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Background and aim: Allergic asthma is a complex inflammatory disease

involving type 2 innate lymphoid cells, type 2 T helper cells, macrophages,

and eosinophils. The disease is characterized by wheezing, dyspnea, coughing,

chest tightness and variable airflow limitation for which there is no cure and is

symptomatically treated with inhaled corticosteroids and β2-agonists.
Molecular mechanisms underlying its complex pathogenesis are not fully

understood. However, 8-oxoguanine DNA glycosylase-1 (OGG1), a DNA

repair protein may play a central role, as OGG1 deficiency decreases both

innate and allergic inflammation.

Methods: Using a murine ovalbumin (OVA) model of allergic airway

inflammation we assessed the utility of an inhibitor of OGG1 (TH5487) in this

disease context. Cytokines and chemokines, promoting immune cell

recruitment were measured using a 23-multiplex assay and Western blotting.

Additionally, immune cell recruitment to bronchi was measured using flow

cytometry. Histological analyses and immunofluorescent staining were used to

confirm immune cell influx and goblet cell hyperplasia of the airways. A PCR

array was used to assess asthma-related genes in murine lung tissue following

TH5487 treatment. Finally, airway hyperresponsiveness was determined using

in vivo lung function measurement.

Results: In this study, administration of TH5487 to mice with OVA-induced

allergic airway inflammation significantly decreased goblet cell hyperplasia and

mucus production. TH5487 treatment also decreased levels of activated NF-κB
and expression of proinflammatory cytokines and chemokines resulting in

significantly lower recruitment of eosinophils and other immune cells to the

lungs. Gene expression profiling of asthma and allergy-related proteins after

TH5487 treatment revealed differences in several important regulators,

including down regulation of Tnfrsf4, Arg1, Ccl12 and Ccl11, and
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upregulation of the negative regulator of type 2 inflammation, Bcl6.

Furthermore, the gene Clca1 was upregulated following TH5487 treatment,

which should be explored further due to its ambiguous role in allergic asthma. In

addition, the OVA-induced airway hyperresponsiveness was significantly

reduced by TH5487 treatment.

Conclusion: Taken together, the data presented in this study suggest OGG1 as a

clinically relevant pharmacological target for the treatment of allergic

inflammation.
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Introduction

Asthma is a chronic inflammatory lung disease, affecting over

300 million people worldwide (The Global Asthma Report 2018).

The disease is markedly heterogenous and complex, with both

inherited susceptibility and environmental exposures playing

important roles (Hay, 2017). Allergic asthma is characterized by

specific IgE-secretion, accumulation of eosinophils in lung tissue,

and increasedmucus production, which leads to wheezing, dyspnea,

coughing, chest tightness, and variable airflow limitation (Rodrigo

et al., 2004). Primary treatment options for asthma focus on

reductions in pulmonary inflammation as well as bronchodilation

using inhaled corticosteroids, β2-agonists, and leukotriene receptor

inhibitors (Reddel et al., 2021). However, a large proportion of

asthma patients experience side effects, resulting in compromised

treatment adherence (Cooper et al., 2015).

Type 2 driven airway inflammation is a key feature of allergic

asthma, triggered by environmental antigens found in pollens, dust

mites, fungi, and pet dander (Sporik et al., 1990; Suphioglu et al.,

1992; Permaul et al., 2012). Release of type 2 cytokines, including IL-

4, IL-5 and IL-13, results in an infiltration of several different

immune cells mainly comprising eosinophils (Djukanovic et al.,

1990; Holgate, 2012; Peters andWenzel, 2020). Early events include

epithelial cell activation of type 2 innate lymphoid cells (ILC2s) and,

subsequently, IL-4 as a key cytokine for the conversion of naïve

helper T cells into TH2 effector cells. Specialized subsets of T

follicular helper cells (Tfh) produce IL-4 and are involved in

B cell IgE production, which binds to the surface of mast cells

causing degranulation (Li-Weber andKrammer, 2003). Inmodels of

allergy, Tfh cells acquire the ability to express IL-13, further

promoting IgE production (Gowthaman et al., 2020). IgE-

mediated degranulation of mast cells leads to release of

proinflammatory mediators that cause bronchoconstriction and

increase lung inflammation (Bradding et al., 2006; McBrien and

Menzies-Gow, 2017). IL-5 is also an important regulator of

eosinophils, which play a vital role in airway remodeling during

allergic asthma, controlling differentiation, activation, and delaying

apoptosis of immune cells (Takatsu and Nakajima, 2008).

