
Machine learning advances the
integration of covariates in
population pharmacokinetic
models: Valproic acid as an
example

Xiuqing Zhu1,2†, Ming Zhang1,2†, Yuguan Wen1,2* and
Dewei Shang1,2*
1Department of Pharmacy, The Affiliated Brain Hospital of GuangzhouMedical University, Guangzhou,
China, 2Guangdong Engineering Technology Research Center for Translational Medicine of Mental
Disorders, Guangzhou, China

Background and Aim: Many studies associated with the combination of

machine learning (ML) and pharmacometrics have appeared in recent years.

ML can be used as an initial step for fast screening of covariates in population

pharmacokinetic (popPK) models. The present study aimed to integrate

covariates derived from different popPK models using ML.

Methods: Two published popPK models of valproic acid (VPA) in Chinese

epileptic patients were used, where the population parameters were

influenced by some covariates. Based on the covariates and a one-

compartment model that describes the pharmacokinetics of VPA, a dataset

was constructed using Monte Carlo simulation, to develop an XGBoost model

to estimate the steady-state concentrations (Css) of VPA. We utilized SHapley

Additive exPlanation (SHAP) values to interpret the prediction model, and

calculated estimates of VPA exposure in four assumed scenarios involving

different combinations of CYP2C19 genotypes and co-administered

antiepileptic drugs. To develop an easy-to-use model in the clinic, we built

a simplified model by using CYP2C19 genotypes and some noninvasive clinical

parameters, and omitting several features that were infrequently measured or

whose clinically available values were inaccurate, and verified it on our

independent external dataset.

Results: After data preprocessing, the finally generated combined dataset was

divided into a derivation cohort and a validation cohort (8:2). The XGBoost

model was developed in the derivation cohort and yielded excellent

performance in the validation cohort with a mean absolute error of 2.4 mg/

L, root-mean-squared error of 3.3 mg/L, mean relative error of 0%, and

percentages within ±20% of actual values of 98.85%. The SHAP analysis

revealed that daily dose, time, CYP2C19*2 and/or *3 variants, albumin, body

weight, single dose, and CYP2C19*1*1 genotype were the top seven

confounding factors influencing the Css of VPA. Under the simulated dosage

regimen of 500mg/bid, the VPA exposure in patients who hadCYP2C19*2 and/

or *3 variants and no carbamazepine, phenytoin, or phenobarbital treatment,
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was approximately 1.74-fold compared to those with CYP2C19*1/*1 genotype

and co-administered carbamazepine + phenytoin + phenobarbital. The

feasibility of the simplified model was fully illustrated by its performance in

our external dataset.

Conclusion: This study highlighted the bridging role of ML in big data and

pharmacometrics, by integrating covariates derived from different popPK

models.

KEYWORDS

machine learning, covariate, population pharmacokinetic, valproic acid, therapeutic
drug monitoring, XGBoost, shap, Monte Carlo simulation

1 Introduction

Model-informed precision dosing (MIPD), an emerging,

modern approach for individualizing drug therapy, involves

various mathematical modeling methods (e.g.,

pharmacometrics) to integrate multidimensional patient-level

data (Darwich et al., 2021). In particular, machine learning

(ML), as a new promising data-driven tool in MIPD, has

attracted considerable attention recently (Kluwe et al., 2021).

For example, a previous study by us proved the feasibility of ML

algorithms for predicting the dose-adjusted concentrations of

lamotrigine for personalized dose adjustment (Zhu et al., 2021a).

Although a lot of related work has been conducted to directly

predict drug concentration or drug dose using ML-based

strategies (Jovanović et al., 2015; Huang et al., 2021a; Zheng

et al., 2021), the integration of model-informed and data-driven

approaches is critical (Kluwe et al., 2021).

Fortunately, research collaborations among experts in

different fields are advancing the integration of these

approaches. Tang et al. (2021) reported a combined

population pharmacokinetic (popPK) and ML approach,

which had more accurate predictions of individual clearances

of renally eliminated drugs in neonates and could be used to

individualize the initial dosing regimen. Bououda et al. (2022)

also suggested that ML could be used in combination with

standard popPK approaches to increase confidence in the

predictions of vancomycin exposure. Ogami et al. (2021)

developed a model by applying artificial neural networks for

predicting the time-series pharmacokinetics of cyclosporine A,

which showed higher prediction accuracy than the conventional

popPK model. Woillard et al. (2021a) developed an eXtreme

gradient boosting (XGBoost) model allowing accurate estimation

of the area under the curve (AUC) of tacrolimus based on only

two or three concentrations with excellent performance, better

than that of deterministic pharmacokinetic models with Bayesian

estimation. However, the major limitation to developing such

accurate ML models is the availability of large databases on drug

concentration-time profiles, which can be solved by using

simulation methods such as Monte Carlo (MC) simulation

(Woillard et al., 2021b). MC simulation results in estimations

of the possible outcomes by expanding the sample size, in light of

probability distributions of the relevant parameters as inputs in a

model (Zhu et al., 2021b). This technique has been used for

popPK models to determine remedial dosing recommendations

for non-adherent patients (Wang et al., 2020; Liu et al., 2021).

Another study by Sibieude et al. (2021) appliedML as a fast initial

covariate screening strategy and then utilized more traditional

pharmacometrics approaches to build a final satisfying model to

assess the clinical relevance of selected covariates and make

predictions in different populations and scenarios. Thus,

pharmacometrics can partner with ML to advance clinical

data science by strongly decreasing computational costs for

analyzing clinical datasets (Koch et al., 2020; Sibieude et al.,

2021). Nevertheless, to the best of our knowledge, few studies

have explored integrating covariates derived from different

popPK models using ML. Our study, therefore, fills this gap.

Valproic acid (VPA) is a widely used drug for the treatment

of bipolar disorder, particularly for acute mania, and multiple

seizure types such as generalized tonic-clonic seizures (Hakami,

2021; Kishi et al., 2022). As a narrow therapeutic index drug, it is

characterized by high pharmacokinetic variability (Johannessen

and Johannessen, 2003). Various popPK models of VPA in

Chinese patients have been constructed in recent years, to

explore personalized VPA dosing and its variability patterns

(Xu et al., 2018; Zang et al., 2022a). However, the covariates

that influence the VPA pharmacokinetics varied between these

models. Therefore, it is necessary to investigate the

comprehensive impacts of these potential factors on VPA

pharmacokinetics using our established XGBoost model.

