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Gegen-Qinlian decoction (GQD) is a classic traditional Chinesemedicine (TCM)

formula. GQD is effective against colon or liver-related diseases including

ulcerative colitis, non-alcoholic fatty liver, and type 2 diabetes. In this study,

a liquid chromatography-tandem mass spectrometry method was developed,

validated, and then applied to reveal the tissue distribution and integrated

pharmacokinetic properties of major effective constituents of oral GQD in

mice. The established method was quick, sensitive, and accurate enough to

analyze GQD constituents in plasma and tissue homogenate samples

quantitatively. According to their concentrations in the portal vein, systemic

circulation, liver and colon samples of the mice after oral administration of

GQD, the concentration-time curves of the constituents were respectively

plotted. The results showed that daidzein, baicalin, and baicalein had relatively

high exposure levels in the livers, while puerarin, berberine, epiberberine,

coptisine, palmatine, jatrorrhizine, magnoflorine, glycyrrhizic acid, and

glycyrrhetinic acid were enriched in the colons. Given that these

constituents have significant biological activity, they could be regarded as

the major effective constituents of GQD in treating colon or liver-related

diseases, respectively. In addition, the integrated pharmacokinetic properties

of GQD were studied. The GQD “integrated constituent” reached peak

concentration at 4.0 h in the portal vein, the systemic circulation, the livers,

and the colons, with half-lives of 1.5–4.1 h and mean retention time of

4.5–6.3 h, respectively. Furthermore, the concentration of the GQD

“integrated constituent” in the colons was approximately 10 times higher
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than that in the livers, both of which were much higher than that in the systemic

circulation, indicating its accumulation in these tissues, especially in the colons.

In conclusion, the tissue distribution and integrated pharmacokinetic properties

of oral GQD were revealed in the study. The results of the tissue distribution

study would contribute to identifying the major target tissues and effective

constituents of GQD, while the results of the integrated pharmacokinetic study

would help to explain the pharmacokinetic properties of oral GQD as a whole.

KEYWORDS

gegen-qinlian decoction, effective constituents, integrated pharmacokinetics, tissue
distribution, LC-MS/MS

1 Introduction

Gegen-Qinlian decoction (GQD) is a classic traditional

Chinese medicine (TCM) formula, which is composed of four

TCMs including Pueraria Lobatae Radix (PR), Scutellaria Radix

(SR), Coptidis Rhizoma (CR), and Glycyrrhizae Radix et Rhizoma

Praeparata Cum Melle (GR) according to the ratio of 8: 3: 3: 2

(Hai and Wei, 2009). Owing to its significant anti-pathogenic

microorganisms (bacteria and viruses), anti-inflammatory, and

antioxidant bioactivities, GQD is effective against colon or liver-

related diseases including diarrhea (Liu et al., 2019), ulcerative

colitis (Zhao et al., 2020), non-alcoholic fatty liver (Zhang et al.,

2020), and type 2 diabetes (Cao et al., 2020). GQD is one of the

few TCM formulas that have been proved curative through strict

clinical trials. In a randomized, double-blind, placebo-controlled

clinical trial, treatment with oral GQD for 12 weeks dose-

dependently improved symptoms and significantly reduced

blood glucose and glycosylated hemoglobin levels in patients

with type 2 diabetes (Xu J. et al., 2015).

The effective material basis, a key issue for understanding the

pharmaceutical nature of GQD, remained to be identified (Lu

et al., 2021). The effective material basis of a TCM should not

only have significant bioactivity but also have relatively high in

vivo exposure levels. After oral administration, 107 prototype

constituents and 67 metabolites of GQD were qualitatively

detected in the plasma, urine, bile, and feces of rats (Liu et al.,

2018). In addition, the pharmacokinetics of GQD in the systemic

circulation of the rats received oral GQD were reported (Qiao

et al., 2018). However, the pharmacokinetic properties of GQD

constituents in their sites of action, i.e., target tissues, were

unclear.

Studies have shown that some GQD constituents have

significantly different pharmacokinetic properties between in

the systemic circulation and target tissues. For example, the

oral bioavailability of berberine was as low as 0.36% in rats

(Liu et al., 2010), suggesting that its local concentration and

bioactivity in the intestinal tract may have pharmacological

value. Furthermore, after absorption, its concentration in the

liver was much higher than that in the systemic circulation (Li

et al., 2018), which explained its hepatoprotective effects (Bansod

et al., 2021). According to pharmacological studies, GQD was

effective on regulating pathogenic microorganisms such as

bacteria and viruses in the intestinal tract (Liu et al., 2019),

relieving intestinal inflammation (Zhao et al., 2020), repairing

tight junctions between intestinal epithelial cells (Zhao et al.,

2020), and regulating liver glucose (Cao et al., 2020) and lipid

(Zhang et al., 2020) metabolism. Therefore, the distribution and

dynamic change of the effective GQD constituents in the

potential target tissues including the liver, the intestinal tract,

especially the colon, would be closely related to the

pharmacological effects of GQD. Conversely, pharmacokinetic

studies focusing on the target tissues would help to reveal the

major effective constituents of GQD.

Furthermore, due to the significant difference between GQD

constituents, it was challenging to interpret and utilize their

pharmacokinetic parameters comprehensively. For example,

elimination half-life (T1/2) is one of the basic pharmacokinetic

parameters to establish a dosage regimen of drugs. However, it

was not convictive enough to formulating the dosing regimen of

GQD based on the T1/2 value of any single constituent or single

type of constituents. A strategy of “integrated pharmacokinetic

study of multiple constituents of TCM” was put forward to

resolve the common problem faced by TCMs (Li et al., 2008;

Hao et al., 2009; Shi P. et al., 2018). Above all, the

pharmacokinetic weight coefficients of the constituents are

respectively calculated based on their values of area under the

concentration-time curve (AUC), which reflect their exposure

levels in vivo. Then, the concentration at each time point of the

“integrated constituent” is calculated by summing up the

“integrated concentration” (real concentration times

pharmacokinetic weight coefficient) of each constituent.

Finally, the pharmacokinetic parameters of the “integrated

constituent” are calculated according to its concentration-time

(C-T) curve. The integrated pharmacokinetics of classical TCM

formulas including Huanglian-Jiedu decoction (Zhu et al., 2012)

and Jiao-Tai pill (He et al., 2014) were reported. Studies on the

integrated pharmacokinetics of GQD would help to explain its

pharmacokinetic properties as a whole.

In this study, in order to simultaneously determine the

concentrations of 19 major GQD constituents in biological

samples (plasma, and the homogenate of the livers and the

colons), a rapid and sensitive quantitative analysis method
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based on liquid chromatography-tandem mass spectrometry

(LC-MS/MS) was developed. The method was fully validated

with plasmamatrix and partially validated with liver homogenate

matrix. The integrated pharmacokinetics of the GQD

constituents in blood (the portal vein, the systemic

circulation) and major target tissues (the colon, the liver) were

then comparatively studied in mice. Based on the obtained data,

the tissue distribution and the integrated pharmacokinetic

properties of GQD were revealed.