Oxidative stress in the airways occurs during asthma due to

release of reactive oxygen species (ROS) from activated

inflammatory cells, in particular eosinophils (Kirkham and

Rahman, 2006). One of the most abundant DNA lesions

resulting from increased ROS is 8-hydroxy-2′-deoxyguanosine (8-
oxoG) (Wu et al., 2004) and has been found to be increased in

asthma patients (Zeyrek et al., 2009; Proklou et al., 2013). 8-oxoG

lesions in chromatin of eukaryotic cells are predominantly repaired

through base excision repair, which is initiated by 8-oxoG DNA

glycosylase (OGG1) (David et al., 2007; Ba and Boldogh, 2018).

Recent studies have also documented 8-oxoG formed in promoter-

enhancer regions, with OGG1 shown to be a modulator of gene

expression via the facilitation of transcription factor DNA

occupancy (Li et al., 2012; Aguilera-Aguirre et al., 2017; Fleming

andBurrows, 2017, 2020; Fleming et al., 2017; Ba andBoldogh, 2018;

Tumurkhuu et al., 2020). Ogg1−/− and OGG1 siRNAmurine studies

(Klungland et al., 1999; Mabley et al., 2005; Bacsi et al., 2013)

highlighted a reduced allergic inflammatory response after

ovalbumin (OVA) challenge or ragweed pollen stimulation,

respectively.

Recently, a small molecule inhibitor of OGG1, TH5487,

was developed and shown to interfere with the binding of

OGG1 to DNA in guanine-rich promotor regions, leading to

reduced immune cell recruitment in a model of airway

inflammation using lipopolysaccharide as a trigger (Visnes

et al., 2018). In this study, we assessed the potential therapeutic

use of TH5487 in a mouse model of allergen-induced airway

inflammation. TH5487 treatment resulted in reduced immune

cell recruitment to the lungs, lower levels of plasma IgE and

OVA-specific IgE, decreased NF-κB activation in the lungs,

decreased small air way mucus accumulation and less

M2 macrophages in BALF and lung tissue. Together, these

results suggest a potential role for OGG1 as a target to treat

allergic asthma.

Materials and methods

Study design

The aim of this study was to evaluate the treatment

potential of a small molecule inhibitor of OGG1
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(TH5487), which prevents binding of OGG1 to oxidized DNA,

against allergic asthma using an OVA-induced allergic

inflammation mouse model. Pharmacological characteristics

of TH5487 have been described elsewhere (Visnes et al., 2018).

The mice were randomly divided into four groups, OVA (n =

9), OVA/TH5487 (n = 10), Vehicle (n = 10) and TH5487 (n =

10). When possible, downstream experiments were conducted

with the investigator blinded to the sample groups. No animals

were excluded as outliers.

Ethical approval

Animal experiments were approved by the Malmö-Lund

Animal Care Ethics Committee, ethical permit no. M3802-19

and Stockholm Animal Care Ethics Committee, ethical permit

no. 3649-2019.

Animals

Female C57BL/6J mice (Janvier, Le Genest-Saint-Isle,

France) and male BALB/c (Envigo, Horst, NL) 8-10-week-old

mice were housed in plastic cages with absorbent bedding

material and were maintained for at least 2 weeks prior to

initiation of experiments. The mice were kept in a controlled

environment (temperature, light/dark cycle, food, and water ad

libitum). Allergic airway inflammation was induced by

sensitization with 20 µg OVA in alum (1:10) injected

intraperitoneally at day 0 and 7 followed by challenges using

intratracheal administration of 50 µg OVA at day 14, 16, 18 and

20 (Figure 1A). An intraperitoneal injection of TH5487

(40 mg/kg) was performed prior to each challenge and mice

were sacrificed at day 21. The mice were randomly allocated into

four groups: OVA sensitized (vehicle), OVA sensitized + OVA

challenged (OVA), OVA sensitized + OVA challenged + TH5487

(OVA/TH5487), and OVA sensitized + TH5487 (TH only). The

lung function experiments were performed in BALB/C mice as

this strain develops a stronger airway hyperresponsiveness

(AHR) than C57BL/6 mice (Swedin et al., 2010).

Blood collection

Collection of blood in tubes containing 0.5M EDTA was

performed by cardiac puncture. The tubes were centrifuged at

1,000 x g for 10 min and the supernatants were kept for later analysis.

Lung tissue collection

The left lung from each mouse was collected in Histofix

(Histolab, Göteborg, Sweden) and transferred to buffered

paraformaldehyde solution (4%). The right lung was

submerged in RNAlater solution (Thermo Fisher Scientific,

Waltham, MA) and stored at −20°C. After thawing, sample

aliquots were homogenized in tissue protein extraction reagent

(T-PER) solution (Thermo Fisher Scientific) with proteinase

inhibitor (Pefabloc, SC; Sigma-Aldrich, Saint Louis, MI) at a

concentration of 1 mM. Following homogenization, samples

were centrifuged at 9,000 x g for 10 min at 4°C and the

supernatants were collected for later analysis. The remaining

sample was used for RNA extraction (see below).

