 3/Notch Receptor 4/Jagged Canonical Notch Ligand 1/Vascular
Endothelial Growth Factor A/Epidermal Growth Factor/Platelet Derived
Growth Factor/Insulin Like Growth Factor 1/Hepatocyte Growth Factor/
Fibroblast Growth Factor

ILK/RHO/TGFB1/TGFB2/TGFB3/SMAD3/NOTCH1/NOTCH2/
NOTCH3/NOTCH4/JAG1/VEGFA/EGF/PDGF/IGF1/HGF/FGF
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m6A regulators have been demonstrated a linkage with

tumorigenesis and progression, involving hyperplasia, metastasis,

synchronous radiotherapy resistance, metabolic reprogramming

and prognosis (Zhu, Zhou et al., 2019; He, Li et al., 2020; Gao,

Ye et al., 2021; An and Duan 2022). Moreover, they have been

proven to participate in a variety of other diseases, such as

psychiatric disorders, Alzheimer’s disease, metabolic syndrome

and cardiovascular diseases, and may exert influence on COPD

and IPF (Huang, Lv et al., 2020; Jiang, Liu et al., 2021; Zhang, Huang

et al., 2021). However, relationship between the 11 candidate m6A

regulators and IPF has not been fully studied. We hope that our

research can reveal how m6A modification and m6A regulators

contribute to the pathogenesis of IPF, in order to provide new ideas

for future research on m6A regulators in IPF.

