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Phyllomedusa bicolor (Phyllomedusidae), popularly known as the kambô in

Brazil, is a tree frog that is widely distributed in South American countries and is

known for producing a skin secretion that is rich in bioactive peptides, which are

often used in indigenous rituals. The biological effects of the skin secretionwere

observed in the first studies with indigenous communities. Over the last

six decades, researchers have been studying the chemical composition in

detail, as well as the potential pharmacological applications of its

constituents. For this reason, indigenous communities and health agents fear

the misuse of the kambô, or the inappropriate use of the species, which can

result in health complications or even death of users. This article seeks to

provide a transdisciplinary review that integrates knowledge regarding the

biology of P. bicolor, ethnoknowledge about the ritual of the kambô, and

the chemistry and pharmacology of the skin secretion of this species, in addition

to medical aspects of the indiscriminate use of the kambô. Furthermore, this

review seeks to shed light on perspectives on the future of research related to

the kambô.
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1 Natural history of Phyllomedusa
bicolor

1.1 The species: General aspects

Phyllomedusa bicolor is popularly known in English as the

bicolored treefrog, giant monkey frog, giant leaf frog, two-colored

leaf frog, waxy-monkey treefrog, and kambô (and also kampô) in

South American countries (Frost, 2021). The word kambô

commonly has two meanings in the literature. It can be used

for the treefrog P. bicolor and also for the shamanic indigenous

ritual (Caramaschi and Cruz, 2002; Frost, 2021). Its skin

secretion has been used for centuries by the natives of the

Western Amazon in shamanic healing and purification rituals

known as kambô (Erspamer-Falconieri et al., 1970) or kapum or

the “vacina do sapo” (toad vaccine in English). However, this

practice has expanded to urban centers as an alternative to

conventional medicine (Silva et al., 2019). It is a

pharmacologically important taxon because it is considered a

rich source of biologically active peptides, many of which have

already been identified or characterized, although it is estimated

that there are numerous compounds yet to be discovered

(Thompson and Williams, 2022).

Phyllomedusa bicolor was taxonomically described from

Suriname by Boddaert (1772) as Rana bicolor and, later,

Wagler (1830) proposed the genus Phyllomedusa to house this

species. Therefore, P. bicolor is the type species of its genus. The

name Phyllomedusa comes from the Greek “phyllo” (leaf or

foliage) and “medousa” (queen or protector), therefore

meaning “queen of the foliage” or “guardian of the foliage”

(Caramaschi and Cruz, 2002). Its specific name “bicolor”

refers to the two main colors of this frog (Boddaert, 1772):

dorsum dark green and belly white to yellow-white or cream.

Monophyly of the genus Phyllomedusa is strongly supported by

Duellman et al. (2016), and the genus currently contains 16 taxa

(Frost, 2021), with Phyllomedusa chaparroi being the most

recently described (Castroviejo-Fisher et al., 2017).

Phyllomedusa bicolor and Phyllomedusa vaillantii are

frequently recovered as sister species that share the presence

of osteoderms in the skin dorsum (Ruibal and Shoemaker, 1984;

Faivovich et al., 2005; Wiens et al., 2006; Moen and Wiens, 2009;

Faivovich et al., 2010; Duellman et al., 2016).

1.2. Seasonality, reproductive biology, and
life cycle

Reproduction occurs mainly during the rainy season, and the

length of reproduction varies geographically throughout the

species’ distribution, and also because of increasingly frequent

extreme climatic events such as El Niño and La Niña (Lima et al.,

2012; Rocha et al., 2021). In the Central Amazon, breeding occurs

mostly from November to May (Lima et al., 2012), during which

constant and heavy rainfall creates suitable lentic environments

such as ponds for development of the tadpoles (Venâncio and

Melo-Sampaio, 2010; Pinto et al., 2013). This prolonged

reproductive season of the species permits male territoriality,

asynchronous arrival of females to breeding sites, as well as male-

male competition for females with physical combat that includes

body displacement of amplectant pairs (Figure 1C; Souza 2009;

Venâncio and Melo-Sampaio, 2010; Silva et al., 2020).

Reproduction promotes vocalization and movement through

the vegetation, possibly increasing detectability of adult

individuals, mostly males, by humans.

Males call alone or in small congregations, on vegetation

(branches of bushes and trees), close to streams, temporary or

permanent ponds on the inside and edges of the forest,

between one and 10 m above the ground (Souza, 2009).

The vocalization usually begins at dusk and lasts until near

dawn, at which time the males leave the calling sites and move

to their upper diurnal shelters (Souza, 2009). The courtship of

the species begins at night in upland forests with an active

calling male from a high tree until the arrival of the female;

after which the pair descends to lower arboreal strata

(Venâncio and Melo-Sampaio, 2010; Silva et al., 2020). The

advertisement call of P. bicolor males is short, loud, sparse,

and low-pitched when compared to most treefrogs (Rodriguez

and Duellman, 1994; Lima et al., 2012). As the female comes

closer, the male climbs on her dorsum to form the axillary or

cephalic amplexus (Figure 1A) in which the pair stays for

some minutes before the female moves to a suitable

oviposition site (Venâncio and Melo-Sampaio, 2010). The

oviposition site is chosen on the vegetation above lentic

water surfaces (average 70 cm) or near a slow-flowing water

stream (Figure 1D) where the mating pair fold leaves (usually

tree leaves) to form a chamber to protect the spawn, which is

probably a strategy against predation and dehydration

(Venâncio and Melo-Sampaio, 2010; Lima et al., 2012;

Pinto et al., 2013). However, it is known that the predation

rate upon P. bicolor spawns can reach up to 61% (Neckel-

Silveira and Washlewski, 2004).

The spawn of P. bicolor is one of the largest among treefrogs

in the Amazon, and corresponds to a gelatinous mass with

relatively large (average 2.6 mm) eggs that range between

241 and 1,722 units (Neckel-Oliveira and Wachlevski, 2004;

Venâncio and Melo-Sampaio, 2010; Silva et al., 2020)

(Figure 2B). After the oviposition, the lecithotrophic eggs

develop into tadpoles within the leaf chambers (Pinto et al.,
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2013). After approximately 2 weeks, tadpoles with external gills

emerge from the eggs (Figure 2A) and fall on the water surface

under the oviposition site to continue their development with

exotrophic feeding until metamorphosis (Figure 2C) (Venâncio

and Melo-Sampaio, 2010; Pinto et al., 2013).

1.3 Morphology and behavior

Phyllomedusa bicolor are relatively large-sized tree frogs: adult

males measure 91–118mm from snout to vent and females

106–119mm (Souza, 2009; Lima et al., 2012; Duellman et al.,

FIGURE 1
Reproductive behavior of Phyllomedusa bicolor in Amapá State, Brazil. (A) An axillary amplexus near riparian vegetation. (B)Multiple amplexus of
two males and one female. (C) Physical dispute between two males for a female. (D) The spawn on a totally open leaf above a temporary pond of
lentic water where tadpoles develop until metamorphosis. Photos: Wirley Almeida.

FIGURE 2
Different ontogenetic stages of Phyllomedusa bicolor: (A) eggs, (B) larvae (tadpole) and (C) adult. Photos: A and (C) Wirley Almeida; (B)
Domingos Rodrigues.
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2016). Adults have a dark green dorsum and a white to yellow-white

or cream belly (Lima et al., 2012). There are white spots with dark

outlines sparsely distributed on the lower lips, chest, and front legs,

though more densely distributed on the flanks and hind legs, dark

gray iris, a prominent gland that extends from behind the eyes over

the tympanum, and vomerine teeth (Caramaschi and Cruz, 2002;

Lima et al., 2012). Fingers are transparent brown with large green

adhesive discs although little or no webbing on the feet and none on

hands (Faivovich et al., 2010; Duellman et al., 2016). The individuals

usually exhibit an elegant slow walk over branches and leaves despite

being able to jump (Caramaschi and Cruz, 2002). The species of

Phyllomedusiae are regarded as photogenic and charismatic animals,

and are frequently called “poster frogs” (Faivovich et al., 2010).

Probably because of its large size, wide distribution, and its use in

shamanic rituals, P. bicolor frequently figures as a symbol of the

Amazonian fauna (Bernarde, 2012). Phyllomedusiae actively produce

skin secretions and frequently spread them throughout the body with

the hind and front legs (Blaylock et al., 1976).

Most of the characteristics of the tadpoles are similar to

other species of Phyllomedusa, i.e., they are exotrophic,

lentic, and suspension-raspers (Altig and McDiarmid,

1999; Pinto et al., 2013). The tadpole reaches a total

length of up to 50 mm (Souza, 2009). The coloration in

life is orange on the dorsum and anterior part of the

body, with a silver belly, a pale orange color on the tail

musculature and cord, a translucent orange color on the fins,

and a silver iris (Figure 2A) (Pinto et al., 2013). This species’

tadpole can be easily distinguished from others (except for

those of Phyllomedusa vaillantii) due to their unique cord

that is present at all stages, and which corroborates the

phylogenetic proximity of these two species (Faivovich

et al., 2010). Phyllomedusa bicolor tadpoles show

conspicuous colorations in the dorsal area while ventrally

they are considered inconspicuous. This is probably for

targeting aerial or terrestrial predators while remaining

cryptic for underwater animals (Thibaudeau and Altig,

2012; Pinto and Amézquita, 2022). They also prefer to

remain on the surface of the water, displaying their

coloration: bigger tadpoles present this behavior whereas

smaller individuals tend to be distributed along the water

column, thus reinforcing the antipredatory strategy (Pinto

and Amézquita, 2022). There is evidence of the toxicity of P.

bicolor tadpole for vertebrates; it has been shown to

significantly affect mice after ingestion, even though

Odonata naiads (damselfly larvae) were able to prey on

them without difficulties. Therefore, it is likely that the

same peptides secreted as adults are present during larval

growth (Delfino et al., 1998; Pinto and Amézquita, 2022).

