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Objective: Osteoporosis is a common musculoskeletal disease. Fractures

caused by osteoporosis place a huge burden on global healthcare. At

present, the mechanism of metabolic-related etiological heterogeneity of

osteoporosis has not been explored, and no research has been conducted

to analyze the metabolic-related phenotype of osteoporosis. This study aimed

to identify different types of osteoporosis metabolic correlates associated with

underlying pathogenesis by machine learning.

Methods: In this study, the gene expression profiles GSE56814 andGSE56815 of

osteoporosis patients were downloaded from the GEO database, and

unsupervised clustering analysis was used to identify osteoporosis metabolic

gene subtypes and machine learning to screen osteoporosis metabolism-

related characteristic genes. Meanwhile, multi-omics enrichment was

performed using the online Proteomaps tool, and the results were validated

using external datasets GSE35959 and GSE7429. Finally, the immune and

stromal cell types of the signature genes were inferred by the xCell method.

Results: Based on unsupervised cluster analysis, osteoporosis metabolic

genotyping can be divided into three distinct subtypes: lipid and steroid

metabolism subtypes, glycolysis-related subtypes, and polysaccharide

subtypes. In addition, machine learning SVM identified 10 potentially

metabolically related genes, GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3,

ADAMTSL4, COQ6, B3GNT2, and CD9.

Conclusion: Based on the clustering analysis of gene expression in patients with

osteoporosis and machine learning, we identified different metabolism-related

subtypes and characteristic genes of osteoporosis, which will help to provide

new ideas for the metabolism-related pathogenesis of osteoporosis and

provide a new direction for follow-up research.
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Introduction

Osteoporosis is a systemic metabolic bone disease with an

increasing incidence rate. It is characterized by decreased bone

mass, deterioration of bone microstructure, and increased risk of

bone fragility and fracture (Author Anonymous, 1991).

Osteoporosis is mainly characterized by osteoporotic fractures,

including fractures in different body parts, especially hip

fractures. The study predicts that 50% of women and 30% of

men over 50 will suffer osteoporotic fractures (Johnell and Kanis,

2005). Osteoporosis exists in as many as 49 million people in

North America, Europe, Japan, and Australia (Wade et al., 2014).

Importantly, osteoporotic fractures lead to a reduced quality of

life in different patients, including increased pain, morbidity, and

mortality (Kerschan-Schindl et al., 2012; Hu et al., 2021). Studies

have suggested that risk factors for osteoporosis include smoking

(Bijelic et al., 2017), genetic and environmental factors (Bijelic

et al., 2016), inadequate calcium and vitamin D intake, physical

inactivity and inactivity, metabolic disorders, poor habits

(smoking, excessive alcohol consumption, coffee), long-term

treatment with corticosteroids, and presence of chronic

diseases (Alibasic et al., 2013). However, in recent years,

important progress has been made in the epidemiology,

pathology, pathogenesis, early diagnosis, and treatment of

osteoporosis. Regrettably, osteoporosis remains widespread

worldwide. Osteoporotic fractures seriously jeopardize the

quality of life and safety of older people, still cause high

mortality and great medical burden, and the continuous

increase in the number of patients deserves adequate attention

and an appropriate multidisciplinary approach to prevention and

treatment. Therefore, exploring the pathogenesis of osteoporosis

phenotypic variation is key to improving current osteoporosis

management and developing new therapeutic strategies.

Humans comprise a wide range of organisms, such as

animals, that take up potential energy mainly through

carbohydrates, fats, and proteins but also specific biochemical

cascades involving several enzymes for catabolism.

Physiologically, genes and pathways in many metabolic

pathways are critical for many cellular metabolic functions.

Therefore, dysregulation or imbalance of these genes and

pathways can lead to cellular dysfunction and various

metabolic diseases (Suzuki et al., 2020). Accumulating

evidence suggests that metabolic factors play an important

role in the pathogenesis of osteoporosis, which includes lipid

metabolism (Alekos et al., 2020), glucose metabolism (Karner

and Long, 2018; Cipriani et al., 2020), energy metabolism (Lee

et al., 2017), and phospholipid metabolism (Palmieri et al., 2021),

and metabolic syndrome (Chin et al., 2020).

