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Background: The role of the tumor microenvironment (TME) in predicting
prognosis and therapeutic efficacy has been demonstrated. Nonetheless, no
systematic studies have focused on TME patterns or their function in the
effectiveness of immunotherapy in triple-negative breast cancer.

Methods: We comprehensively estimated the TME infiltration patterns of
491 TNBC patients from four independent cohorts, and three cohorts that
received immunotherapy were used for validation. The TME subtypes were
comprehensively evaluated based on immune cell infiltration levels in TNBC,
and the TRG score was identified and systematically correlated with
representative tumor characteristics. We sequenced 80 TNBC samples as an
external validation cohort to make our conclusions more convincing.

Results: Two TME subtypes were identified and were highly correlated with
immune cell infiltration levels and immune-related pathways. More
representative  TME-related gene (TRG) scores calculated by machine
learning could reflect the fundamental characteristics of TME subtypes and
predict the efficacy of immunotherapy and the prognosis of TNBC patients. A
low TRG score, characterized by activation of immunity and ferroptosis,
indicated an activated TME phenotype and better prognosis. A low TRG
score showed a better response to immunotherapy in TNBC by TIDE
(Tumor Immune Dysfunction and Exclusion) analysis and sensitivity to
multiple drugs in GDSC (Genomics of Drug Sensitivity in Cancer) analysis
and a significant therapeutic advantage in patients in the three
immunotherapy cohorts.
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Conclusion: TME subtypes played an essential role in assessing the diversity and
complexity of the TME in TNBC. The TRG score could be used to evaluate the
TME of an individual tumor to enhance our understanding of the TME and guide
more effective immunotherapy strategies.

KEYWORDS

triple-negative breast cancer, tumor microenvironment, machine learning model,
prognosis, immunotherapy efficacy

Introduction

Worldwide, breast cancer, accounting for approximately 30%
of cancers in women (Siegel et al., 2020), can be divided into three
subtypes based on estrogen receptor (ER), progesterone receptor
(PR), and HER2 status: hormone receptor-positive, HER2-
positive, and triple-negative breast cancer (TNBC) (Denkert
et al., 2017). TNBC, characterized by a lack of ER, PR, and
HER2 expression, accounts for approximately 15%-20% of all
breast cancers (Adams et al., 2019a; Marra et al., 2019; Michel
et al., 2020). Higher local recurrence and distant metastasis rates
than other breast cancer subtypes are outstanding characteristics
of TNBC, resulting in the worst overall survival (OS).
Approximately 30% of TNBC patients suffer recurrence
within 5years of diagnosis (Lin et al, 2012); therefore,
selecting populations suitable for different treatments for
TNBC patients is crucial.

However, previous studies have emphasized the significance
of cell-cell interactions and upregulated signaling pathways in
regulating the tumor microenvironment (TME) (Quail and
Joyce, 2013; Su et al,, 2018), suggesting that whole sample
intercellular relationships are more vital than transcriptional
variations of tumor cells (Kalluri, 2016; Mantovani et al., 2017).
The TME conditions at the baseline level could reflect the
immunotherapy efficacy and chemotherapy response rate
(Rosenberg et al, 2016), and various TME cells, such as
cytotoxic T cells, tumor-associated macrophages (TAMs),
dendritic cells (DCs), and cancer-associated fibroblasts
(CAFs), were correlated with therapeutic benefits in various
tumors, including breast cancer and melanoma and urothelial
cancer (Lee et al., 2014; Nishino et al., 2017; Mariathasan et al.,
2018). Understanding the TME instead of cancer cells seems to
be a promising method for determining the heterogeneity in
breast cancer, and various cells in the TME should be
completely described and analyzed (Cagan and Meyer, 2017;
Mejia-Pedroza et al., 2018). Previous studies reported that
TNBC was characterized by more abundant immune cell
infiltration and higher levels of immune checkpoint inhibitor
expression than other breast cancer subtypes (Mittendorf et al.,
2014; Denkert et al., 2018; Loi et al., 2019). Some studies have
shown that high levels of lymphocytic infiltration, such as CD8"
T and CD4" T cells, are consistently correlated with a more
favorable prognosis in TNBC (Savas et al., 2016; Jang et al.,
2018; Gao et al., 2020).
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Although it is challenging to treat TNBC patients and they
are usually treated with standard chemotherapy and PARP
inhibitors (Robson et al., 2017; Telli et al, 2018), several
clinical trials have reported that immunotherapy might
improve the survival of TNBC patients. For instance, the
IMpassion130 trial implied that atezolizumab was beneficial in
previously untreated metastatic TNBC (Schmid et al., 2018). The
Keynote355 trial reported that pembrolizumab benefited the
PDL-1-positive TNBC population in terms of PFS (Cortes
et al,, 2020). Although these findings reinforce the perspective
that immunotherapy seems more appropriate for TNBC,
considerable research is urgently needed to identify benefit
groups from this therapeutic strategy.