1.4 Geographic distribution and genetic
variability

This species has a wide distribution when compared to most

amphibian species, since it is found in tropical rainforests in the

Amazon Basin in Bolivia, Peru, Colombia, Venezuela, Guyana,

FIGURE 3
Distributional range of Phyllomedusa bicolor (dark gray) in the context of South America (upper panel). Tree coverage is shown in dark green,
while lighter green and beige represents less tree coverage. Major Amazonian rivers are depicted in blue. Credits: Shapefile of distributional range
from IUCN, and tree cover raster (Landsat 8) from Global Land Analyses & Discovery.
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French Guiana, Suriname, and possibly Ecuador (Ouboter and

Jairam, 2012; Frost, 2021) (Figure 3). However, most of its

distributional range lies within Brazil, where the species can

be found in rainforests and even in savannah-like environments

of all its northern states (Mota et al., 2020; Frost, 2021) (Figure 3).

Despite its large body size, wide distribution and medical

importance, many of its few published DNA sequences are not

assigned to any specific geographic location, which is due to them

being obtained from pet trade specimens (Mota et al., 2020).

Surprisingly, even phylogenetic studies on the family lack

samples of P. bicolor (Wiens et al., 2005; Gomez-Mestre et al.,

2008). One study, on the spatial distribution of its genetic

variability using both mitochondrial and nuclear markers,

detected two well-supported monophyletic groups that

diverged approximately 5.16 million years ago in two

geographic mega-regions, namely the Eastern and Western

Amazon; the former consisting of three highly-structured

population groups distributed in the Guiana and Brazilian

Shields (Mota et al., 2020). Given that this study was

restricted to Brazilian locations and lacked samples from

Suriname, the species’ type locality, it is likely that the

nominal species is composed of at least two, or possibly more,

cryptic species (Mota et al., 2020; Frost, 2021).

1.5 Ecological relationships: Diet,
predation and parasitism

There appears to be no records of P. bicolor prey under

natural conditions. Other phyllomedusids show generalist diets

and are regarded as opportunistic sit-and-wait predators,

consuming mainly arachnids (spiders and mites),

coleopterans, and lepidopteran larvae (Bertoluci, 2002; Lima

et al., 2012).

The risk of predation of anurans was reported to be smaller in

species with chemical defense or large-sized bodies (Shine, 1979),

which is the case of the adult P. bicolor (Venâncio and Melo-

Sampaio, 2010). There are no records of adult P. bicolor being

preyed on or found among the stomach contents of any taxa that

usually preys on treefrogs, such as snakes, birds, bats, or other

mammals. This may be due to its large body size and cryptic

coloration that helps camouflage it. However, its skin secretion

may play a strong role in predation avoidance because it is

unpleasant to predators, possibly causing regurgitation,

modifying cardiac function, or producing catalepsy (Sazima,

1974; Negri et al., 1992).

Neckel-Oliveira and Wachlevski (2004) observed the spawns

of P. bicolor being predated by flies, beetles, and mammals, and

also reported that spawn predation is common in Phyllomedusa.

Snakes are known to predate on anuran eggs and may be

responsible for some missing clutches (Warkentin, 1995;

Martins and Oliveira, 1998; Neckel-Oliveira and Wachlevski,

2004). Neckel-Oliveira andWachlevski (2004) observed marks of

predation of clutches by monkeys. Phyllomedusa bicolor tadpoles

were recorded among the stomach contents of the aquatic frog

Pipa arrabali, and this species was also observed actively preying

on tadpoles as soon as they dropped from the arboreal nest to the

pond (Buchacher, 1993).

Only nine species of nematodes have been reported as

parasites of Phyllomedusidae, whereas the genus

Neocosmocercella was only observed in phyllomedusids, and is

likely specific to this family (Campião et al., 2014; Santos et al.,

2017). The parasite Neocosmocercella fisherae was the only

species found in the large intestine of P. bicolor specimens

(Santos et al., 2017). There was also another report of a

filarial parasite located near the lungs of P. bicolor, though

without further identification (Chai, 2015). Besides the

predation of the eggs by flies, there are no records of myiasis

for P. bicolor. Observation of endoparasites, both intestinal and

pulmonary, are more common in P. bicolor when compared to

ectoparasites, which may reflect the protection conferred by its

epidermal secretions against external parasitism.

1.6 Conservation and welfare

Amazonian anurans with wide distribution, such as P.

bicolor, usually present a cryptic taxonomic diversity, which

means that species considered not to be under threat may

have an inaccurate, and often underestimated conservation

status (Gehara et al., 2014; Mota et al., 2020). Despite the

wide currently known geographical distribution of P. bicolor,

the species is not abundant in faunal inventories and ecological

studies, and is regarded as a less abundant taxon in anuran

assemblages (Menin et al., 2008; Jairam, 2019). In spite of this, P.

bicolor is not classed as threatened in the Convention on

International Trade in Endangered Species of Wild Fauna and

Flora (CITES) appendix; an international arrangement that aims

to ensure that international trade of wild animals and plants does

not threaten the survival of species (https://cites.org/eng).

According to the International Union for Conservation of

Nature’s (IUCN) Red List of Threatened Species, which

indicates the species’ global conservation status (and urgently

needs updating), P. bicolor is listed as a species of least concern

because of its large distributional range and occurrence in

protected areas (IUCN, 2021).

The aforementioned conservation status of P. bicolor might

be underestimated due to the following causes: 1) Specific habitat

requirements, since it is highly intolerant of anthropized habitats,

and is usually found in extensive and well-preserved forests

(Tsuji-Nishikido and Menin, 2011; Lima et al., 2012). Their

reproductive behavior is elaborate, requiring suitable terrestrial

and aquatic (especially lentic) environments for the completion

of its reproductive cycle; 2) Possible cryptic diversity with species

occurring outside protected areas and/or with small

distributional ranges (Mota et al., 2020); 3) Unknown
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populational effects due to manipulation of individuals for

venom extraction, which sometimes involves the use of

electric shocks (Long et al., 2017; Liu et al., 2020; Chen et al.,

2021), and restraints (Den Brave et al., 2014). In addition, it is

unknown how the manipulation and/or removal of adult

individuals from nature by humans affects individual

behavior, including parental care and, consequently, offspring

survival in P. bicolor; 4) Underreporting of trafficked individuals

in the pet trade. As any other illegal substance, there is a high risk

of identification error, especially due to the morphological

similarity among Phyllomedusa species, or possible

adulteration of the lyophilized skin extracts (Lima and Labate,

2007; Silva et al., 2019). For example, the metropolitan region of

Manaus is known to contain at least four species of Phyllomedusa

occurring in sympatry (same location) and syntopy (similar

microhabitat) (Lima et al., 2012), which may lead to the

misidentification of species and extraction of skin secretions

of non-targeted species.

Phyllomedusa bicolor is mostly distributed in Brazil, a

country with restrictive legislation against the use and

advertisement of kambô for medical purposes without proper

clarification of its risks and the lack of evidence for medical

treatments (ANVISA, 2004). In addition, there are strong

restrictions in regards access to wild animals and their

products, even by scientific researchers (IBAMA/ICMBIO).

Despite this, the main centers where the secretion is applied

are located outside the distribution area of the species (Iakp,

2022; Thompson and Williams, 2022), and there is no

information on how individuals and secretions reach these

sites since the exact origin and taxonomic accuracy of the

sampled individuals is rarely mentioned at the application

centers. In 2013, the Regional Superintendency of the Federal

Police of the Brazilian State of Acre developed a technique to

chemically identify the “vacina do sapo” (toad vaccine) and

inhibit trafficking and smuggling, but there is no information

regarding the current application of such a technique.

2 The poisonous secretion of
Phyllomedusa bicolor

2.1 Skin structure of Phyllomedusa bicolor

Amphibian skin is a thin, permeable and flexible integument

that is highly vascular and is responsible for water absorption,

respiration, thermoregulation, osmoregulation and physical and

chemical defense against predators and desiccation (Wager, 1986;

Clarke, 1997; Larsen and Ramløv, 2013). It consists of the layers of

the epidermis and dermis, and there are countless glands present on

the entire epidermal surface of frogs (Figure 4) that constantly

produce and secrete small amounts of poison (Jared et al., 2009;

Govender et al., 2012). Among amphibians, arboreal frogs, such as

treefrogs, spend most of their life in humid environments, where

there is greater exposure of individuals to infectious diseases (Liu

et al., 2021). The anuran’s skin adapts to different environmental

pressures of the species’ habitat, thus resulting in great

morphofunctional diversity (Toledo and Jared, 1993; Barra and

Simmaco, 1995). Their secretions play an essential role in aiding

cutaneous respiration, reproduction, defense against predators, as

well as defense against desiccation and proliferation of

microorganisms (Toledo and Jared, 1995).