Although there is substantial evidence for a possible link

between bone disorders and metabolic disorders, the specific

players and molecular interactions in these metabolic networks

remain unclear. At the same time, omic technology has promoted

the development and exploration of molecular changes in various

clinical diseases. At the same time, using multi-omics

technologies such as genomics, transcriptomics, proteomics,

and metabolomics is the key to promoting the proper

treatment of clinical diseases (Olivier et al., 2019). Therefore,

it is of great significance to explore the mechanism of metabolic

factors in osteoporosis. The development of specific genetic

biomarkers for osteoporosis and biomarkers related to

oxidative stress has been reported (Yang et al., 2019; Zhao

et al., 2021a). Regrettably, no studies have reported the

correlation between phenotyping characteristics of

osteoporosis with metabolic genes. In this study, we collected

osteoporosis microarray datasets from GEO to perform

unsupervised clustering of metabolic gene expression

according to gene expression for cluster analysis methods to

reveal heterogeneity and classification among osteoporosis

patients and identify metabolic key genes by machine

learning. Subsequently, to identify osteoporosis subtypes by

multi-omics analysis and trying at the level of biological

information, diseases, pathways, and protein genes. Then, an

independent dataset was used for validation. Finally, we explored

representative immune and stromal cells for genes involved in

the metabolism of osteoporosis, which may provide a new

perspective on the pathogenesis of osteoporosis-related

metabolic factor abnormalities.

Materials and methods

Data download

We identified candidate genes that contribute to gene

expression from the Gene Expression Omnibus (GEO)

databases downloaded from GeneChip with osteoporosis as a

research study for subsequent analysis using “osteoporosis” and

“Homo sapiens” as keywords, including GSE56814 (42 normal

and 31 osteoporosis samples) (Zhou et al., 2018a), GSE56815

(40 normal and 30 osteoporosis samples) (Zhou et al., 2018b),

GSE35959 (9 normal and five osteoporosis samples) (Benisch

et al., 2012) and GSE7429 (10 normal and 10 osteoporosis

samples) (Xiao et al., 2008). The data from gene chips

GSE56814 and GSE56815 were combined using the sva

function of the R language for subsequent analysis.

Cluster analysis

Previous studies have identified 2,752 metabolism-related

genes encoding all known human metabolic enzymes and

transporters, which are available for download (Possemato

et al., 2011). We used the ensemble similarity network fusion

and consensus clustering algorithm (SNF-CC) to observe gene

expression patterns and cluster identification in patients with

osteoporosis (Wang et al., 2014). Before performing SNF-CC, a
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filtering procedure was first performed, including the exclusion

of genes with low median absolute deviation (MAD) values

(mad ≤0.5) in all patients with osteopetrosis. Then, the

indices were clustered by cpi5 (cluster prediction index) and

gaps statistics in the movies package of the R language. The most

important parameter to estimate in any clustering study is the

optimal number of clusters ķ For the data, where ķ is small

enough to reduce noise but large enough to retain important

information (Lu et al., 2020). Multi-omics heatmaps were drawn

based on clustering results and used to identify, validate, and

visualize molecular disease subtypes from multi-omics data.

Differential gene expression profiles of
metabolically related subtypes of
osteoporosis

We used the R language limma package to perform gene

comparison analysis between subtypes and the Venn diagram

method to derive common representative DEGs. For example, to

identify DEGs of subtype 1, draw a Venn diagram of (subtype 1 +

subtype 2) v/s (subtype 1 + subtype 3) to obtain shared DEGs.

The same method was used for the three subtypes, and p <
0.05 represented statistical significance.

Pathway enrichment analysis and protein
map visualization

Proteomics is a biomimetic visualization method for all bulk

pathways of Homo sapiens generated by gene enrichment

(Liebermeister et al., 2014). We visualize differential protein

data in differential analysis using Proteomaps, a tool that

displays the composition of the proteome with a focus on

protein abundance and function. Each protein was displayed

as polygonal tiles with one area representing protein abundance

and functionally related proteins appearing in adjacent areas and

used to observe dynamic changes in the proportion of Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways between

different patient groups.