Bronchoalveolar lavage fluid collection

BAL was performed using a total volume of 1 ml PBS with

100 µM EDTA. The BALF was kept on ice and aliquoted for flow

cytometry, cytospin differential counts and multiplex cytokine

analysis. Cytospin samples were stained with modified Giemsa-

Wright stain (Sigma-Aldrich) or used for immunofluorescence

staining (see below).

SDS-PAGE and western blotting

Total protein concentrations of lung homogenate lysates

were analyzed with a Pierce BCA Protein Assay Kit (Thermo

Fisher Scientific). SDS-PAGE was performed using Mini-

PROTEAN® Precast Mini PAGE Gels (Bio-Rad, Hercules,

CA). Trans-Blot Turbo Mini 0.2 µM PVDF Transfer Packs

(Bio-Rad) were used for transferring of proteins to the PVDF

membranes. Membranes were blocked for 3 h at RT and

incubated with primary antibodies (rabbit anti-mouse NF-

κB(RelA/p65/) (sc-8008; Santa Cruz Biotechnology, Santa

Cruz, CA), rabbit anti-mouse phospho (p)-RelA/p65(NF-κB)
(Ser276; A1953; Abcam), mouse anti-mouse arginase-1

(ab239731), rabbit anti-mouse CD206 (ab64693) and rabbit

anti-mouse GAPDH (14C10; Cell Signaling; 1:500) in blocking

buffer. After washing with PBS-Tween, membranes were

incubated with secondary antibodies (Alexa Fluor 488-

conjugated goat anti rabbit/mouse (Invitrogen, Carlsbad, CA))

for 1 h RT. Imaging of blots was preformed using a ChemiDoc

system (Bio-Rad) followed by quantification with densitometry

normalized to GAPDH.

Total IgE ELISA

Total plasma IgE levels were determined using a IgE Mouse

ELISA Kit (Invitrogen, Waltham, MA). Plasma samples diluted

1:500, and IgE standard (0.137–100 ng/ml) were pipetted into a

96-well plate and incubated for 2.5 h (RT) with gentle shaking.

Wells were washed 4 times with wash buffer followed by addition

of biotin conjugate to all wells. After 1 h incubation at RT with
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gentle shaking, the wells were washed 4 times and Streptavidin-

HRP solution was added to all wells. The wash was repeated and

TMB substrate was added following incubation for 30 min at RT

with gentle shaking. The reaction was stopped by adding Stop

Solution and absorbance was read at 450 nm using a VICTOR

1420 Multilabel plate reader (PerkinElmer, Waltham, MA). A

standard curve was generated (Sigmoidal, 4 PL) and used to

calculate IgE levels in the samples.

OVA-specific IgE ELISA

OVA-specific IgE levels were measured using a LEGEND

MAX™ Mouse OVA Specific IgE ELISA Kit (BioLegend, San

Diego, CA). The plate was washed 4 times with wash buffer

followed by addition of Matrix A to standard wells and Assay

Buffer to sample wells. Standard (20-0.313 ng/ml) and samples

(diluted 1:2) were added to the plate and incubated for 2 h with

shaking at 200 rpm. After washing the wells 4 times, Mouse

Detection Antibody solution was added to each well followed by

incubation for 1 h with shaking at 200 rpm. Wells were washed

4 times and Avidin-HRP D solution was added to each well and

incubated for 30 min while shaking. The wells were washed

5 times, with soaking of the wells for 30 s to 1 min between

each wash, before adding Substrate Solution F followed by

incubation for 15 min in the dark. The reaction was stopped

with Stop Solution and the absorbance was read at 450 nm using

a VICTOR 1420Multilabel plate reader (PerkinElmer). Using the

absorbance of the standard, a linear standard curve was generated

to calculate IgE levels in the samples.

MUC5AC ELISA

The standards and BAL fluid samples were added to plates

pre-coated with a MUC5AC antibody (MyBioSource Cat #

MBS2507150). Thereafter, biotinylated antibody specific for

MUC5AC and Avidin-Horseradish Peroxidase (HRP)

conjugate was added to each well. Plates were washed and

substrate added to each well. Reactions were terminated by

the addition of a sulphuric acid solution. The optical density

was measured spectrophotometrically at a wavelength of 450 nm

using Synergy H1 BIO-TEK Instruments (Winooski, VT).

Immunostaining of lung sections

Fixated lung tissue sections underwent antigen retrieval

(pH 9 buffer) using a Dako PT Link pre-treatment module

(Agilent, Santa Clara, CA). Samples were washed with PBS and

blocked with Dako protein block (Agilent) for 10 min, followed by

incubation with primary antibodies overnight (mouse anti-mouse

arginase-1 (ab239731), mouse anti-mouse MUC5ac (MA5-12178)).