Lacombe et al. (2000) conducted an ultrastructural study that

characterized the skin of the species of Phyllomedusa according

FIGURE 4
Skin structure of Phyllomedusa bicolor. (A–D) Sections of
paraffin-embedded material at different stages of development;
(E–F) Cryostat sections immunolabeled with I-13 antibodies by
phase contrast. (A) A tadpole without a developed lipid gland,
but showing a rudimentary lipid gland between two serous glands.
(B–C) A juvenile immediately after metamorphosis; the serous
glands are not so voluminous and not so deep in the dermis. (D)
Adult stage with mature serous glands. (E–F) Sections of adult skin
structure via scanning electron micrography. (E) A dorsolateral
view indicating the glands in the dermis: (E) epidermis, (G) serous
gland, (L) lipid gland, (m) mucous gland. (F) Serous glands broken
and releasing spherical secretion granules. Photos: Adapted from
Lacombe et al. (2000) (License number 5337320779774, Elsevier,
Amsterdam, Netherlands).
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to size and activity, and presented a profile of skin glands

composed of three types of cutaneous glands: lipid, mucous,

and serous (Figure 4). These glands are located deep in the

skin and subcutaneous connective tissue, although the serous

glands are larger and lie deeper than the others (Lacombe

et al., 2000). Lipid glands are mostly located in the dorsal and

dorsolateral regions and are responsible for

impermeabilization of the skin, and prevent water loss

through desiccation (Lacombe et al., 2000; Castanho and

De Luca, 2001). Mucous glands are mainly distributed in

the ventral region and are practically absent from the back.

These produce mucus to assist the cutaneous physiological

functions such as respiration, reproduction, defense and

thermoregulation (Toledo and Jared, 1995; Lacombe et al.,

2000). Serous glands are the largest and are distributed all

over the body; however, they are prominent in the

dorsolateral region, and behind the eyes, and form the

parotid glands (Lacombe et al., 2000). These glands are

primarily responsible for passive defense and are the first

to develop, although the gland duct lengthens according to

the maturation of the epidermis, and opens to the skin surface

once they reach metamorphosis (Toledo and Jared, 1995;

Lacombe et al., 2000). According to Lacombe et al. (2000),

there are two classes of serous glands, type I and II. The first

type has a poorly developed smooth endoplasmic reticulum,

which is divided into two subtypes, Ia and Ib. Type Ia is

characterized by dense granules that carry out the

biosynthesis of proteinaceous products reserved for

exocytosis (Figure 4H), and involves both the rough

endoplasmic reticulum and the Golgi apparatus (Delfino,

1991). The serous secretion of type Ib shows vesicles carrying

a lucent material that undergoes maturation without

condensation (Toledo and Jared, 1995). Type II is typical

of P. bicolor since they present a well-developed, smooth,

endoplasmic reticulum that probably plays a role in the

biosynthesis of peptides (Blaylock et al., 1976; Lacombe

et al., 2000). These peptides are first synthesized as

prepropeptides and then, to mature these peptides, the

removal of the peptide signal and the acidic propiece

occurs and, later, the mature peptides are stored in round

granules (Lacombe et al., 2000; Nicolas and El Amri, 2009;

Calderon et al., 2011).

2.2 Composition of Phyllomedusa bicolor
skin secretion

Amphibians inhabit microorganism-rich environments,

especially treefrogs that live in a very humid environment for

the main part of their life. As a result, they are more

susceptible to pathogens and, in order to defend

themselves, they produce potent antimicrobial peptides

(Daly, 1995; Govender et al., 2012; Liu et al., 2021). The

innate immunity system has the main responsibility for

individual survival, in which the secretion produced by

anuran glands inhibits diseases, and is toxic to other

animals, which may prevent predation in some cases

(Nicolas and Mor, 1995; Kimbrell and Beutler, 2001;

Toledo et al., 2011). The release of the skin secretion is

considered a very efficient defense mechanism because it

provides unpalatable characteristics and/or toxicity against

potential predators (Bevins and Zasloff, 1990; Daly, 1995;

Williams et al., 2000; Rodriguez et al., 2011; Saporito et al.,

2012; Hantak et al., 2013). Among the chemical substances

responsible for anuran defense, peptides play a central role,

while alkaloids are less common and are released in the

tegument by some species (Saporito et al., 2009; Jeckel et al.,

2015). Peptides are mostly known to act against pathogenic

microorganisms; however, studies have shown that they can

also have functions related to the interaction between

species, such as bradykinin-like peptides released by

Bombina orientalis (Bombinatoridae), which are known

to be facilitators in intoxication process of predators

(Rödel et al., 2013; Raaymakers et al., 2018). Even though

the skin secretions of Phyllomedusa bicolor are widely

known as a rich source of biologically-active peptides, so

far, studies have not been carried to disccover whether the

substances released in the skin secretions possess toxicity

against predators (Bevins and Zasloff, 1990; Daly, 1995).

All species of Phyllomedusa are prolific producers of

peptides, of which, the most representative family is the

dermaseptins (Erspamer et al., 1985). Since the first record

of the isolation of a peptide from this genus (dating from

1966), more than 277 peptides with unique sequences have

been described (Calderon et al., 2011). Most of the bioactive

peptides so far characterized have displayed potential

applications in medicine, such as phyllocaeruleins with

hypotensive properties, tachykinins and phyllokinins as

vasodilators, dermorphins and deltorphins with opiate-

like properties, and adenoregulins with antibiotic

properties (Daly et al., 1992; Mor et al., 1994a; Lacombe

et al., 2000; Hesselink and Sacerdote, 2019). These peptides

are placed in groups according to their primary activity:

antimicrobial peptides; smooth muscle active peptides; and

nervous system active peptides (Erspamer et al., 1981). Due

to the numerous biological activities of these substances and

the similarities with the amino acid sequences related to

mammalian neuropeptides and hormones, many have

aroused the interest from a medical and pharmacological

perspective, such as in the production of new drugs (Lazarus

et al., 1999; Basir et al., 2000; Chen et al., 2002; Doyle et al.,

2002; Severini et al., 2002; Conceição et al., 2006).

The venom of P. bicolor is used by natives in traditional

shamanic rituals in the southwestern Amazon, and is reported to

be used as a stimulant and also for healing purposes, although

there is no conclusive scientific evidence of its effectiveness
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TABLE 1 Classification, sequence details and pharmacological activities and effects of peptides from Phyllomedusa bicolor.

Name Sequence/Classa Pharmacological properties and
effectsb,c

Dermaseptins stricto sensu

Dermaseptin B Asp-Val-Leu-Lys-Lys-Ile-Gly-Thr-Val-Ala-Leu-His-Ala-Gly-Lys-
Ala-Ala-Leu-Gly-Ala-Val-Ala-Asp-Thr-Ile-Ser-Gln-NH2

Antimicrobialc

Dermaseptin B1 Ala-Met-Trp-Lys-Asp-Val-Leu-Lys-Lys-Ile-Gly-Thr-Val-Ala-Leu-
His-Ala-Gly-Lys-Ala-Ala-Leu-Gly-Ala-Val-Ala-Asp-Thr-Ile-Ser-
Gln-NH2

Antimicrobialc

Dermaseptin B2 Gly-Leu-Trp-Ser-Lys-Ile-Lys-Glu-Val-Gly-Lys-Glu-Ala-Ala-Lys-
Ala-Ala-Ala-Lys-Ala-Ala-Gly-Lys-Ala-Ala-Leu-Gly-Ala-Val-Ser-
Glu-Ala-Val-NH2

Antimicrobialc, antitumorc

Dermaseptin B3 Ala-Leu-Trp-Lys-Asn-Met-Leu-Lys-Gly-Ile-Gly-Lys-Leu-Ala-Gly-
Gln-Ala-Ala-Leu-Gly-Ala-Val-Lys-Thr-Leu-Val-Gly-Ala-OH

Antimicrobialc, antitumorc

Dermaseptin B4 Ala-Leu-Trp-Lys-Asp-Ile-Leu-Lys-Asn-Val-Gly-Lys-Ala-Ala-Gly-
Lys-Ala-Val-Leu-Asn-Thr-Val-Thr-Asp-Met-Val-Asn-Gln-NH2

Antimicrobialc, antidiabeticc

Dermaseptin B5 Gly-Leu-Trp-Asn-Lys-Ile-Lys-Glu-Ala-Ala-Lys-Ser-Ala-Gly-Lys-
Ala-Ala-Leu-Gly-Phe-Val-Asn-Glu-Met-Val-NH2

Dermaseptin B6 Ala-Leu-Trp-Lys-Asp-Ile-Leu-Lys-Asn-Ala-Gly-Lys-Ala-Ala-Leu-
Asn-Glu-Ile-Asn-Gln-Leu-Val-Asn-Gln-NH2

Antimicrobialc

Dermaseptin G3 Ala-Leu-Trp-Lys-Thr-Ile-Ile-Lys-Gly-Ala-Gly-Lys-Met-Ile-Gly-
Ser-Leu-Ala-Lys-Asn-Leu-Leu-Gly-Ser-Gln-Ala-Gln-Pro-Glu-
Ser-OH

Antimicrobialc

Other dermaseptins

Adenoregulin Gly-Met-Trp-Ser-Lys-Ile-Lys-Glu-Ala-Gly-Lys-Ala-Ala-Ala-Lys-
Ala-Ala-Ala-Lys-Ala-Ala-Gly-Lys-Ala-Ala-Leu-Asp-Val-Val-Ser-
Gly-Ala-Ile-OH

Antimicrobialc, antitumorc, agonist of A1-adenosine receptorsc

Dermatoxin Ser-Leu-Gly-Ser-Phe-Leu-Lys-Gly-Val-Gly-Thr-Thr-Leu-Ala-Ser-
Val-Gly-Lys-Val-Val-Ser-Asp-Gln-Phe-Gly-Lys-Leu-Leu-Gln-
Ala-Gly-Gln-OH