Screening of characteristic genes related
to metabolism in osteoporosis

We constructed an SVM classifier using the top-ranked

mrmr genes and applied an incremental feature selection (IFS)

approach to determine the optimal number of genes as signature

genes. The SVM function from package e10171 in the R language

was used to implement the SVM method. We used to leave one

out cross validation (loocv) to evaluate the predictive

performance of each SVM classifier. Based on the LOOCV

MCC for each candidate gene set, an IFS curve can be drawn.

The x-axis represents the number of top genes used in the SVM

classifier, and the y-axis represents the LOOCVMCC of the SVM

classifier. According to the IFS curve, we can select an

appropriate number of genes with good predictive

performance as the final eigengenes (Cheng et al., 2020; Pei

et al., 2020).

Data validation of characteristic gene
expression

We verified the expression of eigengenes and visualized the

data by drawing violin plots. Gene chip GSE35959 and

GSE7429 microarray data were used as external validation

datasets.

Immune correlates analysis

xCell is a novel method based on gene signatures that can

infer 64 immune and stromal cell types (Aran et al., 2017). We

visualized the relative enrichment of predetermined gene profile

combinations via the immunedeconv function of the xcell

package in the R language and performed association analyses

based on gene expression data from 64 immune and stromal cell

types (Aran et al., 2017). Correlation plot heatmaps were then

drawn and visualized using ggplot2.

Results

Data download and analysis of different
subtypes of osteoporosis

The flow chart of this study is shown in Figure 1. We

downloaded gene expression and clinical data of osteoporosis

patients from the Gene Expression Omnibus (GEO) database,

including GeneChip GSE56814, GSE56815, GSE35959, and

GSE7429. First, a principal component analysis of the

expression profiles of the GSE56814 and

GSE56815 datasets was performed to reveal the gene

expression data, as shown in Figures 2A,B. Second, we

identified the optimal number of clusters by computing the

CPI (blue line) and gap statistics (red line) in the cohort of

osteoporosis patients after combining GSE56814 with

GSE56815 by integrating the similarity network fusion and

consensus clustering algorithm (SNF-CC). K = 3. Among

them, when k = 3, the consensus matrix heatmap still

maintains clear and clear boundaries, indicating that the

clustering of samples is stable and robust, Figure 2C. We

defined these three osteoporosis subtypes as C1, C2, and C3.

Finally, we identified three osteoporosis subtypes by principal

component analysis, as shown in Figure 2D.
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Differential gene expression profiles of
osteoporosis subtypes

Additionally, we plotted metabolic pathways with metabolic

gene heatmaps showing that the high BMD group clustered with

the CI subtype and the low BMD group clustered with the

C3 subtype. Figure 3A. We plotted the percentage bar graph

of three subtypes between different BMDS. Among them, the

C1 subtype accounted for a high proportion in patients with high

BMD osteoporosis, the C3 subtype had a high proportion in

patients with low BMD osteoporosis, and the C2 subtype had a

similar proportion in patients with different BMD osteoporosis.

As shown in Figure 3B, we used the R language limma package

for gene difference analysis between subtypes and plotted Venn

diagrams to identify representative genes for each subtype. Of

these, 1,501 were shared among the three subtypes; see

supplementary material 2. Meanwhile, 1,351, 8, and

158 differentially expressed genes were identified for different

subtypes C1, C2, and C3, respectively (Figure 3C), and volcano

plots were drawn to represent the gene signatures shown in

supplementary materials 3, 4, and 5.

Multi-omics enrichment mapping of
metabolic-related differential genes

To visualize the differences in enrichment information of the

signature genes in different subgroups and to confirm the results

obtained in the enrichment analysis using additional

bioinformatics tools, we uploaded the signature genes of the

three subgroups separately to the web-available interactive

software proteomaps. In the created proteomap visualization

rectangle, the whole region was divided into color-coded

polygons representing the top categories, and the top category

regions were subdivided into disease region subcategories,

functionally related protein sharing common region

subcategories, and related gene sharing common region

subcategories, as shown in Figure 4. The C1 subtype was

enriched in metabolism concerning enrichment in

biosynthesis, amino acid metabolism, lipid, and steroid

metabolism, with the main protein being K00718 and the

main gene being FUT, as shown in Figure 4A. The

C2 subtype was metabolically enriched in the central carbon

metabolism, glycolysis pathway, k00002 protein, gene AKR1A1,

Figure 4B. The C3 subtype was metabolically enriched in

biosynthesis, glycan metabolism pathways of polysaccharides

and the main proteins were k07968, k01197, and k03909, and

the main genes were B4GALT3, HYAL2, and TFPI, as shown in

Figure 4C.