Samples were incubated with secondary antibodies, Alexa Fluor

594 goat anti mouse (Abcam, Cambridge, United Kingdom). Glass

cover slips were mounted with DAPI- containing fluoroshield

(Abcam). Images were visualized using a Nikon Confocal

Microscope (Nikon, Tokyo, Japan) and fluorescence was

quantified using ImageJ software (https://imagej.nih.gov).

Immunostaining of BALF samples

Cytospin preparations of BALF cells were blocked with Dako

protein block (Agilent) for 10 min and incubated with primary

antibodies (mouse anti-mouse arginase-1 (ab239731)) for 1 h

RT. Secondary antibodies, Alexa Fluor 594 goat anti-mouse

(Abcam), was added to the samples, followed by incubation

for 30 min at RT. Slides were mounted with cover slips and

DAPI-containing fluoroshield (Abcam). Images were visualized

using a Nikon Confocal Microscope and fluorescence was

quantified using ImageJ software.

Real-time PCR array

Total mRNA was extracted from lung tissue submerged in

RNAlater using an RNeasy Mini Kit (Qiagen, Hilden, Germany)

according to the protocol from the manufacturer. RNA

concentrations were determined using a NanoDrop ND1000

(Saveen Werner, Limhamn, Malmö). Equal amounts of RNA

were pooled from several animals in each group (OVA/

TH5487 n = 5, OVA n = 4). cDNA was synthesized with an

iScript Advanced cDNA Synthesis Kit (Bio-Rad) and mixed with

RT2 SYBR® Green ROX™ qPCR Mastermix. A volume of 25 µL

of the reaction mixture was added to each well of a RT2 Profiler™
PCR Array Mouse Allergy & Asthma PAMM-067ZA plate.

The RT-PCR reaction was performed using a QuantStudio™
7 Flex system (Thermo Fisher Scientific) and data analysis was

performed using the manufacturer’s web-based software (https://

geneglobe.qiagen.com/analyze). Normalization of gene

expression was performed using the following house-keeping

genes: B2m, Actb, Gusb, Gapdh and Hsp90ab1.

Electrophoretic mobility shift assay

Snap frozen lungs were homogenized, and nuclear extracts

were obtained using the CelLyticTM NuCLEARTM Extraction

Kit (Millipore-Sigma). Protein concentrations were

determined by Pierce BCA Protein Assay Kit (Thermo

Fisher Scientific). EMSA assays were performed as

described previously (Pan et al., 2016; Hao et al., 2018).

Briefly, biotin-labeled probes (20 fmol; Sense: 5′-
TTCCCTGGTCCCCGGGCTTTTCCAGACATCG-3′Anti-
sense:5′-biotin CGATGTCTGGAA AAGCCCGGGGACCAG
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GGAA-3′) were mixed with 2 µg extract in binding buffer

(10 mM Tris-Cl (pH 8.0), 10 mM NaCl, 1 mM DTT, 1 mM

EDTA, 1 mg/ml BSA and 0.1 μg/μl Poly [d (I-C). Protein-DNA

complexes were resolved on 6% nondenaturing

polyacrylamide gels (Invitrogen) in 0.25 × TBE buffer

(100V for 1.5 h). Images were visualized using Amersham

Imager 680 (Global Life Sciences Solutions, Marlborough,

MA). Band intensities were quantified using ImageJ v1.51

(NIH, Bethesda, MD).

Flow cytometry

A BDAccuri 6 (BD, Franklin Lakes, NJ) was used for the flow

cytometry experiments. The cells were washed in stain buffer 1x

(BD554656) followed by incubation with Lyse Fix 1x (BD558049

(5x)). After fixing, the samples were washed with stain buffer and

separated into two equal samples. The first sample was incubated

with either rat anti-mouse CD45 (BD553080), anti-CD11b

(BD553312), anti-CD11c (BD558079) and anti-Ly6G

(BD551461), with the second sample incubated with rat anti-

mouse CD45 (BD553080), anti-CD11b (BD553312), anti-CD11c

(BD558079) and anti-SiglecF (BD562680).