Antimicrobialc

Phylloxin Gly-Trp-Met-Ser-Lys-Ile-Ala-Ser-Gly-Ile-Gly-Thr-Phe-Leu-Ser-
Gly-Ile-Gln-Gln-OH

Antimicrobialc

Phylloseptin-B2 Phe-Leu-Ser-Leu-Ile-Pro-His-Ile-Val-Ser-Gly-Val-Ala-Ser-Ile-Ala-
Lys-His-Phe-Gly-OH

Antimicrobialc

Deltorphins

[D-Ala2]-deltorphin I Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 Catatoniab, nauseab, vomitingb, euphoriab and analgesicc

[D-Ala2]-deltorphin II Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 Catatoniab, nauseab, vomitingb, euphoriab and analgesicc

Dermophins

[Lys7]-dermorphin Tyr-Asp-Ala-Phe-Gly-Tyr-Pro-Lys-OH Catatoniab, nauseab, vomitingb, euphoriab and analgesicc

[Trp4,Asn7]-dermorphin Tyr-Asp-Ala-Phe-Gly-Tyr-Pro-Asn-OH Catatoniab, nauseab, vomitingb, euphoriab and analgesicc

New dermorphin I Tyr-D-Ala-Phe-Gly-Tyr-Pro-Lys-OH

New dermorphin II Tyr-D-Ala-Phe-Trp-Asn-OH Analgesicc

New dermorphin III Tyr-D-Ala-Phe-Trp-Try-Pro-Asn-OH

Caerulein-like peptides

Phyllocaerulein Pyr-Glu-Tyr(SO3H)-Thr-Gly-Trp-Met-Asp-Phe-NH2 Lowered blood pressureb, nausea and vomitingb

Corticotropin-releasing hormone-like peptides

Sauvagine Pyr-Gly-Pro-Pro-Ile-Ser-Ile-Asp-Leu-Ser-Leu-Glu-Leu-Leu-Arg-
Lys-Met-Ile-Glu-Ile-Glu-Lys-Gln-Glu-Lys-Glu-Lys-Gln-Gln-Ala-
Ala-Asn-Asn-Arg-Leu-Leu-Leu-Asp-Thr-Ile-NH2

Lowered blood pressureb, nauseab, vomitingb, increased bile secretionb,
hallucinogenb and Anti-hyperprolactinemia activityc

Calcitonins

Skin calcitonin gene-related
peptide (SCGRP)

Ser-Cys-Asp-Thr-Ser-Thr-Cys-Ala-Thr-Gln-Arg-Leu-Ala-Asp-
Phe-Leu-Ser-Arg-Ser-Gly-Gly-Ile-Gly-Ser-Pro-Asp-Phe-Val-Pro-
Thr-Asp-Val-Ser-Ala-Asn-Ser-Phe-NH2

Regulation of calcium levels potentialc

Pancreatic polypeptides

(Continued on following page)
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(Erspamer-Falconieri et al., 1970; Majic et al., 2021). So far, from

the skin secretions of P. bicolor, only peptides have been

characterized, from which 28 different sequences have been

determined, with most of them belonging to the dermaseptin,

deltorphin and demorphin families (Thompson and Williams,

2022).

2.2.1 Dermaseptins
Dermaseptins constitute a superfamily of antimicrobial

cationic peptides that are produced in the skin of

Phyllomedusidae. They are known to be genetically related,

and similar in precursor signals and sequences, but have since

diversified and given rise to structurally different peptide

subfamilies (Nicolas and El Amri, 2009). Dermaseptins are

derived from precursors that have a highly conserved

N-terminal preprosequence (Nicolas and Amiche, 2006).

Dermaseptins have related structures that differ in

sequence length, as well as differences in amino acid

sequences. The first dermaseptin characterized was S1

(DRS1), which is present in the skin of P. sauvagii (Mor

et al., 1991) while, for P. bicolor, the dermaseptins isolated/

characterized in its tegument, so far, belong to the B series (B

and B1-B6), G (G3) and other classes of dermaseptin-like

peptides (Table 1). With the exception of DRS-S4, all

dermaseptins have lower or no toxicity to mammalian cells

(Ladram and Nicolas, 2016). The selectiveness and the ability

to destabilize the plasmatic membrane is the most pertinent

characteristic of the antimicrobial action of dermaseptins.

This family of antimicrobial peptides is mainly responsible

for the anti-infective passive defense barrier, in which the

killing mechanism acts fast by destroying pathogen’s

plasmatic membrane in a few minutes, and is unlikely to

cause antibiotic-resistance (Shai, 1995; Feder et al., 2000).

2.2.1.1 Dermaseptins stricto sensu

As a chemical characteristic, most dermaseptins stricto sensu

have the C-terminal residue amidated and have the amino acid

leucine at position 2 of their primary structure, except

dermaseptins B and B1, which have valine and methionine in

the same position, respectively. Furthermore, they have a

tryptophan residue at position 3 of the primary structure

(Daly et al., 1992; Mor et al., 1994a; Charpentier et al., 1998;

Fleury et al., 1998; König et al., 2012) (Table 1). Most of the

peptides from P. bicolor display post-translationally modified

amino acid residues, which play an important role in the activity

and receptor specificity (Conibear, 2020). In addition, some

modifications can enable cross-coupling of specific amino

acids, thus yielding derivatives with increased biostability.

Furthermore, the inclusion of such modifications can provide

resistance against proteolytic degradation, especially for

antimicrobial peptides (Tiwari, 2019). As they are α-helical,
cationic, and amphipathic, they act directly on the cell

membrane of microorganisms, destabilizing the phospholipid

bases and preventing the entry and exit of substances, which

leads to cell lysis (Nicolas and Amiche, 2006). For P. bicolor,

seven peptide sequences of the dermaseptin stricto sensu type are

known (all from the B series), namely dermaseptin B (DRS-B),

dermaseptin B1 (DRS-B1), dermaseptin B2 (DRS-B2),

dermaseptin B3 (DRS-B3), dermaseptin B4 (DRS-B4),

dermaseptin B5 (DRS-B5) and dermaseptin B6 (DRS-B6). The

number of B-series dermaseptin stricto sensu residues found in P.

bicolor ranges from 24 to 33 amino acids (Charpentier et al.,

1998; Fleury, 1998; König et al., 2012) (Table 1).

The DRS-B peptide was first isolated by Mor et al. (1994a),

and presented itself as a peptide amide with 27 residues in its

sequence, in which the lysine residues alternate hydrophobic and

hydrophilic portions. DRS-B shows 78% similarity with

TABLE 1 (Continued) Classification, sequence details and pharmacological activities and effects of peptides from Phyllomedusa bicolor.

Name Sequence/Classa Pharmacological properties and
effectsb,c

Skin peptide tyrosine (SPYY) Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu-Asp-Ala-Ser-Pro-Glu-
Glu-Met-Asn-Lys-Tyr-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Ans-
Leu-Val-Thr-Arg-Gln-Arg-Tyr-NH2

Antimicrobialc

Tachykinins

Phyllomedusin Pyr-Ans-Pro-Ans-Arg-Phe-Ile-Gly-Leu-Met-NH2 Skin burnsb and inflammationb

Bradykinins

Phyllokinin Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ile-Tyr(SO3H) Skin burnsb

Bombesins

Phyllolitorin Pyr-Leu-Trp-Ala-Val-Gly-Ser-Phe-Met-NH2

aChemical groups in bold are post-translational modifications.
bPharmacological efect related to the kambô ritual.
cOther pharmacological property.
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dermaseptin S, differing only by a series of deletions and

substitutions (Table 1). Mor et al. (1994a) were the first to

test DRS-B against pathogenic fungi and bacteria. Minimum

inhibitory concentration (MIC) against eight species of fungi and

five species of bacteria were inferred. The antimicrobial potential

of DRS-B was evident against the fungi Cryptococcus neoformans,

Candida albicans, Microsporum canis, Tricophyton rubrum, T.

mentagrophytes, Arthroderma simii, Aspergillus fumigatus and A.

niger and the bacteria Aeromonas caviae, Escherichia coli,

Enterococcus faecalis and Nocardia brasiliensis since MIC

values of between 40 and 60 µM were observed (Mor et al.,

1994a).

Likewise, all other dermaseptins stricto sensu (DRS-B1 to

DRS-B6) have shown activities against microorganisms.

DRSB1 has 31 amino acid residues in its primary structure

and, unlike other dermaseptins stricto sensu, it has a

methionine residue at position 2 of the primary sequence. On

the other hand, DRS-B2 has 33 amino acid residues in its

structure. Differently from what was reported for the other

dermaseptins, Van Zoggel et al. (2012) demonstrated that

DRS-B2 inhibited the growth of prostatic adenocarcinomas

and some other cell lines. DRS-B3, on the other hand, has

28 amino acid residues in its primary structure, but differs

from the others as it does not have any modifications at the

C-terminal residue. Similar to DRS-B3, the DRS-B4 peptide has

the same amount of amino acid residues; however, it does have a

modified C-terminal group (Van Zoggel et al., 2012) (Table 1).

Both DRS-B3 and DRS-B4 showed antibacterial activities with

MICs ranging between 1.3 and 11.6 µM (Van Zoggel et al., 2012)

(Table 1). Morevoer, DRS-B4 showed antidiabetic activity, in

which the treatment of glucose-responsive BRIN-BD11 cells with

this peptide led to the stimulation of insulin release (Marenah

et al., 2004).