The XGBoost algorithm, one of the best-known ensemble

techniques, was originally developed by Chen and Guestrin

(2016). It is based on the basic idea of boosting and serves as

an extension to gradient boosted decision trees (GBDT),

where the decision trees are built serially and each tree

tries to minimize the error made by the previous one

(Yaman and Subasi, 2019). Several innovations have been

made to the XGBoost algorithm, including parallel tree

boosting and approximate greedy search (Chen and

Guestrin, 2016). Therefore, it can simultaneously reduce

the model bias and variance (Cao et al., 2010). This state-
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of-the-art ML algorithm has been gradually applied to deal

with predictions of therapeutic drug monitoring (TDM)

values, drug dose, and drug exposure to specific

medications (Huang et al., 2021a; Guo et al., 2021;

Bououda et al., 2022). The details of the differences

between the XGBoost and GBDT algorithms are given in

the section titled “An introduction to XGBoost algorithm.”

In this study, our objective was to integrate covariates derived

from different popPK models of VPA using the XGBoost

algorithm, interpret our proposed model based on the

SHapley Additive exPlanations (SHAP) analysis (Lundberg

and Lee, 2017), and evaluate the combined effects across

multiple covariates (i.e., CYP2C19 genotypes and co-

administered enzyme-inducing antiepileptic drugs) in terms of

VPA exposure by assuming four scenarios. Furthermore, for easy

clinical use, we built a simplified model by using only CYP2C19

genotypes and some noninvasive clinical parameters, and

omitting several features (similar to the practices in the

ablation experiment) that were infrequently measured during

TDM [e.g., albumin (ALB)], or whose clinically available values

were inaccurate [e.g., blood sampling time (t)]. We evaluated this

simplified model on our independent external dataset. An easy-

to-use web application based on the simplified model was then

designed as a real-time tool to support clinical decisions

for MIPD.

2 Materials and methods

2.1 Data source and dataset construction

Generally, the predictability of different popPK models

when extrapolated to other clinical centers might remain to be

compared (Lv et al., 2021). An external validation study based

on published VPA models by Zang et al. (2022b) suggested

that the absence of children, Asian ethnicity, one-

compartment models, and inclusion of the covariates body

weight (BW) and VPA dosage, were the most important

factors contributing to good performance in their Chinese

dataset. This indicates that the selection of published popPK

models of VPA is vital in our study, and priority may be given

to these models that include the abovementioned factors.

Moreover, glucuronidation and β-oxidation in the

mitochondria are the major routes of VPA metabolism in

humans (Ghodke-Puranik et al., 2013), and cytochrome P450

2C9 (CYP2C9) is the most significant cytochrome P450 (CYP)

enzyme that mediates the oxidation of VPA considered a

minor route of its metabolism (Ho et al., 2003; Ghodke-

Puranik et al., 2013). Nevertheless, cytochrome P450 2C19

(CYP2C19) also participates in VPA metabolism (Hiemke

et al., 2018; Song et al., 2022). Multiple studies reported

that CYP2C19 polymorphisms/genotypes significantly

influenced the pharmacokinetic variability of VPA in

Chinese Han subjects (Jiang et al., 2009; Guo et al., 2020;

Wang et al., 2021). Given the limitations of the genetic test

items in our hospital (no CYP2C9 genotype testing), the

reported references about the impact of CYP2C19

polymorphisms on VPA, and the goal of validation of the

simplified XGBoost model using our external dataset, we

selected two previously published popPK models of VPA in

Chinese epileptic patients for simulations [i.e., Model-A

including the covariate CYP2C19 genotypes (Guo et al.,

2020) and Model-B including the covariates BW and daily

dose of VPA (Daily Dose) (Lin et al., 2015)], both of which

involved one-compartment models and Chinese epileptic

patients aged 14 years and above. The detailed descriptions

of the two studies are listed in Table 1.

A general overview of our implementation of

pharmacometric models to ML models in this study is

shown in Figure 1. The population parameters, namely, the

rate of absorption (ka), the apparent volume of distribution

(Vd), and the total serum clearance (CL), of Model-A and

Model-B, were used to simulate the individual steady-state

concentrations (Css) of VPA, whose concentration-time

profiles have been described by a one-compartment model,

described as follows:

Css(kaj, tj, Vdj, CLj, X0j, τj) � kaj · F ·X0j

Vdj · kaj − CLj
·⎛⎜⎜⎜⎜⎝ e

−CLj ·tj
Vdj

1 − e
−CLj ·τj

Vdj

− e−kaj ·tj

1 − e−kaj ·τj
⎞⎟⎟⎟⎟⎠

where Css(kaj, tj, Vdj, CLj, X0j, τj), kaj, Vdj, CLj, X0j, and τj are

the Css of VPA (mg/L) at the blood sampling time tj (h), the ka
(h−1), theVd (L), the CL (L/h), a single dose (mg), and the dosing

interval (h) for an individual j, respectively, F is the absolute

bioavailability (%).

To determine a clear relationship between the features and

the simulated outcomes without noise,Vdjand CLj are calculated

using the following formulas without considering their inter-

individual random effects (Mould and Upton, 2013):

Vdj � Vdpop

CLj � CLpop

where Vdpop and CLpop represent the typical population values of

Vd and CL, respectively.

The parameter ka is fixed at 2.38 h−1 and 1.90 h−1 in Model-A

and Model-B, respectively; that is to say, kaj equals ka. F is

assumed to be one because the absolute systemic availability of

VPA was found to be complete for all commonly used

formulations (Gugler and von Unruh, 1980; Romoli et al.,

2019). For Model-A, the covariates acting on Vdpop included

gender, those acting on CLpop included CYP2C19 genotypes and

ALB, while the covariates included in Model-B were BW, which
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influences both Vdpop and CLpop, the Daily Dose, and cotherapy

with enzyme-inducing antiepileptic drugs [including

carbamazepine (CBZ), phenytoin (PHT), and phenobarbital

(PB)] that influence CLpop. The related parameters in these

models for the dataset simulation process are summarized in

Table 2.

The constructed dataset combined two simulated datasets,

i.e., Dataset-A and Dataset-B, derived from Model-A and

Model-B, respectively. For Dataset-A, four scenarios

(i.e., CYP2C19*1/*1 + male, CYP2C19*1/*1 + female,

CYP2C19*1/*2 or *1/*3 or *2/*3 or *2/*2 or *3/*3 + male,

and CYP2C19*1/*2 or *1/*3 or *2/*3 or *2/*2 or *3/*3 + female)

were considered for simulating overall 20,000 virtual patients

(in equal proportion, namely, simulating 5,000 virtual patients

for each scenario). For each scenario, BW and ALB were

simulated using normal distributions with mean ± standard

deviation (SD) of (66.5 ± 12.1) kg and (38.9 ± 6.4) g/L,

respectively, obtained from Model-A (see Table 2). For

Dataset-B, a total of seven scenarios for different types of

concomitant medication were simulated, including

combinations with CBZ, PHT, PB, CBZ + PHT, CBZ + PB,

PHT + PB, and CBZ + PHT + PB, and for each type,

2,000 virtual patients were generated, whose BW (kg)

followed a normal distribution with 60.2 mean and an SD

of 12.5, taken from Model-B (see Table 2). Dosing regimens

were presumed to be the same in both models, as follows:

X0j ∈ {125, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900}(mg)

τj ∈ {6, 8, 12, 24}(h)

where X0j and τj were sampled at random with the probability

equal to 1/15 and 1/4, respectively. tj was assumed to have a

uniform distribution of values between 0 and τj h.