A previous study depicted a vast TME landscape of gastric
cancer and helped to provide new strategies for interpreting
responses to immunotherapies (Zeng et al., 2019). Considering
the lack of rigorous studies on the TME subtype in TNBC, with
the emergence of more analytical techniques, two TME-related
subtypes were identified by clustering of immune cell infiltration
levels. Based on TME-related genes and the machine learning
method PCA algorithm, a TME-related gene (TRG) scoring
system for TNBC patients was constructed and validated in
several public datasets and validation cohorts sequenced by
ourselves. There were several studies based on this
dimensionality reduction method, such as an m6A-related
score from our previous study (Liu et al, 2021), a “writer”
score model for colorectal cancer (Chen et al,, 2021), and a
mast cell-based signature in lung cancer (Bao et al., 2020). All of
these studies constructed a scoring system based on differentially
expressed genes among several identified subtypes. Meanwhile,
our TRG score in TNBC was also highly associated with the
activation of related pathways, the cancer stemness index, and
drug sensitivity.

Most importantly, the TRG score was further employed to
predict the immunotherapy responses in TIDE analysis,
revealing that we could determine the benefit populations of
TNBC patients who received immunotherapy. Interestingly, a
20-member prognostic signature simplified by the iterative
LASSO algorithm could predict the survival probability of
TNBC patients and could shrink the TRG score calculation
members, which had the same ability as the TRG score.
Eventually, all of these analysis results were validated in a
TNBC cohort with sequencing data and clinical information
by ourselves.
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Materials and methods
Data sources and filtering

The raw data were downloaded from the Gene Expression
Omnibus (GEO) (https://www.ncbinlm.nih.gov/geo/) and Cancer
Genome Atlas (TCGA) databases. Three TNBC datasets [GSE96058
(Brueffer et al., 2018), GSE86166 (Prabhakaran et al., 2017), and
GSE103091 (Jezequel et al, 2015)] and two datasets related to
immunotherapy [GSE35640 (Ulloa-Montoya et al, 2013) and
GSE78220 (Hugo et al,, 2016)] in the GEO database were used
for analysis. The pan-cancer data involving 17 cancer types in TCGA
were downloaded from the UCSC XENA database (https:/
xenabrowser.net/datapages/) (Goldman et al, 2020). We
extracted TNBC data from all TCGA datasets for the principal
analysis, and other tumors were used for validation. Moreover, the
profiles of the IMvigor210 cohort were obtained according to official
guidelines (http://research-pub.Gene.com/imvigor210corebiologies)
(Mariathasan et al., 2018). All of the information of the public
datasets is summarized in Supplementary Table SI.

Tissue sample collection and high-
throughput sequencing

In addition, we used a cohort constructed by the West
China Hospital breast cancer specialist research team as an
external validation cohort, including 80TNBC biopsies, and
this experiment was approved by the Ethics Committee of
West China Hospital. Total RNA was extracted and purified
following the manufacturer’s protocol. After synthesizing
first- and second-strand cDNA using random hexamer
primers, DNA polymerase I and RNase H, the library
fragments were purified with an AMPure XP system
(Beckman Coulter, Beverly, MA, United States) as
described in the NEBNext UltraTM Directional RNA
Library following the manufacturer’s recommendations.
The libraries were then sequenced on the Illumina HiSeq X
ten platform (Novogene Bioinformatic Technology Co., Ltd.,
China) 150 bp paired-end
Eventually, the raw sequencing data from this study have

following a read protocol.
been deposited in the Genome Sequence Archive (GSA) in
BIG Data Center (https://bigd.big.ac.cn/) (Zhang et al,
2021a), Beijing Institute of Genomics (BIG), Chinese
the accession number

Academy of Sciences, under

HRA002256.

Assessment of immune cell infiltration
levels

Single-sample gene set enrichment analysis (ssGSEA) is a
well-known method to derive the absolute enrichment scores of
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previously experimentally validated gene signatures conducted
by the R package “GSVA,” a nonparametric and unsupervised
method commonly employed to estimate the variations in the
pathway and biological process activity of a single sample (Li
et al., 2017). Here, we preferred to use ssGSEA to assess the
relative abundance of immune cell infiltration levels in a single
sample. Two validated immune cell signatures published, labeled
immune cell signatures 1 and 2 in this study, were used in this
(Bindea et al, 2013) and 23
(Charoentong et al., 2017) types of immune cells, respectively.

research, containing 24
The markers of these two signatures are listed in Supplementary
Tables S2, S3. To further validate the results from ssGSEA, the
CIBERSORT algorithm (Newman et al, 2015), which is a
deconvolution algorithm, was employed to infer cell-type
proportions with bulk tumor sequence data. Moreover, the
third method, called Estimation of Stromal and Immune cells
in malignant tumors using Expression data (ESTIMATE)
(Yoshihara et al., 2013), was also used to infer the fraction of
stromal and immune cells in tumor samples.

Functional enrichment analysis

Using ssGSEA described previously, GSVA (Hanzelmann
et al., 2013) was used to assess pathway activation levels in a
single sample with the gene set “c5.all.v6.2. symbols” downloaded
from the MSigDB database in GSEA website (Mootha et al.,
2003) and another published pathway gene set summarized in
Supplementary Table S4 (Mariathasan et al, 2018). GO and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were conducted using the R package and the online website
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) (david.ncifcrf.gov) (Dennis et al., 2003).