The DRS-B5 peptide, composed of 25 amino acid residues,

has not been evaluated for its biological potential so far, but its

antimicrobial potential is suggested, as is the case for other

dermaseptins (Charpentier et al., 1998). Likewise, DRS-B6,

whose primary sequence has 24 amino acid residues, has also

not been studied for its pharmacological potential. DRS-B6,

together with DRS-B1, were related to the chemical defense

mechanisms of P. bicolor since they are secreted by the serous

glands located in the tibia (König et al., 2012). Finally, the

synthetic dermaseptin, named DRS-G3, was identified through

the cDNA technique in P. bicolor and synthesized by using 9-

fluorenylmethoxycarbonyl-protected (FMOC) amino acids

(Fleury et al., 1998). This peptide has 30 residues in its

primary structure with a conserved C-terminal. It is possible

to note that it has the three amino acid residues (Ala, Leu and

Trp) that are common to most of the other dermaseptins present

in P. bicolor. Fleury et al. (1998) analyzed the biological activity of

DRS-G3 and observed that, as with the known dermaseptins, it

also has antimicrobial activity against bacteria. The authors

tested, in addition to the MIC, the minimum lethal

concentration (MLC) necessary to kill bacteria such as

Mollicutes, Firmicutes, and Gracilicutes, and found MICs

ranging from 3.0 to 6.25 µM and MLCs ranging from 6.25 to

100 µM (Table 1).

2.2.1.2 Other dermaseptins

Adenoregulin is a polycationic peptide composed of

33 amino acid residues in its primary structure (Table 1).

This substance has an α-helical structure with lysines

arranged on the external face (Daly et al., 1992). When

compared to dermaseptins, adenoregulin has a series of

substitutions in its amino acid residues, and no

modification in the C-terminal. Cao et al. (2005) produced

a recombinant adenoregulin derivative by means of

heterologous expression in E. coli. This derivative differs

from the original molecule due to the presence of an

additional amidated glutamine residue in the C-terminal,

which increased the potency of its antimicrobial activity

against Tritirachium album and S. cerevisiae.

Besides its antimicrobial properties, adenoregulin has

antitumor and angiostatic properties at low concentrations.

Interestingly, the anticancer activity of this molecule is linked

to cell necrosis (Santos et al., 2017). Additionally, the potential

in the regulation of cellular metabolism is also mentioned,

since this peptide can bind to adenosine A1 receptors, thus

making it a potential molecule for the treatment of depression,

Alzheimer’s disease, and Parkinson’s disease. (Cao et al.,

2005).

Dermotoxin is a peptide derived from the same

precursors of the dermaseptin family, and is a cationic

and amphipathic peptide with 32 amino acid residues in

its primary structure and has no modifications in the

C-terminal (Amiche et al., 2000) (Table 1). In P. bicolor, it

has been observed that dermotoxin is expressed both in the

skin, intestines and in the brain. Dermatoxin has effective

broad-spectrum antimicrobial activity, as do others from the

dermaseptin family. Amiche et al. (2000) tested dermatoxin

and observed antibacterial activity with MICs of between

6.25 and 100 µM for the Gram-positive bacteria Bacillus

megaterium and Corynebacterium glutamicum; for bacteria

without cell walls A. laidlawii and Spiroplasma melliferum;

and for the Gram-negative bacterium Sinorhizobium

meliloti.

Phylloxin is also derived from the dermaseptin precursor

group, and has 19 amino acid residues in its primary structure

without post-translational modifications (Pierre et al., 2000)

(Table 1). Pierre et al. (2000) found antimicrobial activity

against some strains of bacteria; however, with less inhibition

capability than other dermaseptins. Phylloxin was promising

against A. laidlawii, Bacillus megaterium, Spiroplasma

melliferum, Escherichia coli, and Micrococcus luteus. Regarding

other pharmacological properties, there is no information

beyond that related to its antimicrobial activities.
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The phylloseptin-B2 peptide was first isolated in

Phyllomedusidae from the cutaneous secretion of P. sauvagii

(Zhang et al., 2010) and, later, an analog was characterized in P.

bicolor through cDNA cloning (König et al., 2012). As the peptide

precursors were not previously identified in P. bicolor and the

orthology with the related sequences of P. sauvagii and P.

hypochondrialis are not guaranteed, the peptide was

designated as phylloseptin-B2, though further studies on the

subject should be conducted. These antibiotical properties of

plasmatic membrane lysis of the peptides envolve several bubble-

like formations that disrupt the membrane (Leite et al., 2005).

The antimicrobial activity spectrum comprises Gram-negative

bacteria, e.g., Acinetobacter calcoaceticus, E. coli and

Pseudomonas aeruginosa (Leite et al., 2005; Resende et al.,

2008); Gram-positive bacteria, e.g., Enterococcus faecalis,

Klebsiella peneumoniae, Staphylococcus aureus and

Streptococcus agalactiae; fungi: C. albicans (Resende et al.,

2008); and protozoa, e.g., Leishmania amazonensis

(promastigotes) (Kückelhaus et al., 2009), Plasmodium

falciparum (rings, trophozoites and schizonts) (Kückelhaus

et al., 2009), and Trypanosoma cruzi (trypomastigotes) (Leite

et al., 2005). However, a toxic effect in mammalls cells was

observed, but only in extremally high concetrations (Kückelhaus

et al., 2007; Kückelhaus et al., 2009) and the effects on blood cells

were insignificant (Leite et al., 2005).

2.2.2 Pancreatic polypeptides (PP)
Pancreatic polypeptides (PP) have been isolated during

insulin preparation, and are the first of the PP family.

Another peptide of this family is the tyrosine peptide (PYY),

whose characteristic is the C-terminal amidated tyrosine residue

(Grandt et al., 1994). In anurans, PP derivatives are known,

especially in the species Xenopus laevis, whose function in the

organism is still not well understood (Kim et al., 2001).

In the species P. bicolor, the only PP characterized so far is the

skin peptide tyrosine (SPYY), which was isolated by Mor et al.

(1994a). This substance has a primary structure composed of

36 amino acid residues, in which the C-terminal residue is

amidated (Table 1). The function of this peptide in P. bicolor

is still uncertain, but the inhibitory activity against the alpha-

melanocyte stimulating hormone (α-MSH) was tested and it was

possible to demonstrate that in vitro SPYY inhibits the secretion

of α-MSH (Mor et al., 1994b). The antimicrobial activity of these

peptides comprises strains of Gram-negative bacteria (e.g.,

Aerornonas caviae and E. coli), Gram-positive bacteria (e.g.,

Enterococcus faecalis and Nocardia brasiliensis), fungi (e.g.,

Arthroderma simii, Aspergillus fumigatus, A. niger,

Microsporum canis) and protozoa (e.g., Leishmania major

promastigotes) (Calderon et al., 2011).

2.2.3 Calcitonins
This family consists of peptides with from 32 to 53 amino

acid residues (Hay et al., 2017), which are recognized as

hormones that are capable of rapidly reducing circulating

calcium levels in the body (Naot et al., 2018). The

reduction occurs by inhibiting the efflux of calcium from

the bone, since peptides of this class act as potent

inhibitors of bone resorption (Naot et al., 2018). Other

substances are well known in this family, such as amylin,

and adrenoregulin (Hay et al., 2017).

Skin calcitonin gene-related peptide (SCGRP) was isolated

from the skin of P. bicolor individuals by Seon et al. (2000). The

primary structure of this peptide has 37 amino acid residues, and

the C-terminal residue is amidated, in addition to having a

disulfide bridge between the cysteines at positions two and

seven (Table 1). The presence of the disulfide bond may be

related to the stabilization of the whole three-dimensional

arrangement of SCGRP, which can be crucial for hormonal

function (Góngora-Benítez et al., 2014). The researchers who

discovered this peptide performed binding assays with the

calcitonin receptor and observed that SCGRP differs from all

other members of calcitonins in at least nine positions. Like other

peptides of this family, it showed competitive inhibition and high

specific affinity binding to calcitonin receptors in the brain of rats

(Seon et al., 2000).

2.2.4 Corticotropin-releasing hormone-like
peptide

Sauvagine is the only peptide in the family of the

corticotropin-releasing hormone-like peptides identified in

P. bicolor (Erspamer et al., 1993). It has 40 amino acid

residues in which the C-terminal residue is amidated, as

well as the presence of pyroglutamic acid as the N-terminal

residue (Table 1). This substance is also related to some effects

of kambô, as well as having hypotensive and antidiuretic

activities in rats (Erspamer et al., 1981). Promising results

were obtained when sauvagine was evaluated against the

condition hyperprolactinemia, in which 500 µg of

sauvagine, administered by subcutaneous injection,

produced an immediate fall of elevated serum prolactin

values to normal values within 5 h (Erspamer et al., 1981).

This peptide mimics the functional consequences of stress

exposure and acts as a corticotropin-releasing factor (CRF)

(Lovejoy and Balment, 1999; Hesselink and Sacerdote, 2019).

It has two subtypes of CRF receptor (CRFR) that binds

CRFR1 and CRFR2, and it mediates anxiety due to its

CRFR2 agonism (Eckart et al., 1999; Hesselink and

Sacerdote, 2019). The effects in animal model studies relate

a sequence of an intense, long-lasting hypotensive action

followed by tachycardia, antidiuresis, decreasing glomerular

filtration rate (GFR) and an increase in tubular Na+

reabsorption (Montecucchi et al., 1979; Erspamer et al.,

1981; Heinrichs and Taché, 2001). Moreover, there is a

decrease in body temperature caused by the D2 dopamine

receptor-mediated mechanism (Hesselink and Sacerdote,

2019). In dog models, it showed different effects such as
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long-term increases in blood flow (Lovejoy and Balment,

1999).