2 Materials and methods

2.1 Materials

The crude drug of PR (batch number 190910), SR (batch

number 191207), CR (batch number 190820), and GR (batch

number 191118) were all purchased from Shanghai Kangqiao

Herbal Pieces Co., Ltd. (Shanghai, China). According to the

Pharmacopeia of the People’s Republic of China (2020 edition),

the crude drug were identified as the dried root of Pueraria lobata

(Willd.) Ohwi, Scutellaria baicalensis Georgi, Coptis chinensis

Franch., and Glycyrrhiza uralensis Fisch. respectively. The

voucher specimens were deposited in Shanghai University of

Traditional Chinese Medicine.

The reference compounds of berberine hydrochloride,

baicalein, baicalin, wogonin, daidzein, puerarin, glycyrrhizic

acid, glycyrrhetinic acid, liquiritin, isoliquiritin, and

jatrorrhizine hydrochloride were purchased from Shanghai

Yuanye Biological Co., Ltd. (Shanghai, China). The reference

compounds wogonoside, daidzin, palmatine hydrochloride,

coptisine hydrochloride, mycophenolic acid, naringin, and

berberrubine were purchased from Dalian Meilun

Biotechnology Co., Ltd (Dalian, China). The reference

compound liquiritigenin was purchased from Chengdu Must

Bio-technology Co., Ltd (Chengdu, China). The reference

compounds magnoflorine, demethyleneberberine, and

epiberberine were purchased from National Institutes for

Food and Drug Control (Beijing, China). The purity of all the

reference compounds was greater than 98%.

Methanol and acetonitrile were the products of Burdick and

Jackson (Ulsan, Korea). Ammonium formate, formic acid, and

acetic acid were purchased from Thermo Fisher Scientific Inc.

(Massachusetts, USA). All the materials were HPLC grade.

2.2 Animals

Clean grade male and female Kunming mice (weighted at

22–24 g) were used in this study. The mice were purchased from

Beijing Vital River Laboratory Animal Technology Co., Ltd.

(Beijing, China), which has a production license number of

SCXK (Beijing) 2016-0011. The mice were raised in the

experimental animal center of Shanghai University of

traditional Chinese medicine, which has the experimental

license of SYXK (Shanghai) 2020-0009. The ambient

temperature of the feeding room was maintained at 22–24°C,

with a 12-h dark/light cycle. Before the experiment, all animals

were fasted for 12 h but could drink freely. The animal

experiments were approved (PZSHUTCM211129015) by and

conducted in accordance with the guideline of the Institutional

Animal Care and Use Committee of Shanghai University of

Traditional Chinese Medicine.

2.3 Validating of a LC-MS/MS method

2.3.1 Preparation of solutions of reference
compounds

Stock solutions of the reference compounds were prepared in

dimethylsulfoxide at the concentration of 1.0 mg/mL. A series of

standard working solutions of the reference compounds,

including those of quality control (QC) samples, were

prepared by diluting the stock solutions with methanol. The

internal standards (ISs), naringin and mycophenolic acid, were

dissolved in methanol (1.0 mg/ml) and then diluted with

methanol to obtain the working solutions that contained

20 μg/ml naringin and 150 ng/ml mycophenolic acid,

respectively. All the solutions were stored at 4°C and were

brought to room temperature (about 22°C) before use.

2.3.2 Pretreatment of plasma and tissue
homogenate samples

Blood of the mice (blank or received oral GQD) was mixed

fully with heparin and 5% volume of ascorbic acid solution

(4 mg/ml, for increasing the stability of the constituents).

Then the mixed solution was centrifuged at 4°C for 10 min at

the speed of 8,000 rpm to obtain plasma. The plasma samples for

calibration curves and QCs were prepared by adding 2 µl the

corresponding mixed working solutions of the reference

constituents to 38 µl blank plasma.

Sequentially, 10 µl mixed working solution of the ISs, 20 µl

ammonium formate aqueous solution (100 mM), and 120 µl

acetonitrile were added to 40 µl the plasma samples (for

standard curves or QCs, or the plasma samples obtained from

mice that received oral GQD). After shaking for 3 min, the

mixtures were centrifuged for 10 min at 4°C at the speed of

14,000 rpm. 180 µl supernatant was collected and then dried with

nitrogen flow at 40°C. The residue was dissolved in 90 µl solution

composed of methanol, water, and acetic acid at the volume ratio

of 70: 29.9: 0.1. The solution was mixed by shaking for 1 min, and

then centrifuged for 10 min at 4°C at the speed of 14,000 rpm.

The supernatant was collected and injected in the LC-MS/MS

system for analysis.

The liver and the colon homogenates were prepared with

10 times (V:W) the volume of ascorbic acid solution (200 μg/ml).
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Then the homogenates were pretreated as plasma to obtain the

tissue samples for LC-MS/MS analysis.

2.3.3 Instrumentation and conditions
The LC-MS/MS analysis was performed using an ACQUITY

UPLC (Waters, USA) equipped with an autosampler, and an API

QTRAP 6500 + mass spectrometer (Applied Biosystems, USA)

equipped with an electrospray ionization source.

The chromatographic separation was performed using an

ACQUITY BEH C18 column (2.1 × 100 mm, 1.7 μm), a product

of Waters technology (Shanghai) Co., LTD (Shanghai, China).

The mobile phase was composed of phase A (5 mM ammonium

acetate, containing 0.1% formic acid) and phase B (methanol).

The elution gradient program was set as below: 0 min, 10% B;

1 min, 40% B; 5 min, 60% B; 10 min, 70% B; 12 min, 90% B;

18 min, 90% B; 18.1 min, 10% B; 20 min, 10% B. The flow rate

was 0.3 ml/min. The column temperature and autosampler

temperature were maintained at 40 and 4°C, respectively. The

injection volume was 2 μl.

The working parameters for the mass spectrometer were set

as follows: ion-source temperature 500°C; spray voltage 4500 V

(+) or 4500 V (-), respectively; atomization gas pressure 50 psi;

auxiliary gas pressure 50 psi, and curtain gas pressure 35 psi.

Naringin and mycophenolic acid were used as the positive and

negative IS, respectively. Quantification was performed using the

multiple reactions monitoring mode. The parameters including

declustering potential, collision energy, collision cell exit

potential, and transitions for the analytes were listed in

Supplementary Table S1.

2.3.4 Linear ranges of the constituents and
methodological validation

The calibration plasma samples were prepared by adding the

mixed working solutions of the constituents to blank plasma at

eight concentrations. The linear ranges of the constituents were

listed in Table 1. In the liver homogenate samples, the linear

range of baicalein was within 5.0–640.0 ng/ml, glycyrrhizic acid

was within 25.0–3,200.0 ng/ml, and the linear ranges of other

constituents were the same as those in the plasma samples.

Full and partial methodological validation were performed

respectively for the plasma and the liver homogenate samples in

terms of specificity, calibration curves, lower limit of

quantification (LLOQ), precision and accuracy, carry over,

recovery, matrix effect, dilution linearity, and stability (see

Methodological validation in supplementary materials).

2.4 Preparation and quality control of
GQD extract

The herbal pieces were extracted with 10 times volume of

boiling water for twice. For the first time, the herbal piece of PR

was decocted separately for 20 min, and then decocted together

with SR, CR, and GR at the weight ratio of 8: 3: 3: 2 for another

TABLE 1 Standard curves, linear ranges, and lower limit of quantification (LLOQ) of the constituents of Gegen-Qinlian decoction in blank mouse
plasma (n = 6).