Unsupervised clustering and differentially
expressed gene analysis

Unsupervised clustering analysis was used to classify patients
based on the
ConsensuClusterPlus package (Wilkerson and Hayes, 2010).

immune cell infiltration levels with the
Differentially expressed gene (DEGs) analysis was conducted
by the “limma” R package, with the criterion of adjusted p value <
0.05. The differentially expressed mRNAs were visualized by the
“pheatmap” package.

Calculation of the ferroptosis index and
MRNA-based stemness index

A total of 113 ferroptosis regulators were extracted from the
online website FerrDb (http://www.zhounan.org/ferrdb/), and
the shown in

specific information of these genes is
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Supplementary Table S5. To describe the ferroptosis level, the
ferroptosis index (FPI) was established based on the expression
data of genes in ferroptosis, including positive and negative
components. The enrichment score (ES) was calculated using
ssGSEA, and the FPI to roughly assess ferroptosis trends was
calculated as follows:

FPI = ES (positive) — ES (negative) (Liu et al., 2020)

To assess the stemness of cancer cells, a one-class logistic regression
algorithm known as mRNA-based stemness index (mRNAsi) was used
to calculate the stemness index for each sample under the direction of
the workflow available on a previously established database (https://
bioinformaticstmrp.github.io/) (Malta et al., 2018).

Therapeutic response prediction

The chemotherapeutic response for TNBC was predicted
according to the data involved in the Genomics of Drug
Sensitivity in Cancer (GDSC) with the “pRRophetic” package
(Geeleher et al., 2014). The Tumor Immune Dysfunction and
Exclusion (TIDE) database (http://tide.dfci.harvard.edu/) was
employed to predict the immunotherapy response of TNBC
(Jiang et al., 2018), and the default cutoff value was 0.

Calculation of tumor microenvironment-
related gene score

The overlapping DEGs among the four TNBC datasets were
regarded as TME gene signatures. Principal component analysis
(PCA) was used to calculate the TRG score to quantize the TME
patterns in TNBC. We summed PC1 and PC2 of genes i by PCA
as described before by us (Liu et al., 2021). The TRG score was
calculated as follows:

TRG score = ¥ (PCli + PC2i)

Prognostic signature construction and
survival analysis

Logistic least absolute shrinkage and selection operator
(LASSO)
signature to minimize the risk of overfitting (Simon et al,

regression analysis can construct a prognostic
2011). However, LASSO relies heavily on seeds when it allows.
Iteration LASSO was independent of the seed once the roots, the
optimal lambda, and the resulting feature were changed (Sveen
et al, 2012). The features retained at high frequency can be
considered the most influential factors. Genes included under
consensus were generated by iteration of LASSO, and AUC
further selected the minimum combination of genes associated
with survival. The formula of patients’ risk scores was established:

Risk score = X (each gene’s expression x corresponding
coefficient).
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Receiver operating characteristic (ROC) curves and survival
curves with the Kaplan-Meier method were used to judge the
prediction efficiency of the signature. The best cutoff value of
genes in survival analysis was searched by the “survminer” R
package. The signature genes obtained from iterated LASSO
analysis were used for nomogram construction using logistic
and Cox regression analyses. Calibration curves were used to
assess the predictive accuracy of the nomogram.

Statistical analysis

Correlation coefficients and p values were calculated by
Spearman correlation analysis among several defined groups.
Wilcoxon tests were used to compare differences between the two
groups. The asterisks represent the statistical p values (*p < 0.05,
**p < 0.01, and ***p < 0.001) in the panels.

Results

Identification of tumor microenvironment
subtypes

The flowchart of this study is depicted in Figure 1. To explore
the tumor microenvironment patterns in four independent TNBC
cohorts, consensus cluster analysis was used to classify patients
with TME conditions (Supplementary Figures S1A-D). By
integrating the clustering results of each dataset, two distinct
TME subtypes were eventually identified using unsupervised
clustering in each cohort, labeled as subtypes 1 and 2
(Figure 2A). Here, we used immune cell signature 1 to perform
cluster analysis. At the same time, we found that the infiltration of
the levels of immune cells was significantly different using immune
cell signature 2 in all four cohorts (Figure 2B). Among them,
subtype 1 was enriched with immune cells compared with subtype
2, meaning that subtype 1 was an immune-activating subtype with
higher immune cell infiltration levels, the same as the conception
of a “hot” tumor. By the CIBERSORT algorithm, we found that
some antitumor immune cells, such as CD8+ T cells, activated
CD4+ T cells, and M1-like macrophages, were elevated in subtype
1. In contrast, tumor-associated immune cells, such as M2-like
macrophages, were more elevated in subtype 2 (Figures 2C,D).
Given these differences in the TME for these two subtypes, survival
analysis showed that the overall survival of subtype 1 in the four
cohorts was better than that of subtype 2 (Figure 2E).