2.2.5 Tachykinins
Tachykinins are a family of peptides present in amphibians

and mammals that exhibit neurotransmitter activity (Steinhoff

et al., 2014). They are expressed throughout the nervous and

immune system, and regulate an extraordinarily diverse range of

physiological processes, as well as being implicated in important

pathological conditions (Steinhoff et al., 2014). In anurans, the

presence of tachykinins was first described by Schäffer and

Gábriel (2005), who detected the presence of this peptide in

the retina of an individual of the genus Pelobates. In P. bicolor, the

only known tachykinin so far is phyllomedusin.

Phyllomedusin is a decapeptide that was first characterized

by Anastasi and Esparmer (1970). Interestingly, it has the

pyroglutamic amino acid as an N-terminal residue, in

addition to being amidated in the C-terminal (Table 1).

Regarding its biological activities, it is known that this peptide

promotes smooth muscle contraction, reduces blood pressure in

intense compensatory tachycardia, as well as assists in the release

of antidiuretic hormones with consequent antidiuresis (Anastasi

and Erspamer-Falconieri, 1970; Erspamer-Falconieri et al., 1970).

Additionally, in rats, this peptide has been shown to increase the

plasma release of corticosterone, catecholamines and glucose, as

well as the release of β-endorphins (Mathison and Solomos,

1985).

2.2.6 Bradykinin
Bradykinin-related peptides (BRPs) are a widespread class

of amphibian skin peptides that mimic the actions of

vertebrate bradykinin hormones, and are secreted in so-

called granular or serous glands (Raaymakers et al., 2018).

As Phyllomedusa species present a great richness of peptides

in the tegument, it is suggested that they may increase the

absorption of bradykinin by the epithelium, thus accelerating

the predator intoxication process, as reported by Raaymakers

et al. (2018) for Bombina orientalis. For P. bicolor phyllokinin,

it is the only substance of this family to be identified from its

tegument, and the use of BRPs in anti-predator defense events

is unknown (König et al., 2012).

Phyllokinin has 11 amino acid residues in its primary

structure, and has a sulfated tyrosine amino acid as a

C-terminal residue (Anastasi et al., 1966) (Table 1).

Pharmacologically, this peptide has been shown to be more

potent than bradykinin in lowering blood pressure when

tested in dogs; an activity that decreases considerably when

the post-translational modification is not present (Anastasi

et al., 1966). Regarding the kambô ritual, it is known that this

peptide causes some symptoms such as increased heart rate, heat

flushing, and redness of the skin (Thompson and Williams,

2022).

2.2.7 Deltorphins
Deltorphins are a small family of short-chain peptides, whose

members have between six and seven amino acid residues in their

primary structure (Erspamer et al., 1989). In anurans, this family

of peptides is restricted to the genus Phyllomedusa (mainly P.

bicolor and P. sauvageii) (Erspamer et al., 1989). Peptides of this

series are recognized for having high affinity and selectivity for δ-
opioid receptors, which make them promising analgesic

substances, since they have a potency that is 4,000 times

greater than morphine, and 40 times greater than endogenous

β-endorphin receptors (Esparmer et al., 1989). These results were

corroborated by in vivo studies, indicating that deltorphins have

high penetration rates of the blood-brain barrier (Fiori et al.,

1997). The small size of deltorphins (also dermophins) may be

related to their functions and/or their biological benefits in

humans. Specifically, the small peptides present in P. bicolor

are the most potent analgesic compounds; however the

relationship between the size and their biological benefits

remains unclear.

The first deltorphin was discovered in P. sauvageii

(Montecucchi et al., 1981a) and served as the basis for the

designation of analogous peptide sequences later described in

P. bicolor. An interesting feature of this initial discovery was that

this peptide has the second amino acid residue (methionine) with

inverted stereochemistry, presenting itself in the D configuration

(Table 1).

In 1989, Erspamer et al. (1989) isolated two heptapeptide

analogs from the cutaneous secretion of P. bicolor, which were

named [D-Ala2]-deltorphin I and [D-Ala2]-deltorphin II. Unlike

deltorphin, they have the substitution of methionine for alanine

at position 2 of the primary sequence and two valine residues in a

row in the C-terminal. Another difference between these peptide

analogs is the substitution of an amino acid residue at position

4 of the primary structure, in which [D-Ala2]-deltorphin I has a

glutamic acid, and [D-Ala2]-deltorphin II has an aspartic acid

(Erspamer et al., 1989). In the same study, they demonstrated an

affinity of these peptides for opioid receptors that is 10–200 times

higher than synthetic enkephalin.

2.2.8 Dermophins
Dermorphins are opioid peptides, and were first isolated

from P. sauvagii (Montecucchi et al., 1981a), P. burneisteri, and

P. rohdei (Montecucchi et al., 1981b; Broccardo et al., 1981). As

observed in deltorphins, they have high affinity and selectivity for

opioid receptors, having been shown to produce analgesia in both

humans and animals (Negri, 1992). However, the affinity and

selectivity of dermorphins are for µ receptors, whereas

deltorphins are specific agonists of δ receptors (Richter et al.,

1990). When compared to morphine, dermorphins have a

potentially more favorable adverse event profile as it is a

selective agonist at the Needs correction to ϻ-opioid receptor

(MOR), but does not have the relevant affinity for the ƙ-opioid
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receptor (KOR) (Pescatore et al., 2015; Hesselink et al., 2018b). In

preclinical studies on analgesic activities with the

intracerebroventricular application of the peptide dermorphin,

a better performance than morphine was observed, and showed

more prolonged and potent effects (Broccardo et al., 1981).

Peptides of this class tend to affect the central nervous system,

causing respiratory depression, in addition to high dependence

on continued consumption in the kambô ritual (Nakata et al.,

1986).

In P. bicolor, three new substances analogous to dermorphin

have been described, with cDNAs cloned directly from the skin.

These were named by Richter et al. (1990) as new dermorphin I,

new dermorphin II, and new dermorphin III. The new analogs I

and III are presented as heptapeptides, while the new analog II

presented five amino acid residues in its sequence (Table 1).

Unlike dermophin, they have a conserved C-terminal and,

although deletions and substitutions are observed along their

chain, it is possible to note that they share a similar sequence in

the three amino acids of the N-terminal portion (Tyr-D-

Ala-Phe).

After the chemical synthesis of these predicted peptides, they

were evaluated against opioid receptors, in which only the

pentapeptide showed activity, but with an IC50 (half

maximum inhibitory concentration) that was 10 times lower

than that of dermorphin (Richter et al., 1990). Subsequently, two

new heptapeptides of the dermorphin class were isolated from

the skin of P. bicolor (Mignogna et al., 1992). The first is called

[Lys7]-dermorphin, which differs from the model peptide of the

class by the presence of lysine at position seven (Mignogna et al.,

1992). On the other hand, the peptide [Trp4,Asn7]-dermorphin

has two modifications, a tryptophan amino acid residue at

position 4 and an asparagine at position 7 (Table 1). In the

position 2, these two analogs possess the amino acid alanine in

the L configuration, as well as the conserved C-terminal

(Mignogna et al., 1992). Like other peptides of this type, these

peptides also showed affinity towards opioid receptors; however,

the evaluation showed that amidated derivatives tend to be 2 to

4 times more potent than the versions without post-translational

modification (Mignogna et al., 1992).

2.2.9 Caeruleins
This family is restricted to two peptides, and only the

nonapeptide phyllocaerulein (Anastasi et al., 1969) has been

characterized in the species P. bicolor. It is an analog of the

caerulein peptide, and differs in that it has one less amino acid,

but maintains all the characteristics of its congener, such as

composition and the two post-translational modifications:

tyrosine with sulfate and the C-terminal is amidated (Anastasi

et al., 1969). Another unusual aspect of this peptide is the

presence of the amino acid pyroglutamic acid as an

N-terminal residue. Phyllocaerulein is considered the most

abundant peptide, and co-responsible (along with sauvagine)

for the gastrointestinal actions observed in the kambô ritual, in

particular, nausea, vomiting and the drop in blood pressure

(Thompson and Williams, 2022).

2.2.10 Bombesins
This class of peptides has nine amino acids, and the sequence

has pyroglutamic acid as an N-terminal residue, as well as an

amidated C-terminal (Table 1). Its occurrence in P. bicolor is

limited to trace amounts, of which the phyllolitorin peptide

stands out (Erspamer et al., 1985). Regarding their

pharmacology, they tend to stimulate the secretion of gastric

acids and increase pancreatic secretion, since they are related to

the gastrin-releasing peptide. They also have been described as

peptides that are capable of suppressing alcohol and food

consumption after in vivo evaluation in chicks (Cline et al.,

2010). It is worth mentioning that there are contradictions

about the presence of bombesines in the secretions of P.

bicolor (Thompson and Williams, 2022). However, research

has also linked the presence of phyllolitorin with the chills

observed in humans during the kambô ritual (Esakov et al.,

1990).