Constituents Regression equations r Linearity ranges (ng/ml) LLOQs (ng/ml)

Puerarin y = 0.00867x+0.0554 0.9952 2.5–320.0 2.5

Daidzein y = 0.012x+0.0719 0.9961 2.0–256.0 2.0

Daidzin y = 0.0122x+0.02 0.9969 1.6–200.0 1.6

Baicalin y = 0.0139x-0.0181 0.9964 5.0–640.0 5.0

Wogonoside y = 0.00366x+0.0156 0.9963 5.0–640.0 5.0

Baicalein y = 0.00617x-0.00792 0.9952 3.9–500.0 3.9

Wogonin y = 0.0512x+0.033 0.9963 1.0–128.0 1.0

Berberine y = 0.0647x+1.42 0.9957 1.0–128.0 1.0

Palmatine y = 0.323x+1.69 0.9971 0.3–32.0 0.3

Coptisine y = 0.0309x+0.106 0.9968 0.5–64.0 0.5

Epiberberine y = 0.0217x+0.399 0.9954 1.0–128.0 1.0

Magnoflorine y = 0.22x+0.0403 0.9953 0.5–64.0 0.5

Demethyleneberberine y = 0.0403x+0.00894 0.9952 1.0–128.0 1.0

Berberrubine y = 0.11x-0.0508 0.9958 0.8–100.0 0.8

Jatrorrhizine y = 0.0665x+0.203 0.9975 0.5–64.0 0.5

Liquiritin y = 0.111x+0.11 0.9960 3.1–400.0 3.1

Liquiritigenin y = 0.0812x+1.16 0.9974 3.1–400.0 3.1

Glycyrrhizic acid y = 0.00101x-0.00818 0.9951 30.0–3,840.0 30.0

Glycyrrhetinic acid y = 0.0027x+0.0138 0.9956 25.0–3,200.0 25.0
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1 h. The aqueous extract was filtered through four layers of gauze.

Then the residue was extracted again with 10 times volume of

water for 1 h. The filtrates obtained from the two decoctions were

combined and vacuum-dried at 60°C to obtain the powder of

GQD extract.

The contents of 17 constituents in the GQD extract were

measured. Briefly, the extract powder was dissolved in the water

solution of methanol (50%, V/V) at the concentration of 1 mg/ml.

The solution was treated with ultrasound for 60 min and then

centrifuged at 14, 000 rpm for 10 min. The obtained supernatant

was diluted andmixed with the solution of the ISs, and then injected

into a LC-MS/MS system for quantitative analysis. The

instrumentation and conditions was mostly the same as those

described in section “2.3.3”. However, the elution gradient

program was set as below: 0 min, 10% B; 1 min, 10% B; 5 min,

40%B; 11min, 60%B; 15min, 70%B; 24min, 90%B; 26.1min, 90%

B; 28 min 10% B. The mass spectrometry parameters of the

constituents and ISs were listed in Supplementary Table S2. The

LC-MS/MS method was established by our group and had been

verified to meet the requirements of quantitative analysis of the

constituents in GQD extract.

2.5 Pharmacokinetics of the major
constituents of oral GQD in mice

Fifty-four Kunming mice were randomly divided into nine

groups according to body weight and gender (3 male and three

female in each group). Each group was orally administered with

water solution (0.2ml/10 g body weight) of the GQD extract powder

at the dosage of 6.1 g/kg body weight. The dosage of GQD extract

powder equals to 18 g/kg herbal pieces of GQD, which is equivalent

to its clinical dosage. At each designed time point (0.08, 0.25, 0.5, 1, 2,

4, 8, 12, and 24 h) after oral administration, six mice were

anesthetized with ether, and blood was collected from the portal

vein (about 0.2 ml, aspirated in a 1 ml heparinized syringe) and then

the systemic circulation (about 0.2 ml, collected in heparinized tubes

after removal of the eyeball) of the mice to prepare plasma samples,

and the livers and the colons were removed to prepare respective

homogenate. After pretreatment, the concentrations of 19 major

constituents of GQD in each sample were measured by the validated

LC-MS/MS method (see “2.3”). Then the C-T curves of the

constituents in the plasma and the tissue homogenates were

respectively drawn and their pharmacokinetic parameters were

respectively calculated.

2.6 Integrated pharmacokinetics of the
constituents

Above all, the AUC0–24 h values of the constituents were

summed up to obtained the ∑AUC0–24 h value (Eq. 1). Then, the

ratio of the AUC0–24 h value of each constituent to∑AUC0–24 h was

calculated and defined as the weight coefficient of the constituent

(Wj, Eq. 2). After that, the plasma concentrations of the constituents

at each time point were multiplied by respective weight coefficients

and summed up to obtain the concentration of the “integrated

constituent” at each time point (Ct, Eq. 3). Finally, the

pharmacokinetic parameters of the “integrated constituent” were

calculated based on its C-T curves.

∑AUC0−24 h �AUC0−24 h, puerarin+AUC0−24 h , daidzein

+AUC0−24 h , daidzin +AUC0−24 h, baicalin

+ AUC0−24 h , wogonoside+AUC0−24 h , baicalein

+AUC0−24 h , AUC0−24 h , wogonin +AUC0−24 h, berberine

+AUC0−24 h , palmatine+AUC0−24 h , coptisine

+AUC0−24 h , epiberberine+AUC0−24 h , magnoflorine

+AUC0−24 h , demethyleneberberine+AUC0−24 h , berberrubine

+AUC0−24 h , jatrorrhizine + AUC0−24 h , liquiritin

+ AUC0−24 h , liquiritigenin +AUC0−24 h, glycyrrhizic acid

+AUC0−24 h , glycyrrhetinic acid

(1)
Wj � AUCj 0−24 h/∑AUC0−24 h (2)

Ct � ∑(Wj × Cj) (3)

In Eq. 2, j represented one of the 19 GQD constituents; Wj

represented the ratio of the AUC0–24 h value of a GQD

constituent to ∑AUC0–24 h. In Eq. 3, Cj represented the real

concentration of a GQD constituent at a designated time point,

while Ct represented the concentration of the “integrated

constituent” of GQD at the designated time point.

2.7 Data analysis

A non-compartmental analysis using the WinNonlin®

software (Pharsight, CA, USA) was performed to obtain the

pharmacokinetic parameters including peak concentration

(Tmax), time to reach peak concentration (Cmax), area under

the concentration time curve (AUC0–24 h), elimination half-life

(T1/2), and mean retention time (MRT). It should be noted that

the pharmacokinetic parameters of a GQD constituent was

calculated based on its average concentration in six mice at

each time point. The results were expressed as mean ± SD.

3 Results

3.1 Methodological validation for plasma
samples

There was no endogenous interference of the GQD constituents

and the ISs in the blank plasma matrix (Supplementary Figure S1).