Biological function analysis between
tumor microenvironment subtypes

To further investigate the differences between the two TME
subtypes, we considered analyzing the biological function
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FIGURE 1

Identification of TME Subtypes and Biological Function
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TME subtypes’ attributes. TRG score could predict response to immunotherapy and sensitivity to multiple drugs in TNBC by TIDE and GDSC
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FIGURE 1 (Continued)

negative breast cancer cohort in West China hospital.

analysis. TNBC_WC samples as an external validation cohort to verify the effectiveness of TRG score, and based on iteration LASSO analysis,
simplified TRG scores involving 20-member prognostic signature were established for clinical use to predict the survival probability of TNBC. TME-
DEGs, tumor microenvironment-related differentially expressed genes; FPI, ferroptosis index; mRNAsi, mRNA-based stemness index; GDSC,
Genomics of Drug Sensitivity in Cancer; TIDE, Tumor Immune Dysfunction and Exclusion; TRG, TME-related genes; and TNBC_WC, triple-

variation in the conception of signaling pathways. GSVA showed
that all immune-related pathways, such as the IL-2/STATS5, IL-6/
STAT3, and interferon response pathways, were enriched in
subtype 1, while the TGF-B-, NOTCH-, PI3K/AKT-, and
EMT-related pathways were enriched in subtype 2 (Figures
3A,B). ssGSEA with curated signaling pathway signatures
showed that the CD8 T effector- and immune checkpoint-
related pathways were activated in subtype 1. In contrast,
tumor progression-related pathways such as WNT and EMT
were activated in subtype 2 (Figures 3C,D). Based on ATAC-seq
data from TCGA, differentially expressed peaks were identified
between subtypes 1 and 2 (Figure 3E). GO analysis was processed
on these differentially expressed peaks annotated by ChIPseeker,
and the results showed that genes correlated with T cell activation
had higher chromatin activities in subtype 1. In comparison,
genes correlated with the regulation of GTPase and cell
morphogenesis possessed higher chromatin activities in
subtype 2 (Figure 3F).

Moreover, traditional GSEA was also conducted between
subtypes in the four cohorts, which was consistent with the
abovementioned results (Figure 4A). Using the ESTIMATE
method, scores of stromal and immune cells were also higher
in subtype 1 (Figure 4B). The expression levels of MHC
molecules and immune checkpoint inhibitors (ICIs) are
correlated with the activation of the antitumor immune
response and the efficacy of immunotherapy. Most MHC
molecules and ICIs were significantly different between the
two subtypes and were especially higher in subtype 1
(Figure 4C). The abovementioned analysis showed that TME
subtype 1 highly
phenotypes, while TME subtype 2 was positively associated

was correlated with immune-related
with tumor progression and metastasis phenotypes. Thus,
more comprehensive analyses containing FPI and mRNAsi
were employed to analyze the ferroptosis level and the
stemness index of single tumor tissue. As we have noticed
that the initiation or metastasis of a malignant tumor might
be highly correlated with cancer stem cells, we aimed to use
mRNAsi to evaluate the differences between two TME subtypes.
Moreover, ferroptosis was also a novel and vital phenotype that
aroused our interest in further investigating the relationship with
immune subtypes; FPI was employed here to satisfy our
intention. Eventually, we found that the ferroptosis index
(FPI) was higher in subtype 1 than in subtype 2, while the
mRNA-based stemness index (mRNAsi) was higher in
subtype 2 than in subtype 1 (Figures 4D,E). However, no
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significant difference was found in tumor mutation burden
(TMB) (Figure 4F).

Generation of tumor microenvironment-
related gene score and functional
verification

To further investigate the underlying mechanisms between
the two TME subtypes, differentially expressed gene (DEG)
analysis was conducted in four TNBC cohorts. Taking the
intersection of DEGs in four cohorts (Figures 5A,B),
236 TME-related genes (TRG) were identified between TME
subtypes, and all of them were upregulated in subtype 1
(Supplementary Table S6; Figure 5C). GO analysis showed
that DEGs were highly enriched in T-cell activation and cell
adhesion pathways (Figure 5D). For further analysis, a
continuous variable called the TRG score by PCA was
generated to quantify the different levels of TME in individual
patients. The TRG score could well reflect the differences in TME
subtypes in TNBC cohorts, and the TRG score was lower in
subtype 1 (Figure 5E). Patients with low TRG score demonstrated
a greater survival benefit than patients with high TRG score
(Figures 5F,G). ssGSEA calculated with immune cell signature
1 showed that the infiltration levels of most immune cells were
highly negatively associated with the TRG score (Figure 5H), and
ssGSEA calculated with immune cell signature 2 also verified that
most of the immune cells were higher in the low TRG score
groups (Figure 5I). CIBERSORT analysis showed that as the TRG
score was reduced, the percentage of cytotoxic T cells increased
(Figure 5]J). GSVA showed that immune-related pathways, such
as the IL-2/STAT5, IL-6/STAT3, and interferon response
pathways, were negatively correlated with the TRG score.