Nowadays, experts commonly consider EMT as one of the

crucial etiopathogenesis of IPF. EMT is a biological process

characterized by a loss of epithelial markers (E-Cadherin,

etc.), but accumulation of mesenchymal markers (N-Cadherin,

Vimentin, Fibronectin, etc.) as well as activation of regulatory

markers of fibrosis (Snail, Slug, Twist, etc.), leading to a transition

from epithelial features to mesenchymal phenotype (Phan,

Paliogiannis et al., 2021; Moss, Ryter et al., 2022). When lung

is damaged by various pathogens, numerous immune cells and

various immunity related signals are activated, resulting in

inflammatory conditions and aggravating EMT. Activation of

innate immunity, including monocyte, macrophage, dendritic

cell and mast cell, is responsible for progression and a poor

prognosis of IPF(Scott, Quinn et al., 2019; Overed-Sayer,

Miranda et al., 2020; Bocchino, Zanotta et al., 2021; Mattoo

and Pillai 2021; Shenderov, Collins et al., 2021; van Geffen,

Deißler et al., 2021). Th1/Th2 imbalance also contributes to

aggravation of IPF, but which of them plays a dominant role

remains controversial (Desai, Winkler et al., 2018; Planté-

Bordeneuve, Pilette et al., 2021; Shenderov, Collins et al.,

2021). Th17 cell and Treg cell have been proven positively

associated with the development of IPF (Shenderov, Collins

et al., 2021; van Geffen, Deißler et al., 2021). Moreover, if the

inflammation is sustained, EMT is enhanced and prolonged

through increased fibroblast proliferation. Eventually fibrous

tissue progressively takes the place of functionally normal

tissue, leading to progressive structural and functional

dysfunction of lung parenchyma (Phan, Paliogiannis et al.,

FIGURE 10
Clinical prognostic value of LRPPRC and FTO in IPF and their binding pockets for virtual screening. (A) Kaplan-Meier survival curve of the overall
survival in high and low LRPPRC expressions subgroups. (B) Kaplan-Meier survival curve of the overall survival in high and low FTO expression
subgroups. (C) Binding pocket of LRPPRC: core of pocket (−15.83, 4.206, 9.538) Å, size of pocket (40, 40, 40) Å. (D) Binding pocket of FTO: core of
pocket (29.199, −7.339, −23.371) Å, size of pocket (26, 26, 26) Å.
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FIGURE 11
Virtual Screening for Potential Drugs Targeting LRPPRC. (A) The top five docked compounds (Z109823102, Z79383944, Z18792881, Z31753778,
Z16009222) from Enamine HTS potentially targeting LRPPRC. Interaction type between each compound and LRPPRC: Z109823102 (hydrophobic
interaction, hydrogen bond, π-cation interaction), Z79383944 (hydrophobic interaction, hydrogen bond, π-cation interaction), Z18792881
(hydrophobic interaction,π-cation interaction), Z31753778 (hydrophobic interaction, hydrogen bond, π-π stacking), Z16009222 (hydrophobic
interaction, hydrogen bond). (B) The top five docked natural products (ZINC68568380, ZINC68563949, ZINC70706523, ZINC85907291,
ZINC70706097) from ZINC potentially targeting LRPPRC. Interaction type between each product and LRPPRC: ZINC68568380 (hydrophobic
interaction), ZINC68563949 (hydrophobic interaction), ZINC70706523 (hydrophobic interaction, hydrogen bond), ZINC85907291 (hydrophobic
interaction), ZINC70706097 (hydrophobic interaction, hydrogen bond).
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FIGURE 12
Virtual Screening for Potential Drugs Targeting FTO. (A) The top five docked compounds (Z28140847, Z316147040, Z31323863, Z335602852,
Z45588056) from Enamine HTS potentially targeting FTO. Interaction type between each compound and FTO: Z28140847 (hydrophobic interaction,
hydrogen bond, π-π stacking), Z316147040 (hydrophobic interaction, π-π stacking), Z31323863 (hydrophobic interaction, π-cation interaction),
Z335602852 (hydrophobic interaction, π-π stacking), Z31323863 (hydrophobic interaction, π-cation interaction, π-π stacking), Z45588056
(hydrophobic interaction, hydrogen bond, π-π stacking). (B) The top five docked natural products (ZINC03875800, ZINC70665164, ZINC04404594,
ZINC68569433, ZINC05220992) from ZINC potentially targeting FTO. Interaction type between each product and FTO: ZINC03875800
(hydrophobic interaction, π-cation interaction, π-π stacking), ZINC70665164 (hydrophobic interaction, π-π stacking), ZINC04404594 (hydrophobic
interaction, π-cation interaction), ZINC68569433 (hydrophobic interaction), ZINC05220992 (hydrophobic interaction, π-π stacking).
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2021). In our study, consensus clustering algorithm was utilized

to identify two m6A patterns (clusterA and clusterB) based on

12 significant m6A regulators. ClusterB was highly correlated to

Th17 cell infiltration, Treg cell infiltration, innate immunity and

Th1-dominant immunity and lower-level expression of epithelial

markers but higher-level expression of mesenchymal markers

and regulatory markers of fibrosis, suggesting that clusterB is

highly related to IPF. Besides, we verified the reliability of these

results in m6A gene patterns based on the 402 m6A-related

DEGs. We also calculated the m6A score of all IPF patients to

quantify the m6A patterns and found clusterB or gene cluster had

a higher m6A score than clusterA or gene clusterA.

Furthermore, we firstly discovered two prognostic m6A

regulators (LRPPRC and FTO) from 12 significant m6A

regulators using an external IPF dataset. In our study,

both of them were down-regulated in IPF patients

compared with HCs. The higher expression levels of

LRPPRC (p = 0.011) and FTO (p = 0.042) were

significantly linked to a longer survival time or a better

lung function in IPF patients. We also found that the

lower expression levels of LRPPRC and FTO were highly

relevant to an enhance innate immune cell infiltration, which

was generally considered as a critical cause of incidence or

aggravation for IPF. These results fully confirmed that both

LRPPRC and FTO could serve as protective factors as well as

potential therapeutic targets for IPF patients. FTO has

already been confirmed to be a protective m6A regulator

in myocardial fibrosis (Mathiyalagan, Adamiak et al. 2019,

Ju, Liu et al., 2021), while the function of LRPPRC on fibrotic

diseases is still unknown. It is supposed that the

dysregulation or dysfunction of LRPPRC may play critical

roles in diseases caused by PI3K/AKT/mTOR and JAK/STAT

pathway dysregulation (Cui, Wang et al., 2019), including

IPF (Woodcock, Eley et al., 2019; Montero, Milara et al.,

2021; Wasnick, Korfei et al., 2022). But such supposition

requires further study. Moreover, the top 25 docked

compounds from Enamine HTS and top 25 natural

products from ZINC were selected by virtual screening as

potential drugs in the treatment of IPF, targeting LRPPRC

and FTO. Most of them had various kinds of interaction with

LRPPRC and FTO, such as hydrogen bond, π-π stacking and

hydrophobic interaction, indicating a good bonding property

(O’Connor and Cummins 2017; Shen, Xia et al., 2017;

Zhuang, Wang et al., 2019). However, further verification

is needed for these potential drugs before they can be used in

practice Shen et al. (2022).

Conclusion

M6A regulators exert a crucial effect on the onset and

progression of IPF. Our study filtered out 11 candidate m6A

regulators to accurately predict the prevalence of IPF using a

nomogram model. Furthermore, we developed two different

m6A patterns, one of which (clusterB) showed a close link to

IPF. Interestingly and more importantly, we discovered two

novel OS-related m6A regulators (LRPPRC and FTO) that

could predict the prognosis of IPF patients. They may serve as

protective factors and therapeutic targets. Our investigation of

m6A patterns may provide clues for clinical diagnosis, prognosis

and targeted therapeutic drugs development for IPF in the future.
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