Subsequently, MC simulations resulted in 20,000 and

14,000 individual values of Css for Dataset-A and Dataset-B,

respectively. Notably, types of concomitant medication (i.e., co-

administered CBZ/PHT/PB) as a new feature, the values of which

were “None,” was added in the generated Dataset-A because drugs

that affect VPA concentrations had been excluded in Model-A;

similarly, CYP2C19 genotypes, as a new feature with values

“Unknown,” were added in the generated Dataset-B owing to the

unknown distributions of the values of this covariate (i.e., the

proportions of the genotypes CYP2C19*1/*1, CYP2C19*1/*2,

CYP2C19*1/*3, etc.). This was also not included in Model-B.

However, gender and ALB, both of which were not covariates for

Model-B, were set to null as new features in the generated Dataset-B

due to their missing value imputation. To obtain less noise, filters

were applied to both models to remove Css higher than 150mg/L to

obtain a range of values compatible with observed data reported in

the original articles (Woillard et al., 2021b), resulting in 14,509 and

11,664 Css values retained in the finally generated Dataset-A and

Dataset-B, respectively. Moreover, to ensure high-quality data

containing as much useful information as possible to facilitate the

TABLE 1 Descriptions of the two studies about Model-A and Model-B.

Items Model-A (Guo et al., 2020) Model-B (Lin et al., 2015)

Study design A prospective study A prospective study

Subjects Chinese patients with seizures aged ≥18 years old in General Hospital of
Taiyuan Iron and Steel (Group) Corporation (TISCO)

Chinese epileptic patients with normal liver and renal functions and
14 years of age or older in Huashan Hospital (Shanghai), Changzheng
Hospital (Shanghai), Children’s Hospital (Shanghai), Tiantan Hospital
(Beijing), and Brain Hospital (Nanjing)

Sample collection Steady-state VPA serum concentration data were collected from January
to December 2018

VPA serum samples at a steady state before the morning dose were
collected between 1 October 1998, and 31 October 2003

Model description One-compartment model One-compartment model

Number of patients 60 199

Number of
measurements

98 247

Age (years) 60 ± 11.8 (22–88) 26.6 ± 11.7 (14–66)

Gender (male/
female)

44/16 114/85

Daily dose of
VPA (mg)

500 (200–1,200) 884.5 ± 317.7 (250–1800)

VPA concentration
(mg/L)

<150 61.9 ± 26.8 (3.2–140.3)

Formulation of VPA Standard VPA dosing regimens (i.e., oral: 500 mg [immediate release
tablets/solutions], twice per day; intravenous: 400 mg, twice per day)

VPA was prescribed 1–4 times a day and was administered orally in the
forms of sustained-release tablets (Depakine, Sanofi-Aventis
Pharmaceutical Ltd., Hangzhou, China) or conventional tablets (Hunan
Xiangzhong Pharmaceutical Ltd., China)

Concomitant
medications

Other medications that affect VPA concentrations were excluded (e.g.,
phenobarbital, carbamazepine, meropenem, imipenem, etc.)

Carbamazepine, phenytoin, phenobarbital, topiramate, and clonazepam
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FIGURE 1
The workflow from pharmacometrics models tomachine learning (ML) models mainly involves three parts: 1) data acquirement from published
pharmacokinetic studies, 2) the construction of the combined dataset via Monte Carlo (MC) simulation and a series of data cleaning process, and 3)
ML-based predictive modelling based on the finally generated combined dataset.
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training and test of the ML models, for the combined dataset in

26,173 × 13 matrix format [i.e., 26,173 simulated input–output data

pairs (Dataset-A: Dataset-B = 14,509: 11,664)], we used the k-nearest

neighbor imputation for gender and ALB. Both had 44.57% (11,664/

26,173 × 100%) missing data (Beretta and Santaniello, 2016). We

used one-hot encoding for categorical variables (Lopez-Arevalo et al.,

2020), and min-max normalization for continuous feature variables,

and then omitted the features with attributes of “Unknown,” “None,”

and “Female” after one-hot encoding for theCYP2C19 genotypes, co-

administered CBZ/PHT/PB, and gender (considering the increased

dimensionality of the dataset and the issue of collinearity because one

of the categories could be completely generated from the others). We

also omitted the pharmacokinetics-related features that are not easily

available in the clinic (including ka, Vd, and CL). The combined

dataset was finally generated after data preprocessing, including

26,173 Css values and 16 features (i.e., Single Dose, BW, ALB, t,

τ, Daily Dose, CYP2C19*1/*1, CYP2C19*2 and/or *3 variants

(i.e., CYP2C19*1/*2 or *1/*3 or *2/*2 or *2/*3 or *3/*3), Male, Co-

administered CBZ, Co-administered PHT, Co-administered PB, Co-

administered CBZ + PHT, Co-administered CBZ + PB, Co-

administered PHT + PB, and Co-administered CBZ + PHT +

PB). Among these 16 features, the values of the categorical

variables were one (=yes) or zero (=no). The process of dataset

construction is shown in Figure 1.

2.2 An introduction to the XGBoost
algorithm

XGBoost, a gradient-boosting framework, was developed by

a team led by Chen Tianqi at the University of Washington

(Chen and Guestrin, 2016). It is an effective tool for tackling

classification and regression problems using tabular data.

Compared with GBDT, XGBoost uses a series of

optimizations (Li et al., 2019; Chen et al., 2020). An

important aspect is the application of an additional

regularization term to the loss function to prevent overfitting.

The objective function (L) of XGBoost is calculated as:

L � ∑
i

l( ŷi, yi) +∑
k

Ω(fk)
where l is the loss function representing the error between the

actual values (yi) and the predicted values (ŷi), and Ω(fk) is the
regularized term, defined as:

Ω(fk) � γT + 1
2
λ‖ω‖2

where Τ and ω represent the number of leaves in the tree and the

corresponding weight of different leaves of each tree, respectively,

and γ and λ are the regularized parameters that penalize Τ and ω,

respectively.

Moreover, the second-order Taylor expansion of L can more

efficiently fit the error. For the t-th iteration, L(t) is:T
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L(t) ≃ ∑
i

[l(yi, ŷ
(t−1)
i + gift(xi) + 1

2
hif

2
t(xi))] + Ω(ft)

where gi � zŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi � z2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) are the

first- and second-order gradients, respectively.