In contrast, glycolysis, the NOTCH signaling pathway, and
protein secretion were positively correlated with the TRG score
(Figure 6A). ssGSEA with curated pathway signatures verified
that the TRG score was negatively linked with antigen processing
machinery, CD8 T effector, and immune checkpoint and
positively associated with WNT target pathways (Figure 6B).
We show the genes involved in the above-curated pathway
signatures with statistical significance in Figure 6C. Most of
the genes involved in immune-related pathways were highly
negatively correlated with the TRG score. The stromal and
immune scores calculated by ESTIMATE were undoubtedly
negatively correlated with TRG score in all TNBC cohorts
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Biological function analysis between TME subtypes. (A) Heatmap of the GSVA enrichment score in curated pathways in four TNBC cohorts. (B)
Differences in GSVA enrichment scores in curated pathways in the whole TNBC cohort. (C) Heatmap of curated pathways calculated with another
pathway signature in four TNBC cohorts. (D) Differences in curated pathways were calculated with another pathway signature in the whole TNBC
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score and the expression of genes involved in four significant pathways in Supplementary Figure S4C. (D) Correlation analysis between the TRG score
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expression of 113 ferroptosis-related genes in four TNBC cohorts. (I) Differences in TRG score between different clinical trait groups in the TCGA

cohort.
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FIGURE 7

Role of the TRG score in therapeutic efficacy. (A) Correlation analysis between TRG score and prediction IC50 values in the whole TNBC cohort.

The green line represents that the predicted IC50 of drugs was positively correlated with the TRG score, and the red line represents a negative

correlation. (B) Difference in TRG score between immunotherapy respondents and nonresponders in TIDE analysis in the whole TNBC cohort. (C)

Correlation analysis between the TRG score and the results of TIDE analysis in four TNBC cohorts. (D) Correlation analysis between the TRG
(Continued)
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FIGURE 7 (Continued)

score and the immune cell infiltration levels was calculated with immune cell signature 1 in TCGA pancancer. (E) Survival analyses for patients
treated with anti-PD-L1 immunotherapy stratified by both TRG score and TMB. (F) Correlation analysis between the TRG score and immune cell
infiltration levels calculated by immune cell signatures 1 and 2 in the IMvigor210 trial. (G) Differences in TRG score between the CR/PR/SD group and
the PD group in the IMvigor210 trial. (H) Rating clinical response to anti-PD-L1 immunotherapy in high or low TRG score groups in the
IMvigor210 cohort using the chi-square test. (I) Differences in TRG score among immune phenotypes in the IMvigor210 trial. (J) Correlation analysis
between the TRG score and the immune cellinfiltration levels calculated with immune cell signature 1in GSE35640. (K) The difference in TRG score
between immunotherapy respondents and nonresponders in GSE35640. (L) Correlation analysis between the TRG score and the immune cell
infiltration levels calculated with immune cell signature 1 in GSE78220. The asterisks represent the statistical p value (*p < 0.05 and ***p < 0.001).

(Figure 6D). The low TRG score group still had a higher FPI than
the high TRG score group, but the mRNAsi and TMB showed no
significant differences (Figures 6E-G). Due to differences in FPI
between TME subtypes and TRG score groups, correlation
conducted between TRG
expression of ferroptosis-related genes. We found that the
expression of TNFAIP3, SOCS1, IFNG, ATM, ALOX5, PML,
ISCU, and GCHI was significantly negatively correlated with
TRG score in four TNBC cohorts (Figure 6H). The TRG score
showed no significant differences between the AJCC_T,

analysis  was score and the

AJCC_N, and stage groups, meaning that the TRG score was
a novel factor regardless of clinical traits (Figure 6I).

Role of the tumor microenvironment-
related gene score in therapy efficacy

To explore the association between the TRG score and drug
response, we evaluated the estimated IC50 value of 138 drugs
included in the GDSC database in four TNBC cohorts.
Correlation analyses were conducted between the TRG score
and predicted IC50 values (Supplementary Figure S2A). Drugs
with significant differences in more than three cohorts were
regarded as potential therapeutic drugs; we found that eight
drugs were sensitive to the high TRG score group, and 49 drugs
were sensitive to the low TRG score group (Figure 7A). The TRG
score might logically be related to the efficacy of immunotherapy
due to its apparent association with immune cell infiltration and
activation. TIDE was utilized to predict the immunotherapy
response of TNBC patients, and the TRG score was lower in
the immunotherapy response group (Figure 7B). Moreover,
TIDE analysis showed that the TRG score was apparently
negatively correlated with markers of immunotherapy
response and positively correlated with CAFs, myeloid-derived
suppressor cells (MDSCs), and TAM M2 (Figure 7C). Lacking
TNBC datasets that received immunotherapy, we selected three
cohorts that received anti-PDLI1, anti-PD1, and anti-MAGE-
A3 therapy in bladder cancer (BLCA) and skin melanoma
(SKCM) to verify the immunotherapy response prediction
value of the TRG score. First, TRG scores were calculated
across cancers in TCGA. TRG scores were prognostic risk
factors (Supplementary Figure S2B) and were negatively
correlated with immune cell infiltration levels in most cancer
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types, especially in BLCA and SKCM (Figure 7D). Then, we
calculated the TRG score in the three immunotherapy cohorts.
Interestingly, we found that the TRG score was also a risk factor
in IMvigor210 (Supplementary Figure S2C), and patients with a
high TRG score and low TMB presented the worst survival
advantage (Figure 7E). Correlation analysis further validated
that the TRG score was negatively correlated with the
expression of MHC, costimulatory, adhesion molecules
(Supplementary Figure S2D), and immune cell infiltration
levels (Figure 7F). Moreover, a higher TRG score was
associated with disease progression (PD), indicating that a
higher TRG score might indicate poor response after
7G,H).
exhibited one of three distinct immunological phenotypes,