3 Kambô ritual: From traditional use
to application in large urban centers

Toads, frogs, and treefrogs are animals that are often present

in folklore and culture almost everywhere and are associated with

rainfall and fertility (Lima and Labate, 2007). The kambô, kapum,

or toad vaccine (“vacina do sapo”, in Portuguese) is a purification

ritual and is associated with healing rituals in the Amazon

rainforest and urban centers around the world (Rudgley, 1993;

Lima and Labate, 2007; Haddad and Martins, 2020). The kambô

ritual is traditionally performed by shamans to purify the body,

increase physical strength and sexual stamina, and ward off

“panema” (bad luck and a type of weakness) (Balée, 2004;

Lima, 2005; Bernarde and Santos, 2009; Labate and Lima,

2014). It is traditionally used by groups of native hunters in

the southwest of the Amazon; among them, the Yawanahua,

Kaxinawá, Matsés, Mayoruna, Yawanawá, and especially the

Katukina (Daly et al., 1992; Hesselink, 2018a). Natives of the

Pano language also apply kambô to the dogs they use during

hunting (Souza et al., 2002). From the ethnological literature,

there is a record of the use of kambô in more than 15 native

groups, belonging to five linguistic families (Pano, Aruak, Arawa,

Tikuna, and Tupi-Guarani) located in Bolivia, Brazil, Colombia,

Peru, French Guiana, Suriname, and Venezuela (Lima, 2000;

Lima, 2005; Lima, 2008; Lima, 2009; Lima, 2012; Lima, 2014a; b;

Ribeiro, 2017).

In this ritual, the shaman healer burns the participant and

applies the P. bicolor secretion to the wound (Daly et al., 1992).

To collect the venom, they go in search of the frog at dawn by

following the characteristic sound. Due to the slow movement of

the frog, it is easily captured (Daly et al., 1992; Den Brave et al.,
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2014). After capture, the amphibian is stretched in the shape of

an “x” on crossed branches with the hind and front legs tied

together (Daly et al., 1992; Den Brave et al., 2014); however,

some applicators extract the poison just by handling the

animal (Figure 5A). The collector teases the amphibian

with pokes so that the skin secretion is released. The

secretion produced is then collected by carefully scraping

the frog’s skin with a wooden rod and then it is stored in

straws for later use (Figures 5A,B). The frog is released after

collecting the secretion and, in general, it is not customary to

harm the frog or remove an excessive amount of venom or

even leaving the animal trapped for a long time (Den Brave

et al., 2014). Native collectors believe that hurting them can

irritate animal spirits (Daly et al., 1992; Lima, 2005; Den Brave

et al., 2014; Hesselink, 2018b; Majić et al., 2021).

The burns are made in the form of points with the aid of a

thin vine (called “titica”) (Figure 5D). The number of points and

the place of application are varied and are related to the body part

required for activities performed by men and women; and also

consider how many times the participant has been submitted to

the kambô ritual (Lima, 1994; Hesselink, 2018b). Katukinas apply

the secretion to the arms (deltoid) (Figures 5C,E) and chest of

men. To women, it is applied to the back of the legs (calf)

(Figure 5D), due to the need to strengthen the body part most

used to their social role, and the participant can receive more

than a hundred “points” at once (Bernarde and Santos, 2009). In

the past, triple this number could be applied. Kaxinawá use the

secretion in smaller amounts on the legs or arms; they apply 2 to

10 “points”, whereas the Yawanawá apply 50 to 60 “points”

(Lima, 1994; Lima, 2000; Lima, 2005; Lima and Labate, 2008). A

recent study carried out with non-native populations from the

Western Amazon, Rondônia, Brazil, showed that women receive

fewer “points”, with an average of 8.2 and 10.3 “points” in the

first and second application, respectively, while men receive

8.6 and 11, respectively.

Applications of the secretion usually take place at dawn

and participants are recommended to drink approximately one

to 2 L of a fresh manioc drink or just water and also fast from

the night before. With a full stomach, the participant usually

feels the urge to vomit (Ribeiro, 2017). It is reported that the

reaction is induced within minutes after the application of a

dose. Reactions are often strong and include tachycardia,

sweating, and severe vomiting, though generally subside in

about 60 min, followed by a state of apathy and dowsiness

(Figure 5F) that can last from one to several minutes, days.

Subsequently, however, the participant reports greater

resistance and clarity of thoughts (Daly et al., 1992;

Hesselink, 2018c; Thompson et al., 2022).

Anthropological, biochemical and pharmacological studies

have been carried out; however, to date, little is known about the

kambô ritual (Anastasi and Erspamer-Falconieri, 1970;

Carneiro, 1970; Lima and Labate, 2008; Hesselink, 2018a;

Hesselink and Winkelman, 2019). The first ethnographic

observations of the kambô ritual in native populations of the

upper and middle Juruá were carried out by the French

missionary Constantin Tastevin in 1925 (Tastevin, 1925).. It

is suggested that the primitive and mythological use of the

secretion is related to a shaman of the Kaxinauá tribe in

Brazil who, seeing many seriously ill natives and not being

cured in rituals with ayahuasca, received a message to enter the

forest. There he found a deity holding a green frog, and it was

revealed to him how to remove the secretion from the frog and

how to apply it (Hesselink, 2018c). The ritual was successfully

performed and incorporated into the routine of the Kaxinauá

and other tribes (Lagrou, 1991; Lima and Labate, 2008; Venâncio

and Melo-Sampaio, 2010; Hesselink, 2018c). From the 19th

FIGURE 5
(A) Removal of skin secretion from the kambô frog (P. bicolor)
by scraping the frog with a wooden rod, for later use in kambô
rituals. (B) Skin secretion is stored for later use. (C) Application of
secretion to the arm of a man. (D) Burns being made with a
thin vine (“titica”) on the leg of a woman for subsequent application
of the secretion. (E) Marks on the arms of a man right after
participating in the kambô ritual. (F) Reaction after the application
of secretion. Participants report apathy, lethargy and the urge to
vomit. Photos: Paulo Sérgio Bernarde.
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century onwards, the coexistence between native people and the

rubber tappers in the Amazon region, but specifically in the

Juruá valley, resulted in a rich exchange of knowledge and

practices, and, especially, the incorporation of the kambô

ritual by riverine and rubber tappers (Balée, 2004). Francisco

Gomes Muniz is credited with the expansion of the kambô ritual

among the rubber tappers of a tributary of the Juruá River, in

Acre, and the first applications of the secretion in urban centers

(Lima and Labate, 2008; Hesselink and Winkelman, 2019).

During the 21st century, the practice has expanded to other

neoshamanic circuits, and is currently widespread in therapy

clinics, especially those linked to alternative therapies and to

Brazilian ayahuasca religions, that is, among supporters of Santo

Daime and União do Vegetal (Lima, 2005; Lopes, 2005; Lima and

Labate, 2007; Lima and Labate, 2008; Bernarde and Santos, 2009).

During its expansion to urban centers, the kambô ritual,

however, was transformed into therapeutic approaches and a

neoshamanic healing ritual, a process that was labeled as

“shamanization of kambô”, but there is no knowledge of the

ritual association between both practices (Lima and Labate, 2007;

Hesselink, 2018c; Schmidt et al., 2020; Majić et al., 2021).

The expansion of the kambô ritual among non-native people

in the Americas and Europe (Carneiro, 1970; Leban et al., 2016;

Pogorzelska and Łapiński, 2017; Aquila et al., 2017; Li et al., 2018)

has brought to the fore the discussion on issues related to

traditional knowledge, in particular, the concern about the

responsibility of traditional connoisseurs for the incorrect

application of the secretion by non-traditional populations.

Silva et al. (2019) warn that, in regions far from where the

secretion is traditionally used, this vaccine could be administered

by professionals who would not have the same experience as the

traditional population that applies it, thus presenting health risks.

Among non-native westerners, the kambô ritual is performed in

a ceremonial context, different from what happens among native

people, with the presence of singing, musical instruments,

incense burning and prayers, tobacco snuff (containing

Nicotiana rustica) and sananga (eye drops made from

Tabernaemontana undulata), both traditional medicines, are

often administered in the vicinity of the kambô ritual

(Thompson and Williams, 2022). The sale and application of

the secretion can lead to serious health risks for users. In 2004,

the Brazilian National Health Surveillance Agency determined

the suspension of advertising of this therapeutic alternative, since

there is no scientific proof that ensures the quality, safety, and

efficacy of the secretion for any type of disorder, imbalance, or

treatment of any acute and chronic disorders (ANVISA, 2004).

Added to the non-traditional use, questions related to

biopiracy have also been raised (Daly et al., 1992; Lima,

2014a; Den Brave et al., 2014; Pogorzelska and Łapiński, 2017;

Hesselink, 2018c; Peleg Hasson et al., 2021). Dried secretions of

P. bicolor on wooden sticks are commercially available, as

“kambô sticks”, in markets and on the internet. Although the

use of the secretion appears to have remained sustainable, the

expansion of the use of the secretion in recent years could

represent a significant environmental impact and the potential

decline of the species (Cunha, 2009; Martins, 2010; Ribeiro,

2017). In 2003, the Katukinas, guided by cacique Fernando,

denounced the misuse of the secretion and accused the

pharmaceutical industry of having patented the kambô

peptides, in addition to claiming the rights to the medicinal

knowledge of the secretion. In 2004, an alliance between the

Katukinas and the Brazilian government was formed to

guarantee that the profits generated with the development of

the secretion would benefit Brazil. This gave rise to the field

project that aimed to bring together natives and researchers,

mainly aiming at the regulation of its use by non-native people

and the valorization and economic use of traditional knowledge

regarding the use of the secretion. However, the project did not

get off the ground due to the complexity of issues involving

ownership and benefit-sharing (Lima, 2005; Lima, 2014b). From

2002 to 2018, 11 international patents inspired by traditional

knowledge and natural genetic resources were approved, and all

were issued to countries in the northern hemisphere, which may

reflecting the appropriation of natural genetic resources and

traditional knowledge (Shiva, 2001; Feres, 2022).