The LLOQ (Table 1) was 1.6–2.5 ng/ml for three constituents

(puerarin, daidzein, and daidzin) of PR, 1.0–5.0 ng/ml for four

constituents (baicalin, baicalein, wogonoside, and wogonin) of SR,
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0.3–1.0 ng/ml for eight constituents (berberine, epiberberine,

palmatine, coptisine, jatrorrhizine, magnoflorine,

demethyleneberberine, and berberrubine) of CR, 3.1 ng/ml for two

flavonoids (liquiritin and liquiritigenin) and 25.0–30.0 ng/ml for two

saponins (glycyrrhizic acid and glycyrrhetinic acid) of GR. As shown

in Table 1, the ratio of the upper limit of quantification (ULOQ) to the

LLOQ of each constituent was 128 times, and the linearity of each

constituent was good within its concentration range. As shown in

Supplementary Table S3, at the concentration of LLOQ, the intraday

precision of each constituent was 4.2%–19.1%, the interday precision

was 1.4%–14.8%, the intraday accuracy was 84.3%–118.6%, while the

interday accuracy was 91.2%–114.4%; as for other concentrations, the

intraday precision was 1.0%–12.5%, the interday precision was 0.8%–

12.0%, the intraday accuracy was 85.5%–114.3%, while the interday

accuracy was 90.1%–109.8%. The average peak area of each

constituent in the double blank plasma samples was less than

12.1% of its corresponding peak area in the LLOQ samples, while

the response of the ISswas less than 2.7%of that in the LLOQsamples,

indicating there were no significant carry over for both the

constituents and the ISs (Supplementary Table S4). As shown in

Supplementary Table S5, the average recovery of each constituent was

85.1%–112.1% with RSD lower than 13.7%; the matrix effect was

86.5%–114.6% with RSD lower than 11.4%, indicating acceptable

recovery and matrix effect of the constituents. As shown in

Supplementary Table S6, after being placed at -80°C for 7 days,

the accuracy of each constituent was 86.0%–114.2% with RSD lower

than 13.4%; after being placed at 4°C for 24 h, the accuracy was

88.0%–113.5%withRSD lower than 14.5%; after being placed at room

temperature (about 22°C) for 2 h, the accuracy was 85.7%–113.0%

with RSD lower than 13.1%, indicating that the constituents were

stable during the sampling and analyzing procedure. In addition, the

accuracy of the concentrations measured after 10 times dilution was

102.2%–114.6% with RSD lower than 11.7% (Supplementary Table

S7), indicating good dilution linearity of the constituents.

3.2 Partial methodological validation for
liver samples

The LLOQs (Supplementary Table S8) were mostly the same

as those in plasma samples, except that the LLOQ of glycyrrhizic

acid and baicalein was 25.0 and 5.0 ng/ml, respectively. In

addition, there was no endogenous interference of the GQD

constituents and the ISs in the blank liver homogenate matrix

(Supplementary Figure S2); the linearity of each constituent was

good within its concentration range (Supplementary Table S8);

the intraday precision and accuracy of each constituent was

acceptable (Supplementary Table S9); there were no

significant carry over for both the constituents and ISs

(Supplementary Table S10); the constituents had good

recovery and negligible matrix effect (Supplementary Table

S11); the constituents were stable during the sampling and

analyzing procedure (Supplementary Table S12).

3.3 Preparation and contents of the major
constituents in GQD extract powder

A total of 992 g herbal pieces were decocted with a yield of 33.9%

to obtain 336 g of GQD extract powder. The total and extracted ion

chromatograms of GQD constituents in water solution were shown

in Supplementary Figure S3. As shown in Table 2, the contents of

17 major constituents were measured in GQD extract powder.

Baicalin had the highest content among the constituents. As for

the three constituents of PR, puerarin had the highest content, and

the content of daidzinwasmuchhigher than daidzein. Among the four

constituents of SR, the content of baicalin was the highest, followed by

wogonoside, both were much higher than baicalein and wogonin,

respectively. Among the seven constituents of CR, the content of

berberine was the highest, followed by several other alkaloids such as

epiberberine, and the content of demethyleneberberine was much

lower than above alkaloids. In terms of the GR, the content of

glycyrrhizic acid was the highest, followed by liquiritin and

isoliquiritin, while glycyrrhetinic acid was not detected.

3.4 Pharmacokinetics of the constituents
of oral GQD in mice

3.4.1 Pharmacokinetics of the constituents in the
portal vein

The complete C-T curves of 18 GQD constituents (except

demethyleneberberine) were obtained from the portal vein

samples of the mice (Figure 1). The pharmacokinetic parameters

TABLE 2 Contents of 17 constituents in the dried powder of Gegen-
Qinlian decoction extract (mean ± SD, n = 3).

Compounds Content (mg/g powder)

Baicalin 59.87 ± 6.30

Puerarin 43.60 ± 0.60

Berberine 17.51 ± 1.48

Daidzin 15.15 ± 0.99

Wogonoside 11.12 ± 0.81

Glycyrrhizic acid 9.07 ± 0.33

Epiberberine 7.30 ± 0.64

Coptisine 6.22 ± 0.32

Palmatine 5.38 ± 0.49

Jatrorrhizine 3.69 ± 0.14

Liquiritin 2.42 ± 0.16

Magnoflorine 1.97 ± 0.17

Baicalein 1.15 ± 0.03

Daidzein 0.73 ± 0.04

Isoliquiritin 0.61 ± 0.06

Wogonin 0.33 ± 0.03

Demethyleneberberine 0.24 ± 0.02
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were listed in Table 3. The results showed that daidzein and puerarin

derived fromPR, baicalin andwogonoside derived from SR, berberine

and epiberberine derived from CR, glycyrrhetinic acid and

liquiritigenin derived from GR, had relatively high exposure levels

(Cmax and AUC0–24 h) in the portal vein of the mice. These eight

constituents could thus be considered as the major absorbed

constituents of GQD after oral administration. Among these

constituents, daidzein and puerarin were absorbed the fastest with

Tmax at 0.25–0.50 h; wogonoside, epiberberine, and liquiritigenin had

Tmax at 2.0 h, while baicalin, berberine, and glycyrrhetinic acid was

the slowest in terms of absorption, with the Tmax at 4.0 h. Among

these constituents, berberine had the longest T1/2, which was at 8.0 h;

the T1/2 of epiberberine, glycyrrhetinic acid, and liquiritigenin were

within 4.0–6.0 h, while the T1/2 of puerarin, daidzein, baicalin, and

wogonoside were within 2.0–3.0 h.

3.4.2 Pharmacokinetics of the constituents in the
systemic circulation

Except for demethyleneberberine, berberrubine,

liquiritigenin, and glycyrrhizic acid, the complete C-T curves

of 15 GQD constituents were obtained in the systemic circulation

(Figure 2). The pharmacokinetic parameters of the constituents were

listed in Table 4. The results showed that puerarin and daidzein

derived fromPR, baicalin andwogonoside derived from SR, berberine

and epiberberine derived from CR, and glycyrrhetinic acid derived

fromGRhad relatively high exposure levels in the systemic circulation

of the mice. Therefore, these seven constituents were the major GQD

constituents entering the systemic circulation. Among these

constituents, daidzein and puerarin were absorbed the fastest with

Tmax at 0.25–0.50 h; the Tmax of berberine was 1.0 h; the Tmax of

epiberberine was 0.08 h, but actually the C-T curve of epiberberine

showed double peak, with the time to reach the second peak at 1.0 h;

the Tmax of baicalin, wogonoside and glycyrrhetinic acid was all at

4.0 h. Among these constituents, the T1/2 of daidzein is 1.50 h, the T1/2
of puerarin, baicalin, and wogonoside was within 3.0–4.0 h, while

glycyrrhetinic acid, berberine, and epiberberine were all about 6.0 h.