Screening and differential expression of
metabolic-related genes in osteoporosis

We visualized the differential genes of different osteoporosis

subtypes, as shown in Figure 5A. Based on the top 160 mRMR

genes screened, we determined the optimal number of genes as

feature genes by constructing 100 SVM classifiers and applying

the incremental feature selection (IFS) method, as shown in

Figure 5B. When the number of genes was 10, the peak MCC was

FIGURE 1
Flow diagram of the present study. The selected dataset contains the number of samples and cases.
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0.386, and these 10 genes were considered to be characteristic

genes related to metabolism in osteoporosis, including GPR31,

GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6,

B3GNT2, and CD9. Subsequently, we visualized violin plots

based on the expression of 10 candidate genes in different

subtypes of osteoporosis. GPR31, DDB2, RPS6, ADAMTSL4,

and COQ6 were expressed in C1 and C2 subtypes, C1>C2.
GATM, ARMCX1, BTBD3, B3GNT2, and CD9 were expressed

in C1 and C2 subtypes, C1<C2. In the expression of GATM and

ARMCX1 in C2 and C3 subtypes, C2>C3. ADAMTSL4 and

COQ6 were expressed in C2 and C3 subtypes, C2<C3.
Interestingly, there was no statistical significance in comparing

C1 with C3. (* means p = 0.05, ** means p = 0.01, *** means p =

0.001, ns means no statistical significance), as shown in

Figure 5C.

Signature gene expression data validation

Based on GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3,

ADAMTSL4, COQ6, B3GNT2, and CD9 gene expression in

GSE35959 and GSE7429 datasets, we drew violin plots for

data visualization for expression verification. Among them,

in the expression of GPR31 in the combined data, high

BMD < low BMD, as shown in Figure 6A. GPR31 is

expressed in GSE7429 data, high BMD > low BMD,

DDB2 is expressed in GSE7429 data, and high BMD > low

BMD, as shown in Figure 6B. In GSE35959 data expression of

GPR31 and DDB2, normal group < osteoporosis group, while

ARMCX1 and ADAMTSL4 in GSE35959 data

expression, normal group > osteoporosis group, as shown

in Figure 6C.

FIGURE 2
(A) Visualization of principal component analysis of expression profiles of GSE56814 and GSE56815 datasets. (B) Visualization of principal
component analysis of the combined expression profiles of GSE56814 and GSE56815. (C) The optimal number of clusters k = 3 was identified by
calculating the CPI (blue line) and gap statistic (red line) in the osteoporosis patient cohort, and the amount of gene expression in osteoporosis
patients were classified into three different subtypes by ensemble similarity network fusion and consensus clustering algorithm (SNF-CC): C1,
C2, and C3. (D) Visualization of principal component analysis of three subtype expression profiles.
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Immune correlates analysis

Finally, we used xCell to infer GPR31, GATM, DDB2,

ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2 and

CD9 genes for 64 immune and stromal cell types. These

consist of 16, 15, 14, 10, 17, 13, 27, 19, and

24 representative cells, respectively, as shown on the

correlation plot (Figure 8fig8). The representative cells of

each gene mainly include NKT (Natural killer T-cells), iDC

(Immature dendritic cells); CLP (Common lymphoid

progenitors), cDC (Xonventional dendritic cells); Th1 cells

(Type 1 T-helper cells), Plasma cells, CD4+ Tem (CD4+

effector memory T-cells), Class-switched memory B-cells;

Mast cells, Macrophages M2; CD8+ T-cells, B-cells; mv

Endothelial cells (Microvascular endothelial cells); Class-

switched memory B-cells, NKT (Natural killer T-cells);

Th1 cells (Type 1 T-helper cells), CD4+ Tem (CD4+

effector memory T-cells); Fibroblasts, Basophils, MSC

(Mesenchymal stem cells); Platelets,

Megakaryocytes, HSCs (Hematopoietic stem cells). As

shown in Figure 7.