4 Medical aspects of P. bicolor
envenomation

The reasons related to the use, structure, and organization of

the rituals and the psychological effects of the secretion in western

users are scarce and remain anecdotal (Lima and Labate, 2008;

Majić et al., 2021). Majić et al. (2021) carried out an Internet-based

survey investigating different aspects of use of the secretion, and

observed a multitude of motivations for its use, including general

healing, detoxification, and spiritual growth. According to

Bernarde and Santos (2009), the reasons that lead to use by

non-native populations from the Western Amazon, Rondônia,

Brazil, are, in general, curiosity and health problems such as

rheumatism and diabetes. Benefits to mental and physical

health, including treatment of different pathologies, such as

addictions, depression, chronic pain, autoimmune disorders,

Hashimoto’s thyroiditis, celiac disease, post-traumatic stress

disorder, diabetes, infectious diseases, cancer, hypertension, and

other health conditions, have been suggested (Hesselink, 2018a; c;

Silva et al., 2019; Majić et al., 2021; Thompson and Williams,

2022). Although palettes containing frog secretions can still be

ordered via websites without prescriptions, benefits and important

biological effects have not been demonstrated in the literature, and

it has not yet been officially recognized as a drug. The beneficial

effects have not been scientifically tested in randomized controlled

trials, so the curative effect may just be a placebo effect (Aquila

et al., 2017).

The mechanisms of action and the effects of the secretions

from P. bicolor are not completely understood, especially due to
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the diversity of toxins present in the secretion. In vitro cytotoxic

and antitumor effects on different cells have been identified, as

well as antibacterial and antiprotozoal properties, besides

substances with high affinity for µ-opioid receptors (Negri

et al., 1992; Erspamer et al., 1993; Leite et al., 2005;

Hesselink and Schatman, 2018) and dilation and increased

permeability of vessels and the blood-brain barrier

(Erspamer et al., 1989; Erspamer et al., 1993; Daly et al.,

2009; Van Zoggel et al., 2012; Li et al., 2018). Overall, frog

secretions tend to cause severe adverse side effects, including

death. Short-term effects appear within minutes and include

gastrointestinal problems, characterized primarily by severe

vomiting and diarrhea, urination, sweating, and tachycardia

(Erspamer et al., 1989; Erspamer et al., 1993). Although, some

effects are considered mandatory symptoms because it is related

to cleansing the body of bad influences or toxins (Hesselink,

2018d), these effects are generally dose-dependent (Daly et al.,

1992; Li et al., 2018). Increased physical strength, stamina, and

the ability to cope with stressful situations are prime examples

of the secretion’s late effects. Other delayed effects are

hallucination, drowsiness, dizziness, euphoria, and sedation

(Erspamer et al., 1989; Erspamer et al., 1993). These effects

TABLE 2 Effects and recommendations reported in the literature related to the secretion from Phyllomedusa bicolor.

age, sex country recommendation signs and
symptoms

symptoms of
intoxication

outcome reference

41 years, woman Chile Depression Unresponsive, with extreme
hypotonia of the limbs and
hypoventilation

Severe neurologic effects,
rhabdomyolysis and renal
failure (on the second day)

Discharge Alamos et al. (2020)

46 years, man Bolivia - Subcutaneous lipoma - Discharge Den Brave et al.
(2014)

42 years, man Greece No recommendation - Left ventricular hypertrophy Death Aquila et al. (2017)

44 years, woman Slovenia - Nausea and vomiting, confusion,
lethargy, muscle weakness, spasms
and cramps, seizure, decreased
consciousness level and short-term
memory loss

Neurological symptoms and
hyponatremia result of
inappropriate antidiuretic
hormone secretion

Discharge Leban et al. (2016)

34 years, mean - Abstinence from drinking,
smoking, and to purify the
body

Icterus, skin itching, weakness, and
pain in the upper abdomen

Toxic hepatitis Discharge Pogorzelska and
Łapiński (2017)

32 years, woman - - Nausea, vomiting, and abdominal
discomfort

Hyponatremia Discharge Kumachev et al.
(2018)

24 years, woman - Nausea, vomiting, flushing, facial
swelling, altered mental status, and
extreme agitation

Prolonged toxicity
(maintenance of symptoms
after 22 h of use)

Discharge Li et al. (2018)

33 years, woman Alleviate chronic pain Paranoia, anxiety, bizarre delusions,
labile mood, and panic attacks

Psychosis Discharge Roy et al. (2018)

58 years, woman - Cholangiocarcinoma Tachycardia, tachypnea, impaired
liver cholestatic enzymes, and
enlargement of lymphadenopathy
mimicking disease progression

Systemic inflammatory
response syndrome
mimicking disease

Death Peleg Hasson et al.
(2021)

33 years, woman Brazil No recommendation 3-week history of asthenia, malaise,
myalgia, and proximal muscle
weakness, particularly in the lower
limbs

Dermatomyositis Discharge De la Vega et al.
(2020)

41 years, woman Chile - Vomiting, profuse diarrhea,
quantitatively compromised
consciousness, and tonic-clonic
convulsions

Hyponatremia Discharge Campodónico et al.
(2019)

woman - - Vomiting and liquid stools that
were self-limited

Hyponatremia result of
inappropriate antidiuretic
hormone secretion

Discharge Agüero-González
et al. (2019)

62 years, woman - - Shortness of breath, epigastric
abdominal pain, nausea, and non-
bloody emesis

Led to pneumothorax, septic
shock, and esophageal
rupture

- Gonzaga et al.
(2020)

37 years,womana Depression Visual hallucination, agitation,
tremors of extremities, oral
paresthesia, seizures, nausea,
vomiting, sweating and five skin
lesions on the leg

Neurological symptoms Discharge Morais et al. (2018)

aConcomitant ayahuasca and P. bicolor secretion use.
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are mediated by the actions of peptides present in the skin

secretion such as phyllokinin, adrenoregulin, sauvagine,

phyllocerulin, phyllomedusin, dermorphins, and deltorphins

(Li et al., 2018; Byard, 2019). Some researchers have attempted

to understand the full effect of the crude secretion, but with few

and uncertain results (Thompson et al., 2022; Thompson and

Williams, 2022). Generally, most studies focus on the secretion-

derived peptides, with individual effects of the main isolated

components (Table 2).

The most common causes of illness and death after kambô

rituals are associated with the depressive impact of opioid

derivatives on the CNS and the effects of toxins on the

cardiovascular system. Kidneys, pancreas and liver can be

damaged (Hemingway et al., 2009; Pogorzelska and Łapiński,

2017). There are a few reports of intoxication with both P. bicolor

secretion and ayahuasca that led to hospitalization (Morais et al.,

2018; Campodónico et al., 2019). However, there are some

reports of hospitalization due to intoxication with just the

secretion that presented severe side effects (Leban et al., 2016;

Hesselink, 2018d; Campodónico et al., 2019; De la Vega et al.,

2020; Sacco et al., 2022). In a study with 127 participants who

used the secretion, Thompson et al. (2022) observed non-severe

physical responses, such as facial swelling, diaphoresis, bowel

movements, and syncope, and increasing the dose was

responsible for the increase in facial swelling and sweating.

Although other studies have shown that the kambô ritual can

increase the risks of damage from hyponatremia, asphyxia from

vomiting, and injury from syncope and death (Menocchi, 2008;

Labate and Lima, 2007; Aquila et al., 2017; Sacco et al., 2022), due

to the high concentration of bioactive peptides and potency to

certain receptors, the effects can bemisinterpreted as intoxication

or a massive allergic reaction (Hesselink, 2018d).

5 Study perspectives

As a rich source of peptides, P. bicolor continues to entice

researchers in the medical and biotechnological fields due to its

vast chemodiversity (as yet not fully known), as well as for all its

pharmacological potentials. Regarding this potential, there is a

need for studies that aim to further elucidate the mechanisms of

action of some of the peptides, especially the opioids that have the

potential to be applied in the treatment of chronic diseases. In

parallel, the results of studies that indicate antibiotic,

antineoplastic, antiviral, immunomodulatory and antiparasitic

potential should be further investigated. This need for further

studies is supported by the inherent characteristics of these

peptides, such as low molecular weights, high activities, low

cytotoxicity, high water solubility and rapid absorption. In

this way, it is expected that, in the future, the chemistry of

secretions from P. bicolor will advance towards useful and safe

treatments, where once again traditional knowledge helps future

generations.

6 Final remarks

The species P. bicolor is prevalent in the Amazonian biome,

where it is used by the indigenous populations in the folk and

popular sectors of healthcare. Currently, its use has spread to

other populations, still with the original objectives of prevention

and treatment of a series of illnesses and traditional syndromes,

as well as for use in certain religious cults. The expansion of its

use has raised concerns about biopiracy, with reports of use in

European countries and the United States. Excessive use or use by

persons with prior health problems can result in critically-ill

envenomation and deaths. There are no management protocols

for these cases of envenomations, and supportive care has been

adopted in the few reports found in the literature. The richness of

the secretion’s bioactive peptides with different biological

activities is responsible both for the signs and symptoms of

their popular use and for the envenomations. Several studies

have been carried out to better understand the chemical nature of

these peptides and their biological effects from in vitro and

limited in vivo data. From a biotechnological perspective, the

antibiotic, antineoplastic, antiviral, immunomodulatory and

antiparasitic potential activities are of interest. (Bahar and

Ren, 2013, Mor et al., 1994c, Vanhoye et al., 2004).
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