3.4.3 Pharmacokinetics of the constituents in the
livers

Complete C-T curves of 19 GQD constituents were obtained

in the liver samples (Figure 3). The pharmacokinetic parameters

of the constituents were shown in Table 5. The results showed

FIGURE 1
Concentration-time curves of the constituents of Gegen-Qinlian decoction in the portal vein of the mice received the oral Gegen-Qinlian
decoction at the dosage of 6.1 g/kg (mean ± SD, n = 6). (A), constituents derived from Puerariae Lobatae Radix; (B), constituents derived from Scutellariae
Radix; (C), constituents derived from Coptidis Rhizoma; (D), constituents derived from Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle.
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that puerarin and daidzein derived from PR, baicalein, baicalin

and wogonin derived from SR, berberine, epiberberine, and

berberrubine derived from CR, glycyrrhetinic acid and

liquiritigenin derived from GR had relatively high exposure

levels in the livers of the mice. Therefore, these ten

constituents were the major GQD constituents distributed in

the livers. Among these constituents, daidzein, puerarin, and

liquiritigenin were absorbed the fastest with Tmax at 0.25–0.50 h;

the Tmax of baicalin was 2.0 h; the Tmax of baicalein, wogonin,

berberine, epiberberine, berberrubine and glycyrrhetinic acid was

all 4.0 h. In general, the T1/2 values of the GQD constituents in

the livers were quite different. The constituents of SR had the

shortest T1/2: baicalin was 1.0–2.0 h, baicalein and wogonin were

2.0–3.0 h; the T1/2 of the constituents of PR were longer than that

of SR: puerarin and daidzein have T1/2 within 3.0–4.0 h; the T1/2

of liquiritigenin was 3.0–4.0 h, glycyrrhetinic acid was 6.0–7.0 h;

the constituents of CR had the longest T1/2: berberine was about

10.0 h, while epiberberine and berberrubine were up to

15.0–19.0 h.

3.4.4 Pharmacokinetics of the constituents in
the colons

In the colon samples, complete C-T curves of all the 19 GQD

constituents were obtained (Figure 4). The pharmacokinetic

parameters of the constituents were listed in Table 6. The

results showed that puerarin and daidzein derived from PR,

baicalin, baicalein and wogonoside derived from SR, berberine,

epiberberine, palmatine, coptisine, jatrorrhizine, and

magnoflorine derived from CR, glycyrrhetinic acid and

glycyrrhizic acid derived from GR had relatively high

exposure levels in the colons of the mice. Therefore, these

thirteen constituents were the major constituents of GQD

distributed in the colons. Among these constituents, daidzein,

baicalin, and wogonoside were absorbed the fastest with Tmax at

1.0 h; the Tmax of glycyrrhizic acid was 2.0 h; the Tmax of puerarin,

baicalein, berberine, epiberberine, palmatine, coptisine,

jatrorrhizine, magnoflorine and glycyrrhetinic acid were all at

4.0 h. In general, the T1/2 values of the GQD constituents in the

colons were quite different. The constituents of PR had short T1/2:

the T1/2 of puerarin and daidzein were within 1.0–4.0 h. The T1/2

of baicalin and wogonoside were up to 15.0–19.0 h, but baicalein

and wogonin were within 2.0–3.0 h. The T1/2 of the alkaloid

constituents derived from CR were mostly within 3.0–5.0 h. The

T1/2 of glycyrrhizic acid was within 3.0–4.0 h, while the T1/2 of

glycyrrhetinic acid was within 4.0–5.0 h.

3.4.5 Comparison of the AUC values
As shown in Table 7, the AUC values of some GQD

constituents in the portal vein, the livers, and the systemic

circulation were significantly different. The concentration of

wogonoside in the livers was much lower than that in the

portal vein or the systemic circulation. However, the

concentrations of daidzein, baicalein, wogonin, berberine,

palmatine, coptisine, and jatrorrhizine in the livers were more

than 10 times higher than those in the systemic circulation; the

concentrations of liquiritin and glycyrrhetinic acid in the livers

TABLE 3 Pharmacokinetic parameters of the constituents in the portal vein of the mice received oral Gegen-Qinlian decoction extract at the dosage
of 6.1 g/kg (mean ± SD, n = 6).

Constituents Tmax (h) Cmax (ng/ml) T1/2 (h) AUC0–24 h (h·ng/mL) MRT (h)

Daidzin 0.25 76.9 1.8 151.0 2.0

Puerarin 0.50 1992.0 2.9 6709.5 3.2

Daidzein 0.25 3,455.2 2.6 4464.1 2.3

Baicalin 4.0 8146.7 2.0 46280.9 4.5

Wogonoside 2.0 2216.0 2.6 13370.9 4.1

Baicalein 2.0 381.0 1.3 1761.7 3.8

Wogonin 2.0 1223.3 1.0 4509.1 3.3

Berberine 4.0 190.9 8.0 1419.8 5.5

Epiberberine 2.0 168.2 5.6 1245.1 5.2

Palmatine 4.0 46.7 3.0 325.4 4.8

Coptisine 4.0 25.5 4.7 180.8 4.8

Jatrorrhizine 4.0 16.6 6.3 115.6 4.8

Magnoflorine 0.25 38.3 1.2 160.9 2.6

Berberrubine 0.25 10.3 5.1 67.0 4.4

Liquiritigenin 2.0 151.0 5.9 570.1 3.6

Liquiritin 0.25 66.9 2.5 110.1 2.5

Glycyrrhetinic acid 4.0 643.3 4.7 5334.4 7.0

Glycyrrhizic acid 2.0 77.1 2.9 422.1 3.7
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were about 5 times higher than those in the systemic circulation;

in addition, demethyleneberberine, berberrubine, liquiritigenin,

and glycyrrhizic acid were detected in the livers but not in the

systemic circulation. The above results suggested that these

constituents were accumulated in the livers.

3.4.6 Integrated pharmacokinetics of the GQD
constituents

The C-T curves of the GQD “integrated constituent” were

shown in Figure 5, and the pharmacokinetic parameters were

listed in Table 8. The GQD “integrated constituent” reached peak

concentration at 4.0 h in the portal vein, the systemic circulation,

the livers, and the colons, with half-lives of 1.5–4.1 h and mean

retention time of 4.5–6.3 h, respectively. The concentrations of

the “integrated constituent” in the livers and the colons were

much higher than that in the systemic circulation, indicating its

accumulation in these tissues. Furthermore, the concentration of

the GQD “integrated constituent” in the colons was

approximately 10 times higher than in the livers, suggesting

that the colon might be a more important target tissue for GQD

than the liver.

4 Discussion

The LC-MS/MS method established in this study could be

used to simultaneously and quantitatively detect the

concentrations of 19 GQD constituents in the plasma and

tissue homogenate samples. The method had no endogenous

interference and therefore had good specificity. The method had

high sensitivity. The LLOQ of the constituents met the

requirements of pharmacokinetic studies, that is, the

constituent in the samples obtained at least three to five T1/2

after oral administration or the constituent with concentration

that were 1/10-1/20 of its Cmax could be determined. In addition,

the items including intraday and interday precision and accuracy,

recovery, matrix effect and stability of each constituent were

good, and there was no significant residue of the constituents.