Discussion

Osteoporosis is still a challenge to the public health problem

(Compston et al., 2019). Meanwhile, the pathogenesis associated

with osteoporosis, especially postmenopausal osteoporosis, still

needs to be explored. Therefore, we conducted a multi-omics

exploration of the mechanisms underlying the etiological

heterogeneity of osteoporosis. We found that osteoporosis

could be classified into three metabolic subtypes by cluster

analysis and enrichment analysis of gene expression

microarrays: lipid and steroid metabolic, glycolysis-related,

and glycan. Meanwhile, we identified 10 potentially

metabolically relevant signature genes by machine learning. In

conclusion, our study provides new insights into osteoporosis as

potential pathogenesis and gene as a therapeutic target in terms

of metabolic relevance.

In our study, the 10 genes associated with osteoporosis

metabolism were screened by machine learning, and these

10 genes were GPR31, GATM, DDB2, ARMCX1, RPS6,

BTBD3, ADAMTSL4, COQ6, B3GNT2, and CD9. Meanwhile,

in our external data validation, GPR31 was highly expressed in

FIGURE 3
Representative genes for each subtype. (A)Heatmap of the expression of metabolic genes andmetabolic pathways by BMD in the high and low
groups in three subtypes of osteoporosis patients. (B) The proportion of BMD in high and low groups in three different subtypes of osteoporosis. (C)
Differential genes were calculated for each of the two subgroups and intersected. Subtypes 1, 2, and 3 are 1,351, 8, and 158 representative genes,
respectively. Multi-omics enrichment mapping of metabolic-related differential genes.
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patients with low-level bone mineral density and patients with

osteoporosis. Regrettably, there are currently few studies on

GPR31, and studies related to osteoporosis have not been

reported. However, some studies suggest that GPR31 is a

target receptor for 12(S)-hydroxyeicosatetraenoic acid (12(S)-

HETE) and has the same lipid receptor properties as other

proton-sensing GPCRs (Guo et al., 2011). GPR31 has the

highest protein identity (up to 36%) to hydroxy carboxylate

receptor (HCAR) 1-3 and is activated under acidic conditions

(Mashiko et al., 2019). Based on the above findings, we can infer

that GPR31 as a target receptor is involved in osteoporosis by

mediating the imbalance of lipid metabolism through the

regulation of 12(S)-HETE.

In the results of this study, osteoporosis subtype 1 was mainly

related to lipid and steroid metabolism, and the main proteins

and genes were K00718 and FUT. There is reported in vitro

evidence that lipids are involved in the development of

osteoporosis (Parhami et al., 2001). However, the association

between lipid metabolism and osteoporosis in human studies

remains controversial. Numerous studies show an inverse

correlation between lipid biomarkers and bone mineral

density (BMD). Ersoy and Lahon et al. found a positive

correlation between low-density lipoprotein cholesterol (LDL-

C) and bone density (Lahon et al., 2016; Ersoy et al., 2017).

Interestingly, Ghadiri-Anari’s study showed no association

between lipids and bone density (Ghadiri-Anari et al., 2016).

Similarly, in a cross-sectional study by Kan et al., higher total

cholesterol and triglycerides were strongly associated with higher

osteoporosis risk in humans (Kan et al., 2021). Studies have also

shown that high-density lipoprotein cholesterol (HDL-C) is

elevated in patients with osteoporosis (Zhao et al., 2021b).

However, studies on the relationship between the protein

K00718 and the FUT gene and osteoporosis have not been

reported. However, based on the findings, we infer that

osteoporosis subtype 1 may be involved in lipid and steroid

metabolism.