Bioplex cytokine analysis

A Bio-Plex Pro mouse cytokine assay (23-Plex Group I;

BioRad) using a Luminex-xMAP/Bio-Plex 200 System was

used to quantify multiple cytokines in BALF, plasma and

lung homogenate. Analysis was performed using Bio-Plex

Manager 6.2 software (Bio-Rad). The detection limits were

as follows: CCL11 (Eotaxin) (21372.02-1.15 pg/ml), GCSF

(124018.4-6.97 pg/ml), GMCSF (1,161.99-3.73), IFN-γ
(14994.64-0.72 pg/ml), IL-1α (10337.5-0.63 pg/ml), IL-1β
(28913.54-1.57 pg/ml), IL-2 (22304.34-1.21 pg/ml), IL-3

(7,639.21-0.47 pg/ml), IL-4 (6,334.86-0.36 pg/ml), IL-5

(12950.39-0.76 pg/ml), IL-6 (11370.16-0.66 pg/ml), IL-9

(2,580.93-2.46 pg/ml), IL-10 (76949.87-4.09 pg/ml), IL-

12p40 (323094.58-17.38 pg/ml), IL-12p70 (79308.46-

19.51 pg/ml), IL-13 (257172.3-53.85 pg/ml), IL-17 (8,355.61-

0.5 pg/ml), KC (23377.88-1.3 pg/ml), MCP-1 (223776.6-

45.04 pg/ml), MIP-1α (14038.07-0.58 pg/ml), MIP-1β
(928.18-2.39 pg/ml), RANTES (4,721.74-4.42 pg/ml), and

TNF-α (73020.1-4.61 pg/ml). Correction for protein

concentration was done using a Pierce ™ BCA Protein

Assay Kit (Thermo Fischer Scientific).

H&E and PAS staining of lung sections

Right lungs were fixed in Histofix (Histolab), and paraffin

embedded. Sections (3 µm) were cut with a microtome and

placed on glass slides (Superfrost Plus; Thermo Fisher

Scientific). Deparaffinization was performed using serial baths

of xylene and ethanol. Staining was completed using Mayer

hematoxylin and 0.2% eosin (Histolab) or Periodic Acid Schiff

(PAS) Stain Kit (Mucin Stain) (Abcam). Imaging of the slides was

performed using an Olympus BX60F microscope with an

SC50 camera (Olympus, Tokyo, Japan).

Real-time PCR

Total mRNA was extracted from lung tissue kept in RNAlater

(stored at −20°C) using a RNeasy Mini Kit (Qiagen, Valencia, CA)

according to the manufacturer’s protocol. RNA concentrations were

determined with a NanoDrop ND1000 (Saveen Werner, Malmö,

Sweden). RNA was converted into cDNA (1 µg) using an iScript

Advanced cDNA Synthesis Kit (Bio-Rad). Expression of target genes

was measured using TaqMan™ Fast Advanced Master Mix with

TaqMan™ probes listed in Supp. Table 1tbl1, and the reactions

were run on a CFX Connect Real-Time System in 96-well plates.

Water samples were included to confirm non-specific PCR reactions.

ΔCt values were calculated by normalization to house-keeping gene

succinate dehydrogenase complex, subunit A (Sdha). To obtain ΔΔCt
values, ΔCt values from the treatment groups were divided by ΔCt
values from the control group. Fold change was calculated by 2−ΔΔCt.

Measurement of airway
hyperresponsiveness

On day 21 of the OVA-challenge protocol, AHR was

induced by administration of methacholine (MCh; Sigma-

Aldrich) in mice anaesthetized with ketamine hydrochloride

(75 mg/kg, Ketaminol® Vet., Intervet, Stockholm, Sweden) and

medetomidine hydrochloride (1 mg/kg, Cepetor®Vet.,
VETMEDIC, Stockholm, Sweden). Methacholine was

delivered by aerosol administration via a nebuliser (Scireq;

Montreal, Que., Canada), at doses ranging from 0 to 12.5 mg/

ml after an initial dose of saline alone. The AHR was measured

with a small animal ventilator (FlexiVent; Scireq), as

previously described. Dynamic and central resistance (R

and Rn, respectively), central airway compliance (C),

peripheral tissue damping (G) and tissue elastance (H) were

recorded. Newtonian resistance, Rn, is a predictive measure of

resistance in the central airways, with tissue damping

reflecting energy dissipation in the lung tissue, and tissue

elastance indicating tissue stiffness.

Statistical analysis

Analysis of differences between three or more groups was

calculated using one-way ANOVA with Dunnett’s post hoc
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test. Statistical testing was performed using GraphPad Prism

9.3.1 (350) (GraphPad Software, San Diego, CA) and the

statistical significance was defined as p < 0.05. The results

are displayed as mean ± SEM.

Results

TH5487 treatment decreases levels of
plasma IgE and activated NF-κB

Allergic airway inflammation was induced by ovalbumin

(OVA)-sensitization and challenge (Figure 1A). An

intraperitoneal injection of TH5487 (40 mg/kg) was performed

prior to each challenge. No significant differences in weight loss

or probability of survival were seen between the groups (Figures

1B–D). Lung weights were significantly increased in the OVA group

compared to the TH5487 treated mice (Figure 1E) and a similar

trend was seen for the spleen weight, without reaching statistical

significance (Figure 1F). Total IgE and OVA-specific IgE levels in

plasma were both significantly decreased in the OVA/

TH5487 group compared to the OVA group (Figures 1G,H).