immunotherapy (Figures As most solid tumors
immune inflamed, immune excluded, or immune desert,
studies in the IMvigor210 cohort classified each sample into
one of these immune phenotypes (Mariathasan et al., 2018). The
immune inflamed phenotype was thought to be rich in immune
cell infiltration and sensitive to immunotherapy, while the
immune desert was on the contrary. Immune excluded
phenotype was surrounded by many immune cells, but the
immune cells were confined to the periphery of the tumor cell
matrix. We found that a higher TRG score was associated with
desert-resistant  phenotypes, while inflamed phenotypes
possessed a lower TRG score than desert and excluded
phenotypes (Figure 7I). In the anti-MAGE-A3 cohort, the
TRG score was also negatively correlated with immune cell
infiltration levels (Figure 7]) and was lower in the response
group (Figure 7K). Similar results could be seen in the anti-
PD1 cohort (Figure 7L), although the differences among
response groups showed no significance (Supplementary

Figure S2E).

Verification of the tumor
microenvironment-related gene score in
the external validation TNBC cohort

The TRG score was calculated as described earlier in
80 triple-negative breast cancer samples from the West China
Hospital (TNBC_WC) cohort. It was found that a higher TRG
score was related to the disease progression rate (Figure 8A) and
poor survival probability (Supplementary Figure S2F) of TNBC
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score. (D) Correlation analysis between the TRG score and the expression of MHC molecules. (E) Correlation analysis between the TRG score and
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patients. ssGSEA also showed a strong correlation between the
TRG score and immune cell infiltration levels in TNBC_WC
(Figure 8B), as well as the results of the ESTIMATE score
(Figure 8C). Some MHC molecules and ICI targets were also
negatively correlated with the TRG score, especially PDL1 and
PDCDILG2 (Figure 8D). For pathway analysis, pathways that
were associated with the TRG score in TNBC_WC were almost
the same as the results in the four training cohorts (Figure 8E).
Correlation analysis showed that the TRG score was positively
correlated with the FPT and mRNAsi (Figure 8F). The response
group predicted by TIDE analysis showed a lower TRG score
than the no response group (Figure 8G). Additionally, we
predicted the drug IC50 by GDSC analysis and performed
correlation analysis with the TRG score (Figure 8H) and
intersection drugs with the results in the training cohorts, as
shown in Figure 81. These results illustrated that the TRG score
was a novel and robust method to measure immune cell
infiltration levels and therapy efficacy.

Prognostic signature construction and
simplification of the tumor
microenvironment-related gene score

Considering the accessibility of the TRG score, we aimed to
shrink the members of the TRG score and simplify the formula
modes to predict the prognosis of TNBC patients. First, survival
analysis was processed for 236 TME-related DEGs in TCGA
cohorts; 84 genes with a p value < 0.05 were selected for further
research (Supplementary Figure S3A). Here, iteration LASSO
was then used to simplify the members of the TRG score; after
multiple attempts to reach the highest 5-year AUC, we finally
constructed a prognostic signature with 20 members from TRG
score members (Supplementary Table S7; Figure 9A). We could
see that there were 20 genes with the most frequencies of
occurrence in 1,000 operation iterations in LASSO algorithms,
and prognostic signatures with these 20 genes could reach a high
area under the curve (AUC) of ROC for 5 years of survival in the
TCGA cohort. To provide a convenient approach for predicting
the survival probability of a patient with TNBC, we constructed
predictive nomograms with the 20 genes generated previously.
We developed a nomogram based on the Cox regression model
to predict the 5- and 8-year survival probability for TNBC
patients (Supplementary Figure S3B). The calibration plots for
the 5- and 8-year survival showed an optimal agreement between
the nomogram-predicted and observed OS, which was used to
evaluate the accuracy of the prediction signature (Figure 9B). For
validation of the prognostic value of the 20-gene signature, the
patients in the high-risk group showed a worse prognosis than
those in the low-risk group, and the same condition could be seen
in other TNBC cohorts (Supplementary Figure S3C). Before the
prognostic signature was constructed, we conducted a correlation
analysis between the TRG score and the expression of 236 TME-
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related DEGs in four TNBC cohorts. In view of most genes highly
correlated with the TRG score, we are supposed to simplify the
TRG score by these 20 genes. Surprisingly, the simplified TRG
score (STRG score) calculated based on the expression of these
20 genes was highly positively correlated with the TRG score in
the TNBC_WC cohort (Figure 9C), and patients in the high
STRG score group also showed worse DES than those in the low
STRG score group (Figure 9D). Not unexpectedly, the correlation
coefficients between the TRG score and sTRG score were almost
close to 1 in other cohorts, which means that they were virtually
interchangeable (Figure 9E). However, the risk score showed no
significance with the TRG score, indicating that the risk score was
a novel factor generated by the iterative LASSO regression model.
Eventually, we set up a coexpression network for 20 genes, and
we found strong correlations among them (Figure 9F). The
visualization of attribute changes in individual patients using
an alluvial diagram indicated that the TRG score might be a
powerful method to direct therapeutic efficacy or prognostic risk
for TNBC patients (Figure 9G).