Interestingly, osteoporosis subtype 2 is metabolically

associated with the glycolytic metabolic pathway, including

the protein K00002 and the AKR1A1 gene. It is well known

that osteoclast-mediated bone resorption leads to osteoporosis

more than osteoblast-mediated bone formation, leading to an

imbalance in bone homeostasis. There is increasing evidence that

glycolysis in cells of the osteoblastic lineage is directly stimulated

by various bone anabolic signals. Recent studies suggest that

FIGURE 4
The proteomaps pathway analysis plot includes information process area polygon, disease area, pathway area, protein area, and gene area
modules. (A) Indicates relevant information in osteoporosis type C1. (B)Denotes relevant information on osteoporosis type C2. (C) Indicates relevant
information for osteoporosis type C3. Screening and differential expression of metabolic-related genes in osteoporosis.
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parathyroid hormone (PTH) can stimulate aerobic glycolysis to

promote bone anabolism through IGF signaling (Esen et al.,

2015). Meanwhile, WntSignals directly regulate cellular

metabolism by stimulating aerobic glycolysis, glutamine

catabolism, and fatty acid oxidation in osteoblastic lineage

cells (Karner and Long, 2017). In particular, experiments

showed that the Wnt3a-Lrp5 signaling pathway could increase

Glut1, Hk2, Ldha, and Pdk1 downstream of mTORC2 and Akt

activation while inducing osteoblastic differentiation of the bone

marrow mesenchymal progenitor cell line ST2 (Esen et al., 2013).

On the other hand, increased glycolysis, oxidative

phosphorylation, and lactate production were found during

nuclear factor kappa B ligand (RANKL)-induced osteoclast

differentiation from mouse bone marrow macrophages.

Furthermore, osteoclastogenesis can be delayed by blocking

ATP production with a mitochondrial complex inhibitor or

the ATP synthase inhibitor oligomycin, a finding that suggests

that osteoclastogenesis may be regulated by changes in the

concentration of metabolic substrates (Kim et al., 2007).

Recently, experimentally reducing the rate of glycolysis with

galactose impairs collagen I degradation, while inhibition of

mitochondrial complex I with non-cytotoxic doses of

rotenone enhances osteoclast activity, suggesting that human

osteoclasts are sugar-dependent bone resorption by glycolysis

(Lemma et al., 2016). However, more research is needed to

elucidate the full mechanism of glycolysis between osteoblasts

and osteoclasts. These comprehensive insights into osteoblast

and osteoclast metabolism and its regulation may reveal

molecular targets for osteoporosis.

More importantly, osteoporosis subtype 3 is metabolically

enriched in biosynthesis and polysaccharide metabolism

pathways. The main proteins are K07968, K01197, and K03909,

and the main genes are B4GALT3, HYAL2, and TFPI. The

association of these genes and proteins with osteoporosis has not

been reported. However, studies show that polysaccharides have

therapeutic effects on several types of osteoporosis, including

postmenopausal osteoporosis, senile osteoporosis, and

glucocorticoid-induced secondary osteoporosis, by promoting

osteoblast differentiation and activity and reducing osteoclast

differentiation and activity (Lei et al., 2021). It has also been

shown that Wnt/β-catenin signaling pathways play an important

role in BMSC self-renewal, directional differentiation, osteoblast

proliferation and formation, and apoptosis. Li et al. showed that

BMP9 is a direct target of miR-152 and that aspartate downregulates

the expression of miR-152 and promotes upregulation of BMP9,

which activates PI3K/Akt and Wnt in BMSCs/β-Catenin signaling

FIGURE 5
(A) Bar graph of differential genes of three osteoporosis subtypes. (B) IFS curves are based on the top 160mrmr genes. The x-axis is the number
of genes, and the y-axis is the prediction performance, that is, loocv MCC. When 10 genes were used, the peak MCC was 0.386. (C) The expression
difference box plot represents the difference in expression levels of GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2, and
CD9 genes among the three isoforms.
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pathway (Li et al., 2019). Wnt3a and Wnt10b expression in MSCs

can activate Wnt in a process that promotes osteoblast

differentiation/β-catenin signaling pathway to promote

proliferation of BMSCs (Liu et al., 2008). Meanwhile, DKK-1 is a

suppressor of Wnt signaling and can inhibit bone formation leading

to osteoporosis, and antagonizing DKK-1 can increase bone mass

(Anastasilakis et al., 2010). Research suggests that polysaccharide

polysaccharide (RPP) can promote osteoblast differentiation and

mineralization by regulating ERK/GSK-3β/β-catenin signaling

pathway (Peng et al., 2018). Meanwhile, astragalus polysaccharide

(ASP) can effectively alleviate oxidative stress-mediated osteoporosis

in ovariectomized rats by regulating the FoxO3a/Wnt2/β-catenin
pathway (Ou et al., 2019). On the other hand, Lycium barbarum