Subsequently, other calculations were used to determine

the optimal split node by using the information gain of L. This

is another algorithmic innovation. Gain denotes the gain for

each split of the tree. It is used to evaluate the candidate splits,

and is given by:

Gain � 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(∑i ∈ IL
gi)2∑i∈ILhi + λ

+ (∑i ∈ IR
gi)2∑i∈IRhi + λ

− (∑i ∈ Igi)2∑i∈Ihi + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − γ

where IL and IR represent the instance sets of the left and right

nodes after the split, respectively, and I � IL ∪ IR.

XGBoost has a multitude of hyperparameters. The optimal

choice of the following key hyperparameters may yield the

best performance by the model:

1) n_estimators: This represents the total number of trees.

Too small or too large a value of n_estimators may lead to

underfitting or overfitting, respectively.

2) max_depth: It is the maximum depth of the tree. Increasing

max_depth will make the model more complex and lends it

a stronger fitting ability. However, a large value is likely to

cause it to overfit the data.

3) min_child_weight: It represents the minimum number of

samples that a node can represent in order to be

split further. We can increase this value to reduce

overfitting.

4) gamma: It is a regularization parameter that denotes the

minimum reduction in loss at every split. The

larger gamma is, the more conservative the algorithm is,

the smaller is the number of leaves that the tree has, and

therefore, the lower is the complexity of the model.

5) colsample_bytree: It denotes the subsample ratio of columns

(i.e., the rate of feature sampling) when constructing each

tree, and controls overfitting.

6) subsample: It is the subsample ratio of the training instances.

Increasing this value makes the algorithm more conservative

and the model more likely to underfit.

7) learning_rate: It is the shrinkage in step size used in updates to

prevent overfitting. Reducing the weight of each step makes

the model more robust.

2.3 Model development and evaluation

The finally generated combined dataset in 26,173 × 17 matrix

format was randomly divided into two parts, the derivation cohort

formodel selection and the development of the XGBoost model, and

the validation cohort for its evaluation (an 8: 2 ratio). Before using

the XGBoost algorithm, 10-fold cross-validation was applied to the

derivation cohort to assess the performance of the XGBoost model,

and other tree-based and non-tree-based models, including random

forest regression (RFR), bagging regression (BR), gradient-boosted

regression (GBR), decision tree regression (DTR), AdaBoost

regression (ABR), and multiple linear regression (MLR). We used

their default settings for the hyperparameters.

K-fold cross-validation involves 1) splitting the derivation

cohort into K folds, 2) starting by using K-1 folds as the training

set and the remaining one fold as the test set, 3) training the

model on the training set and testing it on the test set, 4) saving

the test score, 5) repeating steps 2–4 for K iterations, and 6)

comparing the performance of the models by using the average

cross-validation score [mean absolute error (MAE), used as the

evaluation metric in this study] in the test sets across all K folds

(Kalagotla et al., 2021).

The metrics used to evaluate the performance of the

developed XGBoost model on the validation cohort were the

MAE, root-mean-squared error (RMSE), mean relative error

(MRE), and ideal rate (IR, i.e., percentages within ±20% of

actual values), defined as follows:

MAE � ∑N
i�1(ŷi − yi)

N

RMSE �
������������∑N

i�1(ŷi − yi)2
N

√
MRE(%) � ∑N

i�1(ŷi − yi)/yi

N
× 100%

IR(%) � Npredicted valueswithin ±20% of actual vaules

Ntotal actual vaules
× 100%

where ŷi and yi denote the predicted and actual values,

respectively.

2.4 Model interpretation

The SHAP analysis was utilized to provide interpretability

to the proposed XGBoost model, which is generally criticized

as a ‘black-box’ model due to its complexity. The main

advantages of SHAP inspired by cooperative game theory

(Štrumbelj and Kononenko, 2014), are that it is model

agnostic, easy to use, and straightforward to interpret the

feature contributions at global and local levels, as well as the

interactions among these features (Li et al., 2020). The

contribution of each feature on the model output associated

with each predicted sample is allocated according to their

marginal contribution (Shapley, 1953), and can be determined

by the Shapley value, defined via the following formula (Yang

et al., 2021):
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ϕi(]) � ∑
S⊆{1,...,p}∖{i}

|S|!(p − |S| − 1)!
p!

(](S ∪ {i}) − ](S))

where ϕi(]) is the contribution of feature i, p is the number

of features, S is a subset of the features used in the model,

and ](S ∪ {i}) − ](S) represents the influence of feature i on

the improvement of the result (i.e., marginal contribution).

2.5 Applications of the integration of
pharmacometrics and ML models

2.5.1 Impacts of the integrated covariates on VPA
exposure

To assess the comprehensive impacts of different popPK

models-derived covariates–CYP2C19 genotypes and co-

administered enzyme-inducing antiepileptic drugs–on VPA

exposure, we used MC simulations to simulate 1,000 virtual

patients and 200 sampling times for a dosing interval (i.e., t,

uniformly distributed between 0 and 12 h) for each patient in

terms of a dosage regimen of 500 mg/bid in every assumed

scenario. A total of 16 predictors [Single Dose (set to 500 mg),

BW, ALB, t, τ (set to 12 h), Daily Dose (set to 1,000 mg),

CYP2C19*1/*1, CYP2C19*2 and/or *3 variants, Male, Co-

administered CBZ, Co-administered PHT, Co-administered PB,

Co-administered CBZ + PHT, Co-administered CBZ + PB, Co-

administered PHT + PB, and Co-administered CBZ + PHT + PB]

were simulated based on the proposed XGBoost model. Among

them, the BWandALBwere simulated as normal distributions, with

mean ± SD described in the finally generated combined dataset (see

Table 3), and the male and female patients were simulated with

equal probabilities (i.e., the probability of Male = 1 was 0.5).

A total of four scenarios were considered:

Scenario 1: Patients with CYP2C19*2 and/or *3 variants

(feature value = 1) and taking co-administered CBZ + PHT +

PB (feature value = 1).

Scenario 2: Patients with CYP2C19*1*1 genotype (feature

value = 1) and taking co-administered CBZ + PHT + PB (feature

value = 1).

Scenario 3: Patients with CYP2C19*2 and/or *3 variants

(feature value = 1) and NOT taking co-administered CBZ,

PHT, or PB (feature values of all co-administered drug

predictors = 0).

Scenario 4: Patients with CYP2C19*1*1 genotype (feature

value = 1) and NOT taking co-administered CBZ, PHT,

or PB (feature values of all co-administered drug

predictors = 0).