Discussion

The evolving immunotherapy of malignant tumors inspired
our interest in the role of tumor microenvironment patterns in
TNBC. The TME, a critical regulator of disease progression and
therapeutic outcome, correlates with patient response to
immunotherapy in multiple cancers, with patients possessing
immune-favorable TME subtypes benefiting the most from
immunotherapy (Bader et al, 2020; Bagaev et al, 2021; Cao
et al,, 2021). However, previous studies have reported that breast
cancer is generally considered a low immune-reactive cancer,
TNBC, the most aggressive subtype of breast cancer, but
responds to anti-PD-1/PD-L1 immunotherapy (Adams et al,
2019b; Adams et al.,, 2019¢). The urgent question is which types
of TNBC patients are suitable for immunotherapy and what their
characteristics are. This study was the first to identify TME
subtypes of TNBC and TME-related genes represented for
each subtype based on consensus clustering analysis. For a
more rigorous conclusion, at least two cross-validation
methods were chosen for each step, ssGSEA, CIBERSORT,
and ESTIMATE, for assessing immune cell infiltration levels
and GSEA GSVA and GO analysis for evaluating pathway
activation conditions.

Moreover, multiple cohorts were selected for training or
validation, and one private external validation cohort was
specialized to collect for confirmation of results. All of these
innovations will directly differentiate our study of TME patterns
in TNBC from all previous studies; there were no systematic
studies on the selection of immunotherapy beneficiaries in TNBC
based on TME subtypes. The essential light spot of our studies
illustrated that two perfect scoring systems based on one gene

signature were constructed to predict the efficacy of
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immunotherapy, response to chemotherapy, and prognosis of
TNBC patients.

Previous studies related to the TRG score in TNBC (Qin
etal, 2021; Yiet al,, 2021; Yang et al., 2022) generally used one
method to assess immune cell infiltration levels and did not
consider immune-related pathway activation conditions; our
study used not only numerous methods to evaluate immune cell
infiltration levels but also employed different types of pathway
signatures to evaluate pathway enrichment levels. These results
into the efficacy of
that benefits from
immunotherapy are not only related to enhanced IL-2/
STATS5, IL-6/STAT3, and interferon response pathways but
are also associated with inhibition of TGF-f-, NOTCH-, PI3K/
AKT-, and EMT-related pathways. Subtype 1 was characterized

provide mechanistic insights

immunotherapy, suggesting

by multiple infiltrating immune cells, especially cytotoxic cells
and antigen-presenting cells, which were reported to
correspond to the resistant activated phenotype (Gajewski
et al., 2013; Turley et al., 2015; Chen and Mellman, 2017).
In contrast, subtype 2 was characterized by a lack of immune
cell infiltration, corresponding to the immune-suppressed
phenotype, which is often referred to as a “cold” tumor
(Kim and Chen, 2016). Most importantly, based on a
machine learning method, the PCA score, we successfully
converted categorical variables of TME subtypes to numeric
of the TRG score, which could
characteristics of TME subtypes. The lower the TRG score
was, the more likely the patient was to be grouped into

variables inherit all

subtype 1, indicating better immune cell infiltration levels.
The lack of TNBC cohorts that received immunotherapy,
TIDE analysis, and immunotherapy cohorts in other tumors
was utilized to assess the true power of the TRG score in the
prediction of immunotherapy efficacy. We already know that
many TNBC patients could benefit from immunotherapy from
the Impassion130 study (Schmid et al., 2020; Emens et al.,
2021), which was highly consistent with our research. The
former critical analysis failed to answer the question of
benefit group selection; however, our studies showed that
some TNBC patients might have a higher possibility of
benefitting from immunotherapy, and the specific cutoff
value still needs to be further explored. Although this
conclusion failed to be validated in the Impassion130 study
due to data permission, we successfully validated the efficacy of
the TRG score in other immunotherapy cohorts in metastatic
urothelium carcinoma and melanoma treated with anti-PDL1,
anti-PD1, and anti-MAGE-A3.

Correlation analysis between TIDE results members and
TRG score showed that TRG score was highly positively
correlated with CAFs, TAM M2, and MDSC, and all of these
cells were reported to be immune suppressive cells and closely
associated with cancer stemness (Kwak et al., 2020; Boutilier
and Elsawa, 2021; Mao et al., 2021). Subsequent mRNAsi
analysis verified these findings that the TRG score was

Frontiers in Pharmacology

17

10.3389/fphar.2022.995555

positively correlated with cancer stemness, which might be
why subtype 2 was related to progression and metastasis-
related pathways and poor immune cell infiltration levels.
Cancer stemness has been reported to be associated with
immunotherapy efficacy in many studies (Ruiu et al.,, 2019;
Clara et al,, 2020; Yang et al,, 2020), as well as with drug
resistance in TNBC (Cazet et al., 2018; O’Conor et al., 2018).
Combined with drug information and sequence data in GDSC,
several molecular compounds that might be sensitive in TNBC
patients have been identified, broadening the drug research
direction of basic experiments in TNBC. Ferroptosis, an iron-
dependent form of nonapoptotic cell death that is lethal, has
received widespread attention as a potential therapeutic
pathway for cancer treatment (Yamaguchi et al., 2013; Ooko
etal., 2015). In our research, the ferroptosis level viewed by FPI
was higher in subtype 1, meaning that the ferroptosis level
might be correlated with an immune-activated TME, and some
drugs that infect the ferroptosis process might be sensitive in
these patients.