polysaccharide (LYP)-mediated serum can activate the expression of

Wnt signaling pathway-related proteins β-catenin and Wnt10b and

promote the differentiation and mineralization of bone marrow

mesenchymal stem cells into osteoblasts (Wang et al., 2017). Huang

et al. found that two novel polysaccharides, CBP70-1-1 and CBP70-

1-2, promoted osteoblast proliferation at low concentrations (Huang

et al., 2020a). Chen et al. found that Gastrodia elata Blume

polysaccharide (wss25) could inhibit the expression of the BMP2/

Smad1 pathway and osteoclast differentiation (Chen et al., 2015).

Gracilaria lemaneiformis polysaccharide (APP) can upregulate mir-

70 expression and modulate Wnt/β-catenin signaling, enhancing

alkaline phosphatase activity and promoting osteoblast proliferation

and differentiation, and increasing osteoblast differentiation marker

proteins BMP2, Runx2, osterix, and osteocalcin (Huang et al., 2020b;

Huang et al., 2020c). In summary, there is a close relationship

FIGURE 6
Expression difference violin plot of the difference in expression levels of GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6,
B3GNT2, and CD9 genes in the external validation dataset. (A)GSE35959 andGSE7429merged dataset validation. (B)GSE7429 dataset validation. (C)
GSE35959 dataset validation.
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between polysaccharide metabolism and the development of

osteoporosis, so we speculate that the proteins k07968, k01197,

k03909, and genes B4GALT3, HYAL2, and TFPImay have relevance

in the regulation of multiple signaling pathways by polysaccharide

metabolism in the development of osteoporosis.

To clarify the interaction of immune cells and stromal cells in

osteoporosis, we analyzed the correlation of osteoporosis metabolism-

related genes in 64 immune and stromal cell types. The results suggest

that a variety of immune cells and stromal cells may be relevant in

osteoporosis. Studies have suggested that B and T cells are important

stabilizers of bone turnover and key regulators of peak bone mass in

vivo to maintain bone homeostasis and achieve peak bone mass in

vivo (Li et al., 2007). On the other hand, it is believed that under

conditions such as estrogen deficiency, infection, and inflammation,

T-cell-dependent release of IFN- γ Can inhibit IFN- γ Signaling and
osteoclast formation, in turn, prevent bone loss (Gao et al., 2007). In

contrast, dendritic cells can release RANKL to initiate

osteoclastogenesis and bone resorption in response to

inflammatory osteoporosis (Pietschmann et al., 2016). At the same

time, dendritic cells, similar to B lymphocytes, may participate in the

regulation of physiological bone remodeling by secreting receptor

activator of nuclear factor kappa-B ligand receptor (RANKL)-induced

receptor osteoprotegerin (OPG), thereby inhibiting osteoclast

activation (Walsh and Choi, 2014). A variety of immune cells are

involved in bone anabolic processes.

As a systemic skeletal systemdisease, osteoporosismustfindmore

ways to unravel pathogenesis research. Metabolic abnormalities have

entered osteoporosis as a new perspective and may become a new

FIGURE 7
Correlation plot of immune and stromal cell composition based on GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2,
and CD9 gene analysis. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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direction for research on new biomarkers for osteoporosis. Therefore,

based on the correlation analysis ofmulti-omics andmetabolic-related

genes and osteoporosis, this study explored the characteristic genes

that can guide deeper osteoporosis research. Regrettably, our study

still has certain limitations. First, using xcell to represent the

correlation of immune to stromal cell abundance with direct

measurements is not the same, and inferences as abundance scores

cannot be interpreted as true proportions. Therefore, we cannot

guarantee the reliability of our findings in xcell’s results and need

to be treatedwith caution.Meanwhile, our genotyping of osteoporosis

and signature genes by integrating multi-omics data needs more

clinical samples andmolecular cell experiments for validation, but our

study still has certain guiding significance.

Conclusion

Based on the clustering analysis of gene expression in

patients with osteoporosis and machine learning, we identified

different metabolism-related subtypes and characteristic genes of

osteoporosis, which will help to provide new ideas for the

metabolism-related pathogenesis of osteoporosis and provide a

new direction for follow-up research.
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