FIGURE 2
Concentration-time curves of the constituents of Gegen-Qinlian decoction in the systemic circulation of the mice received the oral Gegen-
Qinlian decoction at the dosage of 6.1 g/kg (mean ± SD, n = 6). (A), constituents derived from Puerariae Lobatae Radix; (B), constituents derived from
Scutellariae Radix; (C), constituents derived from Coptidis Rhizoma; (D), constituents derived from Glycyrrhizae Radix Et Rhizoma Praeparata Cum
Melle.
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TABLE 4 Pharmacokinetic parameters of the constituents in the systemic circulation of themice received oralGegen-Qinlian decoction at the dosage
of 6.1 g/kg (mean ± SD, n = 6).

Constituents Tmax (h) Cmax (ng/ml) T1/2 (h) AUC0–24 h (h·ng/mL) MRT (h)

Daidzin 0.25 49.0 1.8 85.7 1.8

Puerarin 0.50 1581.3 3.4 5234.4 3.3

Daidzein 0.25 1335.6 1.5 1482.5 1.9

Baicalin 4.0 1452.0 3.1 8667.1 5.1

Wogonoside 4.0 441.2 3.9 2830.4 4.6

Baicalein 4.0 26.7 6.3 228.6 6.8

Wogonin 2.0 64.7 1.5 300.4 3.6

Berberine 1.0 85.4 5.3 419.4 5.4

Epiberberine 0.08 86.9 5.3 479.8 5.8

Palmatine 1.0 13.7 7.2 53.3 5.5

Coptisine 0.25 12.6 10.8 35.2 6.4

Jatrorrhizine 0.08 10.1 4.3 26.3 3.9

Magnoflorine 0.50 22.4 1.9 94.9 2.6

Liquiritin 0.25 35.4 1.5 52.9 1.3

Glycyrrhetinic acid 4.0 195.5 6.2# 2122.9 8.4

#.the parameter might be inaccurately calculated due to incomplete elimination of the constituents.

FIGURE 3
Concentration-time curves of the constituents ofGegen-Qinlian decoction in the livers of themice received the oralGegen-Qinlian decoction
at the dosage of 6.1 g/kg (mean ± SD, n = 6). (A), constituents derived from Puerariae Lobatae Radix; (B), constituents derived from Scutellariae Radix;
(C), constituents derived from Coptidis Rhizoma; (D), constituents derived from Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle.

Frontiers in Pharmacology frontiersin.org10

Lu et al. 10.3389/fphar.2022.996143

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.996143


Pharmacokinetic analysis showed that the concentrations of

most constituents were within their linear ranges of the

established method. Because the method had good dilution

linearity, individual samples with concentrations higher than

the ULOQs could also be accurately determined after dilution.

The previously reported methods could be used to

simultaneously measure the concentrations of only 8-12 GQD

constituents (Zhang et al., 2014; Xu B. L. et al., 2015; Zhang et al.,

2015; Ling et al., 2017). An excellent reported LC-MS/MS

method allowed simultaneous measurement of the

concentrations of 42 GQD constituents (Qiao et al., 2018).

However, the method was developed to analyze plasma

samples and its applicability to tissue samples is unclear.

Puerarin, daidzein and daidzein are representative

constituents of PR. Puerarin was the most exposed

constituents of GQD in the colons, which reached

concentration as high as 61,585.3 ng/g in the colons. In

addition, the concentration of puerarin in the colons was

much higher than that in the portal vein (1992.0 ng/ml), the

systemic circulation (1581.3 ng/ml) and the livers (2871.7 ng/g),

suggesting that the colon might be the most important target

tissue of puerarin. Puerarin is extensively metabolized into

66 metabolites after oral absorption (Shang et al., 2017),

explaining why the concentrations of puerarin in portal vein,

liver and systemic circulation were significantly lower than that

in the colons. In vivo experiments have confirmed that oral

administration of 10 or 50 mg/kg puerarin alleviated dextran

sodium sulfate-induced colitis due to anti-inflammatory,

antioxidant, and intestinal epithelial cell barrier improving

effects (Jeon et al., 2020). In addition, oral administration of

6–24 mg/kg puerarin improved symptoms of rats with irritable

bowel syndrome, promoted colonic epithelial cell proliferation

and repaired colonic mucosal barrier of the rats (Wang et al.,

2021). The content of daidzin was much higher than the content

of daidzein in GQD extract, while the concentration of daidzein

was significantly higher than the concentration of daidzin in

portal vein. It was reported that in the process of intestinal

absorption, most of daidzin could be metabolized by intestinal β-
glucosidases (Setchell et al., 2002). This was the reason why

daidzin had the highest concentration in the colons. The

concentration of daidzein in the livers reached a

concentration as high as 12,660.3 ng/g, which is beneficial for

daidzein to regulate glycolipid metabolism in the liver (Das et al.,

2018) and protect the liver from injury (Yu et al., 2020). Daidzein

was enriched in the livers because it is a major metabolite of both

puerarin (Shang et al., 2017) and daidzein (Wilkinson et al.,

2003).

Baicalin, wogonoside, baicalein, and wogonin are the

representative constituents of SR. In this study, the highest

concentration of baicalin in the livers reached 5713.3 ng/g,

and the highest concentration in the colons reached

3,457.7 ng/g, suggesting that both the liver and the colon

TABLE 5 Pharmacokinetic parameters of the constituents in the livers of themice received the oralGegen-Qinlian decoction extract at the dosage of
6.1 g/kg (mean ± SD, n = 6).

Constituents Tmax (h) Cmax (ng/g
liver)

T1/2 (h) AUC0–24 h (ng·h/g
liver)

MRT (h)

Daidzin 0.50 54.1 3.4 166.4 3.6

Puerarin 0.50 2871.7 4.0 8082.1 3.8

Daidzein 0.25 12,660.3 3.6 25330.7 3.3

Baicalin 2.0 5713.3 1.7 17447.0 3.7

Wogonoside 4.0 28.5 16.2 424.5 10.3

Baicalein 4.0 9020.0 2.3 51,101.1 4.3

Wogonin 4.0 838.9 2.6 6362.8 5.0

Berberine 4.0 427.2 10.1# 4291.2 8.3

Epiberberine 4.0 362.7 15.7# 4738.2 9.7

Palmatine 2.0 105.5 4.6 921.7 6.3

Coptisine 2.0 214.4 3.7 1901.4 5.8

Demethyleneberberine 4.0 47.7 11.1 685.2 9.4

Jatrorrhizine 4.0 136.2 2.4 1320.3 6.6

Magnoflorine 0.25 53.4 5.3 224.1 5.3

Berberrubine 4.0 185.5 18.2# 3152.5 11.0

Liquiritigenin 0.25 318.8 3.9 1783.9 4.2

Liquiritin 4.0 22.5 19.7 268.4 9.8

Glycyrrhetinic acid 4.0 910.1 6.6# 9306.5 8.6

Glycyrrhizic acid 1.0 147.5 3.8 526.0 2.8

#, the parameters might be inaccurately calculated due to incomplete elimination of the constituents.
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could be important target tissues of baicalin. Studies have

confirmed that baicalin has the effects of protecting hepatic

injury (Shi L. et al., 2018), improving hepatic steatosis (Dai

et al., 2018), and relieving ulcerative colitis (Shen et al., 2019).