Activation of the NF-κB signaling pathway plays a central role in

allergic inflammation of both patient-derived samples and in OVA-

sensitizedmice (Poynter et al., 2002; Gagliardo et al., 2003).Western

blot analysis of NF-κB displayed increases in the phosphorylated

catalytic subunit (p-RelA (p65) the mammalian homolog of the

V-Rel avian reticuloendotheliosis viral oncogene A) in the OVA-

challenged group, whereas treatment with TH5487 resulted in no

significant changes in levels of p-RelA/p65(NF-κB) (Figure 1I). To
support these observations, EMSAs were performed, showing

increased binding to probes of homo (p50-p50) and

heterodimeric (pRelA-p50) complexes of NF-κB in lung extracts

from OVA-challenged mice. In lung extracts of OVA challenged

FIGURE 1
The effect of TH5487 treatment on survival, organweights, NF-κB activation and IgE levels. (A) Sensitization and experimental schedule. All mice
were sensitized with 20 µg ovalbumin (OVA) intraperitoneally at day 0 and 7. Mice in the OVA and OVA/TH5487 groups were challenged by
intratracheal administration of 50 µg OVA at day 14, 16, 18 and 20. TH5487 treatment was performed by an intraperitoneal injection of 40 mg/kg
before each challenge and all mice were sacrificed at day 21. (B,C) Total weights remained stable in all groups over the 21 days (D) Probability of
survival showing insignificant differences between the groups. (E) Lung weight comparison between the groups showing a significant increase in the
OVA group compared to OVA/TH5487, vehicle and TH5487 only groups. (F) Spleen weights showing a significant increase in the OVA group
compared to vehicle and TH5487 only, and a trend towards an increase compared to OVA/TH5487. (G) Total and OVA-specific (H) IgE levels in
plasma, which was increased in the OVA group and significantly reduced after TH5487 treatment. (I) Western blot analysis of RelA and
phosphorylated RelA(NF-κB) (p-p65/RelA) showing a significant decrease in OVA/TH5487 compared to OVA. (J) Binding of NF-κB homo (p50-p50)
and heterodimer (p50-p65) to consensus DNA sequences (5′-GGGRNYYYCC-3′) in extracts derived from individual lungs of control (vehicle), OVA/
TH5487 and OVA-challenged mice. Statistical comparison between the groups were performed using a one-way ANOVA followed by a Dunnett’s
post-hoc test (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05).
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TH5487-treated mice there were decreased levels of both p50-p50

and p50-p65 bound to the probes (Figure 1J).

Goblet cell hyperplasia and airway mucin
production are decreased following
TH5487 treatment

Lungs of sensitized animals challenged with OVA, OVA/

TH5487, vehicle or TH5487 only were sectioned and stained with

H&E or PAS stains. Histological analyses of H&E-stained

sections showed increased cellularity, especially around

primary and secondary bronchi and bronchioles in OVA-

challenged groups. Significantly decreased levels of

accumulated inflammatory cells were seen in lungs of

TH5487 treated animals (Figure 2A and Supplementary

Figures S1–3). After PAS staining, bronchiolar mucosal

epithelium in lungs of OVA-challenged animals exhibited

increased goblet cell hyperplasia (Figure 2B). TH5487-

treatment of OVA-challenged mice significantly (*p < 0.001)

decreased PAS positive cells compared with OVA alone

(Figure 2B), while vehicle and TH5487 displayed no PAS

positive cells (Figure 2B). Figure 2C shows immunochemical

staining of MUC5AC (upper panel) in OVA, which was

decreased by TH5487 treatment of OVA sensitized/challenged

animals. The histological observations are supported by ELISA

conducted on BALF samples, showing significantly decreased

MUC5AC levels in the OVA/TH5487, compared to that of OVA

alone group (Figure 2D).