All predictors except for t were considered to be constant

for each virtual patient. Therefore, these static values were

replicated across t, resulting in tabular data in which each

scenario had 1,000 × 200 samples for predictions of Css by

using our proposed XGBoost model. The concentration-time

profiles were then plotted for all scenarios using the two

visualization libraries matplotlib and seaborn. The VPA

exposures [i.e., AUC0→12h (mg・h/L)] in the

aforementioned scenarios were obtained using the

trapezoidal rule by dividing the curve’s total area into small

trapezoids rather than dividing it into small rectangles

(Woillard et al., 2021b), and the average Css ( �Css) (mg/L)

was calculated as follows:

�Css � AUC0→12h/12
Both AUC0→12h and �Css were calculated in Python by using

the numpy package.

TABLE 3 Simulated patient characteristics in the finally generated combined dataset (N = 26,173).

Continuous data Value [(mean ± SD)
or median (min–max)]

Categorical data Distribution [n (%)]

Css (mg/L) 73.7 ± 37.2 Male 7,237 (27.65%)

BW (kg) 64.3 ± 12.4 CYP2C19*1/*1 8,358 (31.93%)

ALB (g/L) 37.9 ± 5.6 CYP2C19*2 and/or *3 variants 6,151 (23.50%)

Daily Dose (mg) 900 (125–3,600) Co-administered CBZ 1,636 (6.25%)

Single Dose (mg) 450 (125–900) Co-administered PHT 1,529 (5.84%)

t (h) 5.57 (0–24) Co-administered PB 1,421 (5.43%)

τ (h) 12 (6–24) Co-administered CBZ + PHT 1,854 (7.08%)

Co-administered CBZ + PB 1,735 (6.63%)

Co-administered PHT + PB 1,652 (6.31%)

Co-administered CBZ + PHT + PB 1,837 (7.02%)

Note: Css denotes the steady-state concentrations of VPA, t denotes the blood sampling time, and τ denotes the dosing interval.
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2.5.2 Model simplification to develop an easy-
to-use MIPD tool

In clinical practice, a balance needs to be struck between the

performance of the ML model and its ease of use. The ideal ML

models are those that have as few predictors as possible (and perhaps

should be easily available in the clinic) while delivering high

performance. In this study, we aimed to build a simplified

XGBoost model to develop an easy-to-use MIPD tool.

Considering that the values of some predictors were missing

owing to infrequent measurements during TDM (e.g., ALB) or

were inaccurate clinical data (e.g., inappropriate sampling time in

the TDM practice and irregular single doses or dosing intervals in

the prescriptions) (Jakobsen et al., 2017; Firman et al., 2021), we built

a simplified model by omitting these types of features (i.e., Single

Dose, ALB, t, τ) in the final, combined dataset. We developed an

easy-to-use model in the clinic by using only CYP2C19 genotypes

and some noninvasive clinical parameters as predictors, and

observed the influence of the omitted predictors on the

performance of the proposed XGBoost model. Finally, we

optimized the hyperparameters via the sklearn’s own grid search

approach using the evaluation metric of MAE and tenfold cross-

validation (Radzi et al., 2021), and verified this simplifiedmodel after

optimization in our independent external dataset, which consisted of

105 input-output data pairs retrospectively collected from our

routine TDM practice according to guidelines of the Ethics

Committee of the Affiliated Brain Hospital of Guangzhou

Medical University approval ([2021] NO.027). The inputs to the

external dataset were the same as those of the finally generated

combined dataset with Single Dose, ALB, t, and τ omitted. They

consisted of CYP2C19*1/*1, CYP2C19*2 and/or *3 variants, Daily

Dose, BW,Male, Co-administered CBZ, Co-administered PHT, Co-

administered PB, Co-administered CBZ + PHT, Co-administered

CBZ + PB, Co-administered PHT + PB, and Co-administered CBZ

+ PHT + pB. The external dataset is described in Table 4.

We designed an easy-to-use web application based on the

simplified optimum XGBoost model to realize real-time

estimations of values of Css of the VPA by automatically

crawling information on the model inputs from the electronic

health record (EHR) system.

2.6 Implementation

All the analyses were performed in Python using the Jupyter

notebook. Libraries sklearn, XGBoost, pandas, numpy, scipy,

matplotlib, seaborn, palettable, and shap, were used for

implementation.

TABLE 4 Descriptions of our external dataset.

Items Value

Number of patients 56

Total number of measured steady-state VPA concentrations 105

Average TDM measurements per patient 1.88

Age (years, mean ± SD) 34.48 ± 13.10

BW (kg, mean ± SD) 63.82 ± 11.48

Gender

Male 42

Female 14

The number of patients with the CYP2C19 genotype of

CYP2C19*1/*1 22

CYP2C19*1/*2 26

CYP2C19*1/*3 4

CYP2C19*2/*2 1

CYP2C19*2/*3 3

Daily dose [mg, median (min–max)] 1,000 (250–2000)

Css (mg/L) 87.3 ± 22.8

Note: All patients did not take co-administered CBZ/PHT/PB.

FIGURE 2
Histogram (A) and probability plot (B) of the simulated Css of VPA.
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3 Results

3.1 Simulation and data

Figure 2A shows the histogram of the simulated Css of VPA,

whose probability plot indicated a normal distribution (R2 =

0.9660) (Figure 2B). Figure 3 shows a heat map of the Pearson’s

correlation coefficients between the Css of VPA and features,

indicating that “Daily Dose” and “τ” were the most important

positive and negative predictors correlated with Css, respectively,

and no obvious multi-collinear relationships were observed

between the features. The characteristics of the simulated

patients in the finally generated combined dataset are shown

in Table 3.

3.2 XGBoost model

Table 5 shows the overall comparison of the regression

models in the derivation cohort. The lowest average MAE

value of the XGBoost model in the test sets indicated that it

was superior to the other tree-based and non-tree-based models

considered. As is presented in Table 6, the proposed XGBoost

model delivered excellent performance on the validation cohort,

illustrated by an MAE of 2.4 mg/L, RMSE of 3.3 mg/L, MRE of

0%, and IR of 98.85%, respectively.

3.3 SHAP analysis

Figure 4A shows the SHAP summary plot that orders all

predictors according to their feature importance to detect the

features which have high contributions to the Css of VPA.

Among these features, Daily Dose was ranked first, followed

by t, CYP2C19*2 and/or *3 variants, ALB, BW, Single Dose, and

CYP2C19*1/*1. Moreover, higher SHAP values of a feature

indicated higher Css of VPA, and vice versa. The colored dots

determined the direction of influence, i.e., the higher the input

value of a feature, the higher the Css of VPA, when red dots were

in the positive range of SHAP values. Likewise, Figure 4B shows

the hierarchical feature clustering of the SHAP bar plot that sorts

the feature importance values of each cluster and subcluster to

show the most important features at the top. The global

importance of the predictors was calculated according to the

FIGURE 3
Heat map of Pearson’s correlations between Css of VPA and features.
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TABLE 6 Comparisons of the performance of the proposed models on the validation cohort and the independent external dataset.