Interestingly, the concentration of baicalin in the portal vein was

even higher than those in the colons and the livers. This is

because a portion of baicalein could be metabolized to baicalin

after absorption and then released into the portal vein (Akao

et al., 2000). The highest concentration of baicalein in the livers

reached 9020.0 ng/g, which is beneficial for its curative effects on

liver injury (Dai et al., 2021) and liver fat accumulation (Sun

et al., 2020). Baicalin can be metabolized to baicalein by the liver

(Liu et al., 2008), resulting in accumulation of baicalein in the

livers. It also had a high exposure level (1917.5 ng/g) in the

colons, so it could also play an anti-ulcerative colitis role in the

colon (Li et al., 2021). It is worth noting that the concentration of

baicalin in the systemic circulation was 1452.0 ng/ml, which was

lower than its highest concentration in the livers and the portal

vein (8,146.7 ng/ml); while the highest concentration of baicalein

in the systemic circulation (26.7 ng/ml) was far below its highest

concentration in the livers and the portal vein (381.0 ng/ml). It

has long been found that baicalin can be hydrolyzed by intestinal

bacteria into baicalein, absorbed in the form of baicalein, and

then metabolized into baicalin in intestinal epithelial cells or the

liver and then enter the systemic circulation (Akao et al., 2000;

Zhang et al., 2005; Zhang et al., 2007). The results may explain

why the concentration of baicalin in the portal vein, the systemic

circulation, and the colons were higher than that of baicalein. On

one hand, baicalin can be metabolized to baicalein (Liu et al.,

2008); on the other hand, baicalin can be actively excreted into

the bile by the efflux transporter including multidrug resistance-

associated protein (MRP) and breast cancer resistance protein

(BCRP) (Zhang L. et al., 2011), explaining why the concentration

of baicalin in the livers was lower than that of baicalein. In

general, the concentrations of wogonoside and wogonin in the

livers and the colons were much lower than those of baicalin and

baicalein, therefore, their roles in GQD were not as significant as

those of baicalin and baicalein.

FIGURE 4
Concentration-time curves of the constituents of Gegen-Qinlian decoction in the colons of the mice received the oral Gegen-Qinlian
decoction at the dosage of 6.1 g/kg (mean ± SD, n = 6). (A), constituents derived from Puerariae Lobatae Radix; (B), constituents derived from
Scutellariae Radix; (C), constituents derived from Coptidis Rhizoma; (D), constituents derived from Glycyrrhizae Radix Et Rhizoma Praeparata Cum
Melle.
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TABLE 6 Pharmacokinetic parameters of the constituents in the colons of the mice received the oral Gegen-Qinlian decoction extract at the dosage
of 6.1 g/kg (mean ± SD, n = 6).

Constituents Tmax (h) Cmax (ng/g
colon)

T1/2 (h) AUC0–24 h (ng·h/g
colon)

MRT (h)

Daidzin 1.0 113.6 11.0 1083.5 9.9

Puerarin 4.0 61585.3 1.3 406163.6 5.9

Daidzein 1.0 2293.1 3.5 9114.6 3.5

Baicalin 1.0 3457.7 18.6# 39145.1 9.9

Wogonoside 1.0 876.3 15.5# 9412.3 9.7

Baicalein 4.0 1917.5 2.6 13011.6 5.8

Wogonin 4.0 534.8 3.2 4182.0 6.1

Berberine 4.0 6226.0 3.5 43093.5 6.0

Epiberberine 4.0 5705.3 3.3 36717.4 5.9

Palmatine 4.0 4719.0 3.8 29379.3 5.9

Coptisine 4.0 3136.5 4.3 18699.5 5.6

Demethyleneberberine 4.0 395.1 2.4 3847.0 8.5

Jatrorrhizine 4.0 2096.6 5.0 13120.3 6.2

Magnoflorine 4.0 2152.3 2.1 11227.0 5.0

Berberrubine 4.0 293.1 14.3 2971.2 10.1

Liquiritigenin 4.0 386.0 3.4 2380.9 4.9

Liquiritin 0.50 41.2 19.5 504.2 10.1

Glycyrrhetinic acid 4.0 1834.8 4.4 11419.8 7.0

Glycyrrhizic acid 2.0 2006.4 3.3 10890.5 4.8

#, the parameters might be inaccurately calculated due to incomplete elimination of the constituents.

TABLE 7 Comparison of the AUC0–24 h values of themajor constituents ofGegen-Qinlian decoction in the livers (AUC0–24 h liv) with those in the blood
of portal vein (AUC0–24 h por) or systemic circulation (AUC0–24 h cir).

Constituents AUC0–24 h liv/AUC0–24 h por AUC0–24 h liv/AUC0–24 h cir

Daidzin 1.1 1.9

Puerarin 1.2 1.5

Daidzein 5.7 17.1

Baicalin 0.4 2.0

Wogonoside 0.03 0.15

Baicalein 29.0 223.6

Wogonin 1.4 21.2

Berberine 3.0 10.2

Epiberberine 3.8 9.9

Palmatine 2.8 17.3

Coptisine 10.5 54.0

Demethyleneberberine NC NC

Jatrorrhizine 11.4 50.2

Magnoflorine 1.4 2.4

Berberrubine 47.1 NC

Liquiritigenin 3.1 NC

Liquiritin 2.4 5.1

Glycyrrhetinic acid 1.7 4.4

Glycyrrhizic acid 1.2 NC

NC, the ratio was not calculated because the constituent was only detected in the livers but not in the portal vein or systemic circulation of the mice.
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Alkaloids such as berberine, epiberberine, coptisine,

palmatine, jatrorrhizine, desmethyleneberberine, berberrubine,

and magnoflorine are representative constituents of CR. The

concentrations of each alkaloid in the portal vein and the

systemic circulation were low, but they were accumulated

significantly in the livers and the colons. Taking berberine as

an example, its highest concentrations in the portal vein and the

systemic circulation were 190.9 ng/ml and 85.4 ng/ml,

respectively, but reached 427.2 ng/g and 6226.0 ng/g in the

livers and the colons, respectively. Berberine is a common

substrate of both organic cation transporter and organic

anion-transporting polypeptide (Chen et al., 2015), which are

highly expressed in the intestine and the liver (Roth et al., 2012).