Immune cell recruitment to the lung is
mitigated by treatment with TH5487

In allergic asthma, recruitment of immune cells to the airways

results from an increased release of cytokines/chemokines from the

airway epithelium and from resident immune cells (Velazquez and

Teran, 2011). The effect of TH5487 on immune cell recruitment to

FIGURE 2
H&E, PAS and immunofluorescence staining of murine lung sections. Mouse lungs were harvested, formalin fixed, sectioned, and stained with
haemotoxylin and eosin (H&E), periodic acid schiff (PAS) or fluorescent antibodies. (A) Representative images of H&E-stained lung sections from
OVA-challengedmicewith andwithout TH5487 treatment. Inflammatory infiltrates surrounding bronchi/bronchioles (red circles); OVA: lung section
of ovalbumin-challenged mouse; OVA + TH5487: lung section of TH5487-treated OVA challenged mouse; Vehicle: control vehicle alone; TH
only: TH5487 treatment alone. Scale bar: 50 µm. (B) TH5487 decreases mucin-containing cells (Goblet cells) as shown by PAS staining (magenta).
Upper left panel, a representative image from unchallenged (vehicle), TH5487 only (upper right panel), OVA (lower left panel) and OVA/TH5487
(lower right panel) challenged/treated lungs. Magenta-colored epithelial cells are positive for mucin. Percentage of mucin producing cells were
enumerated in epithelium of bronchioles from 3 sections of each lung by two independent investigators. Percentage of mucin positive cells were
calculated and graphically depicted. Scale bar: 100 µm. (C) Murine lung sections were stained with MUC5AC antibody (red) to determine mucin
production, with (D) MUC5AC ELISA conducted on homogenized murine lung tissues. Statistical comparison between the groups were performed
using a one-way ANOVA followed by a Dunnett’s post-hoc test (****p < 0.0001).
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the lungs was investigated by performing flow cytometry on BALF

from OVA-challenged mice. Large increases in the number of

eosinophils, inflammatory macrophages, alveolar macrophages,

and neutrophils were seen in the OVA challenged mice

compared to the control mice (Figures 3A,B; Supplementarty

Figure S4). Administration of TH5487 resulted in significant

reductions of all immune cells, with almost no detection of

eosinophils and macrophages. BALF samples stained with

Giemsa-Wright revealed an increased number of immune cells in

the OVA challenged mice compared to the OVA/TH5487, vehicle

and TH5487 only treated mice (Figure 3B).

Type 2 inflammation, which is a key feature of allergic

asthma, has been shown to induce polarization of

macrophages towards an M2 phenotype (Girodet et al., 2016;

Nie et al., 2017). Gene expression of the M2markersMrc1, which

encodes the surface receptor CD206, and Arg1 in the lungs of the

mice was shown to be significantly reduced in the OVA/

TH5487 mice compared to the OVA mice (Figure 3C).

Western blot analysis using lung homogenates revealed a

significant increase in ARG1 in the OVA challenged mice

compared to the OVA/TH5487, vehicle and TH5487 only

treated mice (Supplementarty Figure S5A). A trend towards a

similar difference was seen for CD206. Immunofluorescence

staining of mouse BALF samples with ARG1 antibodies

showed a significant increase in ARG1 positive cells in the

OVA group compared to OVA/TH5487 (Supplementarty

Figure S5B). Furthermore, ARG1 immunofluorescence

staining of lung sections further confirmed a significant

increase of ARG1 positive cells in the OVA group compared

to the OVA/TH5487 group (Figure 3D).

Administration of TH5487 reduces murine
cytokine levels in BALF, lung and plasma

Pro-inflammatory cytokines were measured in lung

homogenate, BALF and plasma using a 23-cytokine multiplex

assay. Noticeable increases in several cytokines were seen in the

OVA group, indicating increased allergic inflammation in the

lungs of these mice (Figures 4A–C, left and right panels and

Supplementary Figures S6–8). Treatment with TH5487 resulted

in a significant decrease in a majority of cytokines in the BALF.

FIGURE 3
Immune cell recruitment measured in murine BALF. (A) A significant increase of eosinophils, inflammatory macrophages, alveolar
macrophages, and neutrophils was seen in the OVA-challenged group. TH5487 treatment significantly reduced recruitment of all cell types to the
lung. (B)Giemsa-Wright-stained cytospins of BALF samples showing an increase in the number of immune cells in theOVA group compared toOVA/
TH5487 vehicle and TH5487 only groups, respectively. (C) RT-PCR measured expression of Mrc1, which encodes CD206, and Arg1 is
significantly reduced in the OVA/TH5487 group compared to the OVA group. (D) Murine lung sections stained with ARG1 antibodies revealing
decreases in ARG1 positive cells in the OVA/TH5487 group compared to OVA. Statistical comparisons were performed using a one-way ANOVA
followed by a Dunnett’s post-hoc test (****p < 0.0001, ***p < 0.001, **p < 0.01).
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Moreover, a considerable decrease of the type 2 cytokines IL-4,

IL-5 and IL-13 was shown in the TH5487 treated mice,

suggesting a reduced type 2 response. Eotaxin (CCL11) levels

in the BALF were decreased after TH5487 treatment, which

partly explains the decreased recruitment of eosinophils to the

lungs. In the OVA treated mice, a significant increase was seen in

monocyte chemotactic and activating factor (CCL2) in the BALF

(p < 0.0001), indicating an increased recruitment of monocytes

and macrophages to the lung. However, treatment with

TH5487 resulted in a significant reduction of CCL2 (p <
0.0001) to levels nearly equal to the vehicle and TH5487 only

groups, further supporting decreased immune cell recruitment to

the lung. Unexpectedly, higher levels of IL-4 were found in

plasma from the TH5487 only group (p = 0.0277).