Datasets Models Descriptions of models Evaluation metrics

Selected features Hyperparameters MAE
(mg/L)

RMSE
(mg/L)

MRE
(%)

IR
(%)

Validation
cohort (N =
5,235)

XGBoost model Single Dose, BW, ALB, t, τ, Daily
Dose, CYP2C19*1/*1, CYP2C19*2
and/or *3 variants, Male, Co-
administered CBZ, Co-administered
PHT, Co-administered PB, Co-
administered CBZ + PHT, Co-
administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

Default settings 2.4 3.3 0 98.85

Simplified
XGBoost model

BW, Daily Dose, CYP2C19*1/*1,
CYP2C19*2 and/or *3 variants, Male,
Co-administered CBZ, Co-
administered PHT, Co-administered
PB, Co-administered CBZ + PHT,
Co-administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

Default settings 11.2 14.7 5 68.00

Simplified
XGBoost model
after optimization

BW, Daily Dose, CYP2C19*1/*1,
CYP2C19*2 and/or *3 variants, Male,
Co-administered CBZ, Co-
administered PHT, Co-administered
PB, Co-administered CBZ + PHT,
Co-administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

n_estimators: 20, max_depth: 6,
min_child_weight: 5, gamma: 0,
colsample_bytree: 1.0, subsample: 1.0,
learning_rate: 0.3

11.0 14.4 5 69.11

External
dataset
(N = 105)

Simplified
XGBoost model
after optimization

BW, Daily Dose, CYP2C19*1/*1,
CYP2C19*2 and/or *3 variants, Male,
Co-administered CBZ, Co-
administered PHT, Co-administered
PB, Co-administered CBZ + PHT,
Co-administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

n_estimators: 20, max_depth: 6,
min_child_weight: 5, gamma: 0,
colsample_bytree: 1.0, subsample: 1.0,
learning_rate: 0.3

16.5 20.1 13 60.00

TABLE 5 The mean absolute error (MAE) at 95% confidence interval (CI) for the prediction of the value of Css of VPA in the derivation cohort for the
XGBoost and other regression models.

Models Training set Test set

MAE (mg/L) (+/-) 95% CI of
MAE (mg/L)

MAE (mg/L) (+/-) 95% CI of
MAE (mg/L)

XGBR 1.7 0.1 2.5 0.1

RFR 1.2 0 3.1 0.2

BR 1.5 0 3.5 0.2

DTR 0 0 5.1 0.3

GBR 6.0 0.1 6.2 0.2

MLR 10.2 0 10.2 0.4

ABR 14.1 0.3 14.2 0.7
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mean absolute SHAP values [mean (|SHAP value|)] of each

feature over all instances (rows) of the finally generated

combined dataset. SHAP can also explain individual

predictions. Figure 4C shows the SHAP heat map of the top

1,000 instances extracted from the dataset. It ordered samples by

using supervised clustering, and this resulted in samples that had

the same model outputs, for the same reason for which they were

grouped together. Figure 4D shows the applicability of the

proposed XGBoost model on a single sample randomly

selected from these 1,000 instances, where the highest

contribution to the Css of VPA is the Daily Dose (feature

value = 0.338) and CYP2C19*2 and/or *3 variants (feature

value = 0), and was generally not in agreement with the

results of the global interpretations of the SHAP summary

plot analysis. It indicated the potential difference in the

rankings of the contributions of the features at the individual

level. The SHAP dependence plots of the top seven key features

are displayed in Figure 5, to show how a feature affected theCss of

VPA. Nonlinear associations between features (e.g., t) and theCss

of VPA were observed. The results showed that higher Daily/

Single Dose and ALB, lower BW, and CYP2C19*2 and/or *3

variants, were related to higher Css of VPA.

FIGURE 4
(A). SHAP summary plot. From it, we can get an initial sense of the relationship between the value of a certain feature and its impact on
prediction. Each point represents an instance and a Shapley value for a feature. Its position on this plot is determined by the feature on the y-axis
(ordered by feature importance) and the Shapley value on the x-axis, while its color is determined by the value of the feature. A higher SHAP value
corresponds to a higher Css of VPA, and vice versa. (B) SHAP bar plot obtained by using feature clustering, from which we can simultaneously
visualize the structure of the clustering and the importance of the features. The numbers on the histograms represent the mean (|SHAP value|) of a
feature. SHAP analysis can also explain individual predictions, illustrated by (C–D). (C) SHAP heat map, with the top 1,000 instances on the x-axis and
the model inputs on the y-axis. The SHAP values encoded on a color scale. The model outputs are shown above the heatmap matrix and centered
around the dotted gray baseline. The global importance of each feature is shown as a black bar plot on the right-hand side of the plot. (D)Waterfall
plot that explains a single prediction of the sample randomly selected from the 1,000 instances by visualizing how to obtain the final prediction with
the SHAP values of each feature. The bottom of the plot starts as expected, and then each row shows how the positive (red) or negative (blue)
contribution of each feature moves the value from the expected output of the model, under the background distribution of the dataset, to its final
prediction. The value of each feature for this sample appears in gray text before the feature name.
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3.4 Impacts of covariates on VPA exposure

Figure 6 shows the comprehensive impacts of CYP2C19

genotypes and co-administered enzyme-inducing

antiepileptic drugs on the Css of VPA under the dosage

regimen of 500 mg/bid, by simulating four scenarios using

the XGBoost model. The simulated AUC0→12h values at a

steady-state calculated by the trapezoidal rule and the

corresponding �Css values are listed in Table 7. Our results

showed that patients who had the CYP2C19*2 and/or *3

FIGURE 5
The SHAP dependence plots of features that ranked higher according to their importance ranking. From the scatter plots, we can see the exact
form of the relationships between a single feature and the predictions made by the model.

FIGURE 6
Simulated Css of VPA plotted by using four dosing intervals at the dosage regimen of 500 mg/bid in different scenarios based on the proposed
XGBoost model. The numbers of virtual patients at each time point is 1,000. The blue, orange, green, and red line denotes scenario 1 (patients with
CYP2C19*2 and/or *3 variants, and taking co-administered CBZ + PHT + PB), scenario 2 (patients with CYP2C19*1*1 genotype, and taking co-
administered CBZ + PHT + PB), scenario 3 (patients with CYP2C19*2 and/or *3 variants, and not taking co-administered CBZ, PHT, or PB), and
scenario 4 (patients withCYP2C19*1*1 genotype, and not taking co-administered CBZ, PHT, or PB), respectively. The shaded area represents the 95%
confidence interval.
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variants and did not receive CBZ, PHT, or PB, had more VPA

exposure [AUC0→12h: (1,187.5 ± 183.5) versus (683.4 ± 103.7)

mg·h/L, approximately 1.74-fold] and more �Css [(99.0 ± 15.3)

versus (56.9 ± 8.6) mg/L] than those of individuals with

CYP2C19*1/*1 genotype and co-administered CBZ +

PHT + PB.