TNBC is a malignant tumor with a poor prognosis, and
local recurrence, distant metastasis, and drug-resistant
resistance have been the leading cause of death (Bauer et al,
2007; Dent et al., 2007). The constructed TME subtypes and
TRG score in this study could reasonably predict the risk of
overall survival and had no correlation with previously defined
clinical grade and stages, meaning that this score might be a
novel factor unaffected by clinical traits. To better predict the
survival possibility of TNBC patients, an iterative LASSO
algorithm was conducted in TCGA cohorts and validated in
three GEO cohorts. Nomograms to indicate survival possibility
and death odds were both established by Cox and logistic
regression models, which might be helpful in clinical
practice. Interestingly, 20 predictive models were accidentally
found to construct a simplified TRG score, which might be the
same as the TRG score built by 236 DEGs. If the TRG score
could be used in clinical practice to predict immunotherapy and
chemotherapy efficacy or prognosis of TNBC patients, we
suggest that a simplified TRG score might be a more
convenient test model.

For 20 genes involved in the predictive signature, we found
that these 20 genes were highly associated with immune cell
infiltrations in the TME, such as DCs, B cells, and T cells, which
to be
immunotherapy efficacy (Wculek et al, 2020; Sabado et al.,
2017; Wang et al., 2019; Guzman-Genuino et al, 2021;
Raskov et al., 2021; O’Donnell et al,, 2019). LAMP3, IDOI,
HSD11B1, and CDI1B are markers of DCs; HLA-DOB and
CR2 are markers of B cells; and SIT1, IFNG, ICOS, and
CXCLI13 are markers of T cells. Although some genes were

were comprehensively reported associated  with

not markers of immune cells, they were reported to be
associated with TME and immunotherapy efficacy. The
expression of SLAMF8 (Zhang et al., 2021b) and PSMBS8
(Kalaora et al.,, 2020) could predict the efficacy of immune
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checkpoint inhibitor immunotherapy in gastrointestinal cancer
and melanoma. IKZF3 deficiency could potentiate chimeric
antigen receptor T cells to target solid tumors (Zou et al,
2022) and activation of the GPR171 pathway could suppress
T cell activation and limit antitumor immunity (Fujiwara et al.,
2021). Several immune-related molecules, including LGALS2,
GFI1, and GBP1/5, have not yet been reported to be related to
immunotherapy. Eventually, these results further demonstrated
that simplifying the TRG score by 20 immune-related genes was a
perfect signature highly correlated with immune cell infiltration
levels to predict immunotherapy efficacy.

Although the TRG score could reasonably predict the
efficacy of immunotherapy and the prognosis of TNBC
patients, to validate all of the abovementioned analyses in
public datasets, we finally collected 80 TNBC patients in
West China Hospital
sequencing. The TRG score showed powerful abilities in

and performed high-throughput

prognostic prediction and assessing immune cell infiltration
levels. Importantly, this cohort was also one of the few
sequenced data with clinical information on TNBC; however,
patients in this cohort had not yet received immunotherapy.
From the TIDE and GDSC analysis results in this cohort,
drugs identified in the
abovementioned research were also validated.

immunotherapy and several

Conclusion

In conclusion, the TRG score was a convenient method to
classify the TME their
corresponding characteristics and pathway activation levels in

comprehensively subtypes and
TNBC. It could also be used to assess some cancer-related
features, including the ferroptosis index, genetic variation,
drug sensitivity, and mRNAsi of individual patients, and
further predict the response to immunotherapy of TNBC
patients. Importantly, this study provides a perspective for the
comprehensive evaluation of the cellular, molecular, and genetic
factors associated with TME infiltration patterns to further
reverse TME cell “hot
thus improving the response to an immune

checkpoint inhibitor.

infiltration characterization into

tumors”,
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Glossa ry GO Gene Ontology

DAVID Database for Annotation, Visualization and Integrated
TNBC Triple-negative Breast Cancer Discovery

ER Estrogen Receptor KEGG Kyoto Encyclopedia of Genes and Genomes

PR Progesterone Receptor mRNAsi mRNA-based Stemness Index

DFS Disease-Free Survival FPI Ferroptosis Index

OS Overall Survival DEGs Differentially Expressed Genes

CAFs Cancer-associated Fibroblasts PCA Principal Component Analysis

DCs Dendritic Cells HR Hazard Ratios

TAMs Tumor-associated Macrophages LASSO Logistic Least Absolute Shrinkage and Selection
TME Tumor Microenvironment Operator

GEO Gene Expression Omnibus ROC Receiver Operating Characteristic

TCGA The Cancer Genome Atlas AUC Area Under the Curve

ssGSEA Single-sample Gene Set Enrichment Analysis ICI Immune Checkpoint Inhibitors

GSEA Gene Set Enrichment Analysis TMB Tumor Mutation Burden

GSVA Gene Set Variation Analysis TIDE Tumor Immune Dysfunction and Exclusion
ESTIMATE Estimation of Stromal and Immune Cells in TRG TME-related genes

Malignant Tumors using Expression Data sTRG Simplified TRG
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