In addition, berberine accumulates in cells due to mitochondrial

membrane potential (Li et al., 2019). These mechanisms might

contribute to the enrichment of berberine as well as other

alkaloids in the colons and the livers. After oral

administration of CR or berberine, the exposure level (AUC)

of berberine in the livers can reach more than 200 times the

exposure level in the systemic circulation (Li et al., 2018; Zhao

et al., 2021a; Zhao et al., 2021b). In this study, the ratio was only

about 12 times, probably because the liver distribution of

berberine was reduced by the interaction among GQD

constituents. In general, after GQD was orally administered,

the concentration of the alkaloids in the livers was too low to

exert their potential pharmacological effects of protecting the

liver from injury and regulating glucose and lipid metabolism in

the liver (Bansod et al., 2021). In contrast, in addition to

berberine, epiberberine (5705.3 ng/g), coptisine (3,136.5 ng/g),

palmatine (4719.0 ng/g), jatrorrhizine (2096.6 ng/g), and

magnoflorine (2152.3 ng/g) had very high concentrations in

the colons. Studies have shown that berberine has significant

anti-inflammatory effect at the concentration of 10 μM (Zhai

et al., 2020), and in vivo experiments have proved that oral

administration of 40 mg/kg berberine for 7 days significantly

improved intestinal mucosal barrier function and reduce

FIGURE 5
Concentration-time curve of the “integrated constituent” in the plasma (the systemic circulation, the portal vein) and tissue (the liver, the colon)
samples of the mice received the oral Gegen-Qinlian decoction at the dosage of 6.1 g/kg (mean ± SD, n = 6).

TABLE 8 Pharmacokinetic parameters of the “integrated constituent” in the blood or tissue samples of the mice received the oral Gegen-Qinlian
decoction extract at the dosage of 6.1 g/kg.

Samples Tmax (h) Cmax# (ng/ml) T1/2 (h) AUC0–24 h* (h·ng/mL) MRT (h)

Systemic circulation 4.0 760.7 3.1 5300.6 4.6

Portal vein 4.0 4788.5 2.3 28015.1 4.5

Liver 4.0 4040.0 1.5 26820.6 4.5

Colon 4.0 38886.8 4.1 263328.7 6.3

#, the unit is “ng/g” for the liver and colon samples; *, the unit is “h·ng/g” for the liver and colon samples.
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inflammatory reaction in dextran sodium sulfate-induced

ulcerative colitis model mice (Dong et al., 2022), suggesting

that the colon might be the major target tissue for the

alkaloid constituents derived from CR after oral

administration of GQD.

Glycyrrhizic acid, glycyrrhetinic acid, liquiritin, and

liquiritigenin are the representative constituents of GR.

Glycyrrhetinic acid was the most exposed GR constituents

after oral administration of GQD. The highest concentration

of glycyrrhetinic acid in the livers (910.1 ng/g) and the colons

(1834.8 ng/g) was higher than that in the systemic circulation

(195.5 ng/ml), indicating that glycyrrhetinic acid was

accumulated in the livers and the colons. Studies have shown

that there are glycyrrhetinic acid-specific receptors on

hepatocytes (Stecanella et al., 2021), which may be related to

their accumulation in the livers; however, it is not clear whether

glycyrrhetinic acid receptors are also expressed in the colon.

Thus, the liver and the colon became important target tissues of

glycyrrhetinic acid. Studies confirmed that glycyrrhetinic acid

has hepatoprotective (Wu et al., 2021) and choleretic (Yan et al.,

2021) effects. Glycyrrhizic acid was the highest GR constituent in

GQD, but the concentration of glycyrrhizic acid in the portal

vein, the systemic circulation, and the livers was relatively low,

because most of glycyrrhizic acid could be metabolized by

intestinal bacteria into glycyrrhetinic acid (Kim et al., 2000).

Surprisingly, the concentration of glycyrrhizic acid in the colons

still reached 2006.4 ng/g, being beneficial for its anti-ulcerative

colitis effect (Hu et al., 2022).

Integrated pharmacokinetic studies showed that the GQD

“integrated constituent” reached peak concentration at 4.0 h in

the portal vein, the systemic circulation, the livers, and the colons,

with half-lives of 1.5–4.1 h and mean retention time of 4.5–6.3 h,

respectively. In addition, the constituents of GQD were

accumulated in the livers and the colons, which were

associated with the pharmacological effects of GQD: it exerts

systemic/absorptive effects on reducing blood sugar and lipid

absorption in the liver, and it has a local effect on intestinal

diseases in the colon. Furthermore, the concentration of the

“integrated constituent” in the colons was much higher than that

in the livers, suggesting that inflammatory intestinal diseases is

likely to be the main indication of oral GQD.

A deficiency of the pharmacokinetic study was that after 24 h

of oral administration of GQD, some constituents in the colons

and the livers were not completely eliminated, which might affect

the calculation of their T1/2 values in the tissues. However, the

decline in the C-T curves of the “integrated constituent” was

obvious. Therefore, the influence on the calculation of the T1/2

values of the “integrated constituent” was limited. The integrated

pharmacokinetics of GQD in rat plasma has been reported

(Zhang Q.-Y. et al., 2011). However, it should be pointed out

that in this study, only the complete C-T curves of eight GQD

constituents were obtained, while the major constituents

including puerarin, daidzein, glycyrrhetinic acid, and

epiberberine were not included in the study. In addition,

compared to other studies, the T1/2 values of the alkaloids

were significantly longer without reasonable explanations

[25.8–29.0 h (Zhang Q.-Y. et al., 2011) vs. 1.6–11.4 h (Qiao

et al., 2018) or 7.0–7.5 h (Zhang et al., 2014)].

Integrated pharmacokinetics was proposed in 2008 and it

promoted the studies on the pharmacokinetic properties of

multicomponent complexes such as TCMs (Li et al., 2008;

Hao et al., 2009; Zhu et al., 2012; He et al., 2014; Shi P. et al.,

2018). However, it should be noted that this strategy do not

distinguish the efficacy of each constituent. Therefore, in

addition to AUC values, it is recommended to apply

pharmacodynamic weighting coefficients when conducting

integrated pharmacokinetic studies. Since a TCM often has

multiple pharmacological effects, it may be necessary to

integrate specific C-T curves according to specific

pharmacological effects. Certainly, this modified strategy may

still be challenging for complex diseases, such as intestinal and

liver diseases in which GQD is effective.

5 Conclusion

The established method was quick, sensitive, and accurate

enough to analyze GQD constituents in plasma and tissue

homogenate samples quantitatively. The entire C-T curves of

18, 15, 19, and 19 constituents were respectively obtained from

the portal vein, systemic circulation, liver, and colon samples of

the mice after oral administration of GQD. Daidzein, baicalin,

and baicalein had relatively high exposure levels in the livers,

while puerarin, berberine, epiberberine, coptisine, palmatine,

jatrorrhizine, magnoflorine, glycyrrhizic acid, and

glycyrrhetinic acid were enriched in the colons. Given that

these constituents have significant biological activity, they

could be regarded as the major effective constituents of GQD

in treating colon or liver-related diseases, respectively. In

addition, the integrated pharmacokinetic properties of GQD

were studied. The GQD “integrated constituent” reached peak

concentration at 4.0 h in the portal vein, the systemic circulation,

the livers, and the colons, with half-lives of 1.5–4.1 h and mean

retention time of 4.5–6.3 h, respectively. Furthermore, the

concentration of the GQD “integrated constituent” in the

colons was approximately 10 times higher than that in the

livers, both of which were much higher than that in the

systemic circulation, indicating its accumulation in these

tissues, especially in the colons.

In conclusion, the tissue distribution and integrated

pharmacokinetic properties of major effective constituents of

oral GQD in mice were revealed in this study. The results of the

tissue distribution study would contribute to identifying the

major target tissues and effective constituents of GQD, while

the results of the integrated pharmacokinetic study would help to

explain the pharmacokinetic properties of oral GQD as a whole.
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