3.5 Performance of the simplified models

The simplified XGBoost model by omitting the features of

Single Dose, ALB, t, and τ, yielded reduced performance on the

validation cohort, with an MAE of 11.2 mg/L, RMSE of 14.7 mg/

L, MRE of 5%, and IR of 68.00%, respectively; whereas, its

TABLE 7 Simulated steady-state area under the curve from time zero
to 12 h (AUC0→12h) and the corresponding average Css ( �Css) values
of VPA under the dosage regimen of 500 mg/bid in terms of four
different scenarios based on the XGBoost model.

Scenarios AUC0→12h (mg·h/L) �Css (mg/L)

Scenario 1 1,093.3 ± 170.2 91.1 ± 14.2

Scenario 2 683.4 ± 103.7 56.9 ± 8.6

Scenario 3 1,187.5 ± 183.5 99.0 ± 15.3

Scenario 4 765.4 ± 117.0 63.8 ± 9.8

Note: Scenario 1 denotes patients with CYP2C19*2 and/or *3 variants and taking co-

administered CBZ + PHT + PB), Scenario 2 denotes patients with CYP2C19*1*1

genotype and taking co-administered CBZ + PHT + PB, Scenario 3 denotes patients

with CYP2C19*2 and/or *3 variants and NOT taking co-administered CBZ, PHT, or PB,

and Scenario 4 denotes patients with CYP2C19*1*1 genotype and NOT taking co-

administered CBZ, PHT, or PB.

FIGURE 7
(A). Comparison of predicted and observed Css values of VPA on the independent external dataset based on the simplified optimum XGBoost
model. The range between red and green dotted lines represents +20~-20% relative errors, i.e., the predicted values within ±20% of the observed
values. (B) Residuals plot of residuals versus the predicted Css values. (C) Probability plot of the residuals. (D) Comparison of observed Css of VPA
between patients with CYP2C19*1*1 genotype and CYP2C19*2 and/or *3 variants at a dosage regimen of 500 mg/bid on our independent
external dataset. The green multiplication sign indicates the mean Css values of VPA.
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performance has since been upgraded after optimization

(Table 6). The simplified optimum XGBoost model also

obtained good performance on our independent external

dataset (Table 6). About 60.00% of predicted values fell

within ±20% of the empirical values (Figure 7A). Figure 7B

illustrates no clear patterns of the distribution of the residuals,

and Figure 7C shows the residuals were symmetrically

distributed, which meets the assumption of normality (R2 =

0.9930). In the external dataset (described in Table 4), the

mean measured Css values of VPA in scenarios 3 and 4 were

(91.4 ± 18.7) and (70.6 ± 11.3) mg/L, respectively (Figure 7D),

which were close to the predicted �Css of VPA in these scenarios

based on the XGBoost model (see Table 7). A snapshot of the

workflow of the designed web application based on the simplified

optimum XGBoost model is shown in Figure 8.

4 Discussion

ML can serve as a bridge between big data and

pharmacometrics by providing an efficient computational

approach, but the effective utilization of ML tools in

pharmacometrics modeling is still in its infancy (McComb

et al., 2022). Many attempts have been made to combine ML

and pharmacometrics to advance MIDP, such as the fast

screening of covariates in popPK models using ML. However,

the ML-based integration of covariates in different popPK

models, to our knowledge, is another potentially interesting

but unexplored application of ML in pharmacometrics.

In this work, we have first proposed an innovative approach

to integrate covariates in multiple previously published popPK

models of VPA in Chinese epileptic patients using MC

simulations to construct population-based large datasets for

ML modeling. However, several key points need to be

addressed before implementation. One is the choice of

published popPK models. As mentioned at the beginning of

the section “materials and methods,” it is important to select

suitable popPK models of VPA due to the differing predictability

within models. Another point that involves the size ratio of

simulated datasets from different popPK models, is also

noteworthy. Due to the potential differences in covariate types

in different popPK models, missing values of features are

inevitable when merging these simulated datasets from

different popPK models to construct the combined dataset for

the ML task. These features should usually occur in more than

50% of samples; otherwise, they need to be omitted (Meyer et al.,

FIGURE 8
The designed web application for real-time estimations of the value of Css of VPA based on the simplified optimum XGBoost model. The
database can be updated by integrating our simulated dataset with empirical data that are automatically crawled from the electronic health record
(EHR) system. This may enhance the self-learning and refinement of the ML model.
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2018). Hence, it is of crucial importance to determine the

partition ratio of different sub-datasets in the combined

dataset so as not to remove key covariates. Processing these

features with less than 50% missing values usually consists of

assigning “Unknown” to categorical variables, or setting them to

null for further imputation of the missing values. Furthermore,

the proportion of data simulated by using different models, as

well as the methods dealing with features with missing values,

may have an impact on explaining feature importance and the

patterns of influence. For example, an inappropriate proportion

of simulated datasets may lead to the learning of an insufficient

amount of information on the key factors by ML models.

Therefore, the appropriate construction of the combined

dataset requires incorporating expert knowledge into the ML

modeling process. In this study, we have tried to set the simulated

sub-datasets close to the same scale while considering the

percentages of missing values of features in the finally

generated combined dataset. We also have incorporated our

expert knowledge into the construction of the combined

dataset and well explained the influence of a predictor in the

XGBoost model based on the constructed combined dataset by

using explanation methods (e.g., the SHAP analysis). The last

point to consider is that, after the data cleaning process including

missing data imputation and one-hot encoding, we might have to

be concerned about multi-collinearity in features in the finally

generated combined dataset before ML modeling because

collinearity in the features may affect the performance of ML

models. The common method of dealing with this is to remove

collinearity from the feature set (Dormann et al., 2013).

Nevertheless, the decision regarding whether to retain the

features related to each other depends on their interpretation

meaning, the severity of multicollinearity, and the performance

of XGBoost models.

The ultimate prediction model established with XGBoost

achieved a good prediction precision and accuracy in the

validation cohort. The prediction behaviors of this “black-box”

model were illustrated by SHAP analysis. Our results

demonstrated that the daily dosage of VPA was the most

important variable. Other variables ranking among the top were

as follows: blood sampling time, CYP2C19*2 and/or *3 variants,

ALB, BW, single dosage of VPA, and CYP2C19*1/*1 genotype. The

SHAP dependent plots indicated the nonlinear relationships

between the Css of VPA and blood sampling time and daily/

single dosage of VPA. We intuitively found that the time to peak

plasma concentration was 1–2 h in line with previous clinical

pharmacokinetics reports of VPA (Gugler and von Unruh, 1980).

The positive influence of daily/single dosage of VPA on the Css of

VPA tended to be stable along with increased VPA dose, partly

explained by a saturable VPA protein binding status, along with a

subsequent increase in unbound VPA associated with increased CL,

as VPA is a high protein-binding drug (Lin et al., 2015; Gu et al.,

2021). The SHAP plots also showed that the Css of VPA was

positively correlated with ALB and CYP2C19*2 and/or *3 variants,

and negatively correlated with BW and CYP2C19*1/*1 genotype,

which was generally consistent with the results of our selected

popPK models (Lin et al., 2015; Guo et al., 2020). The increased

content of ALB in the blood results in less unbound VPA, thereby

decreasing the CL. CYP2C19*2 and/or *3 variants are associated

with the diminished catalytic activity of CYP2C19. Patients with

wild-type alleles forCYP2C19 are classified as extensivemetabolizers

associated with lower VPA concentrations, whereas non-extensive

metabolizers are those with loss-of-function alleles, resulting in

higher VPA exposure (Guo et al., 2020). Regarding the BW, our

finding was expected given its association with organ functionality

development responsible for drug elimination (Methaneethorn,

2018); this was in accordance with several previous studies that

reported an increase in CL and Vd with increasing BW (Correa

et al., 2008; Methaneethorn, 2017; Xu et al., 2018).

Furthermore, after covariate integration, it was necessary to

explore the comprehensive impacts of CYP2C19 genotypes and co-

administered enzyme-inducing antiepileptic drugs on VPA

exposure. Our simulations, which were well-verified by our

independent external dataset, showed that at the dosage regimen

of 500mg/bid, VPA exposure in patients withCYP2C19*2 and/or *3

variants and no co-administered CBZ, PHT, or PB, was

approximately 1.74-fold compared to those with CYP2C19*1/*1

genotype and co-administered CBZ + PHT + PB, who would

obtain �Css of (56.9 ± 8.6) mg/L, close to the lower limit of the

therapeutic reference range of VPA (50–100 mg/L) recommended

by the consensus guidelines for TDM in neuropsychopharmacology

(Hiemke et al., 2018). This indicated that in combination with CBZ

+ PHT + PB, the VPA concentration was decreased in patients with

wild-type alleles for CYP2C19, which may lead to the risk of

ineffective treatment.

We simplified the XGBoost model by omitting several

predictors that were infrequently measured during TDM (e.g.,

ALB), or whose clinical values were inaccurate (e.g., blood

sampling time), to develop a clinically easy-to-use model.

Compared with the initially proposed XGBoost model, the

reduced performance of our simplified XGBoost model indicated

the important influences of these features, particularly the blood

sampling time and ALB, on the model output. Nevertheless, a

60.00% IR of the simplified optimum XGBoost model on our

external dataset suggested its good forecasting performance,

considering the prediction accuracy of the predicted TDM

within ±30% of the actual TDM in many similar studies that

utilized XGBoost models, ranging from 40% to 75% (Huang

et al., 2021b; Guo et al., 2021; Zheng et al., 2021; Ma et al.,

2022). Based on the simplified optimum XGBoost model, we

designed an easy-to-use web application by using only CYP2C19

genotypes and some noninvasive clinical parameters as an MIPD

tool for personalized dosing adjustments. For instance, VPA is

known to have both metabolic and endocrinal side effects, and is

likely to induce weight gain, which may influence its value of Css

(Corman et al., 1997). Assuming that the effective therapeutic value

ofCss of VPAwas 80 mg/L under themaintenance of a daily dose of
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1,000 mg for a female patient with the ideal BW, adjusted dosing

regimens due to weight gain can be recommended by using our web

application to reach the target Css while ignoring the problems of

adherence and drug–drug interactions. Furthermore, compared

with the static pharmacometrics that requires new models, ML is

capable of dynamic learning and retraining (McComb et al., 2022).

The database can be updated by integrating our simulated dataset

with empirical data automatically crawled from the EHR system.

This promotes the self-learning and refinement of the model (see

Figure 8).

Despite these promising results, several limitations should be

considered. The first was the relatively small sample size of our

independent external dataset for performing model validation. In

particular, cases of co-administered CBZ/PHT/PB were lacking

due to rather few such cases. The second was that some

potential key covariates were not included owing to no related

published popPK literature. For example, combination with

carbapenems can substantially decrease serum VPA

concentrations with a mean difference of -43.98 mg/L (Chai

et al., 2021), which might cause a huge prediction bias in our

model. Future popPK research is needed to evaluate such covariates.

The third was that we could not be able to verify whether the

covariates from Model-A and Model-B were (partly) correlated or

not in the context of pharmacokinetics since they were not identified

in the same study. For example, low ALB concentrations have been

proved to be associated with weight gain (Basolo et al., 2021),

however, the exact relationship between ALB level and BW level

remains unclear among Chinese epileptic patients, thus it is difficult

to determine which level of ALB corresponds to which level of BW if

considering the covariance of the two covariates when creating a

virtual population with both covariates. Notably, our ML-based

integration approach assumes the covariates derived from different

popPK models are not correlated with each other in the context of

pharmacokinetic modeling, considering that this ML method

generally requires as many candidate influencing factors as

possible. The abundant feature information and the massive

volume of data can enhance the performance of the ML because

it is data intensive. Moreover, the weight of each feature which

presents the contribution of a feature to the final prediction can be

updated in the ML model’s self-learning and refinement processes

by integrating our simulated dataset with the real-world dataset from

the EHR system. Finally, as pharmacometrics data are typically

limited in size, the methods of model validation in ML are not

routinely used in pharmacometrics. There is also a lack of consensus

on the relevant definition and approaches (Sherwin et al., 2012;

McComb et al., 2022). Nevertheless, a comparison of the predictive

performance of the proposed XGBoost model and the two popPK

models may be worthy of further examination. Besides, it is difficult

to fairly evaluate and quantify the gain of using a combined dataset

to develop the XGBoost model compared to a dataset taken from a

single popPK model because both the feature dimensions of

different datasets and the predictability of different popPK

models are different. Whereas, a comparison of the predictive

performance of XGBoost models built by using the combined

dataset and a dataset derived from a single popPK model may

also deserve further research.

5 Conclusion

Various popPK models for VPA have been reported;

however, covariates affecting pharmacokinetic variability of

VPA varied considerably between different popPK models.

We innovatively proposed a method to integrate these

covariates from multiple previously published popPK

models using MC simulations to construct a large

combined dataset for ML modeling. Our proposed XGBoost

model exhibited excellent performance, the prediction

behaviors of which were well-explained by the SHAP

analysis. In short, our study highlighted the role of ML,

presented as a computational bridge between big data and

pharmacometrics, in integrating covariates derived from

different popPK models.
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