Gene expression profiling reveals
decreases in expression of key type
2 response genes by
TH5487 administration

Using a RT2 Profiler™ PCR Array Mouse Allergy & Asthma

panel, the expression of 84 allergy and asthma related genes in

the lung was quantified (Figure 5A). Comparison between the

OVA and OVA/TH5487 groups revealed a difference in mRNA

fold regulation of several genes (Figure 5B). The largest decrease

in expression (−10.99 fold) was seen in the macrophage M2-

marker Arg1, indicating a decreased number of

M2 macrophages in the lung. Furthermore, the expression of

Tnfrsf4, which is involved in activation of T-cells, was decreased

after TH5487 treatment (−4.76 fold). A decrease was also seen

in Ccl11 (eotaxin), an eosinophil-specific chemokine

(−3.88 fold). Two genes were shown to be upregulated,

i.e., Bcl6 (2.55 fold) and Clca1 (3.42). Interestingly,

BCL6 reduces type 2 responses through transcriptional

repression of several key cytokines and chemokines (Arima

et al., 2008). CLCA1 is a regulator of mucus production in

goblet cells, but studies describing its role in allergic asthma

have been contradictory (Nakanishi et al., 2001; Robichaud

et al., 2005). Using Metascape, a resource for analysis of system-

level datasets (Zhou et al., 2019), gene ontology (GO) terms

associated with the results from the gene expression profiling

were generated (Figures 5C,D). The most significant GO terms

were cytokine-cytokine receptor interaction (Log10P (−14.8)),

eosinophil chemotaxis (Log10P (−13.9)) and eosinophil

migration (Log10P (−13.8)).

FIGURE 4
Murine cytokine levels in lung, BALF and plasma. (A–C) Heatmaps displaying differences in cytokine levels in lung homogenate, BALF and
plasma (yellow indicates high value; black indicates low value). The key TH2 cytokines IL-4, IL-5 and IL-13 are shown as individual graphs including
statistical comparisons. Differences in cytokine levels were compared using a one-way ANOVA followed by a Dunnett’s post-hoc test (***p < 0.001,
**p < 0.01, *p < 0.05).
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Improved lung function in OVA-
challenged TH5487-treated animals

To assess AHR, OVA-challenged mice were administered

methacholine (MCh), a substance known to induce smooth

muscle constriction similar to hyperreactivity of the allergic

asthmatic response seen clinically. Our results showed

significantly elevated levels in OVA-challenged mice (p <
0.05) of dynamic (Rrs) and central resistance (Rn) at 12.5 mg/

ml MCh compared to the vehicle and TH5487-treated animals

(Figures 6A–C). TH5487/OVA mice displayed decreased tissue

dampening and decreased tissue elastance compared to OVA-

challenged mice (p < 0.001 and p < 0.0001, respectively; Figures

6D,E). Subsequently, inspiration capacity was significantly

decreased in OVA-challenged mice compared to TH5487-

treated animals (p < 0.05; Figure 6F).

Discussion

Allergic asthma is a highly complex and heterogeneous

inflammatory disease involving multiple cell types and tissues

(Holgate et al., 2015). Molecular mechanisms underlying its

pathogenesis are not well understood, however, it is clear that ROS

are important in allergic inflammation and oxidatively modified

molecules including intrahelical 8-oxoG (Wu et al., 2000;

MacPherson et al., 2001; Nadeem et al., 2003; Sahiner et al., 2011).

Recent studies have identified 8-oxoG in promoter regions appearing

as epitranscriptomic-like marks, with OGG1 DNA repair coupled to

transcriptional regulation of chemokines and cytokines (Ba et al., 2014;

Ba and Boldogh, 2018; Hao et al., 2018, 2020). Therefore, we tested

whether pharmacological targeting of OGG1 decreased allergic

immune responses in an OVA-challenged mouse model. We

showed that the small molecule TH5487, which selectively inhibits

the binding of OGG1 to oxidatively modified guanines, significantly

decreased transcription from pro-inflammatory genes. Additionally,

TH5487 treatment reduced the recruitment of eosinophils and other

inflammatory cells as well as decreasing mucin production and

bronchial hyperreactivity, displaying promising results as potential

treatment against allergic inflammation and asthma.

Allergic asthma is a disease characterized by dysregulated

expression of type 2 cytokines in the airways, resulting in

increased recruitment of inflammatory cells such as eosinophils

and macrophages. Eosinophils are significant contributors to

oxidative stress through the release of reactive oxygen species

(ROS), including nitrogen oxide (NO)-derived oxidants that

FIGURE 5
Asthma and allergy related gene expression profiling of lung tissue. (A) Asthma and allergy gene array comparison between OVA and OVA/
TH5487. Equal amounts ofmRNA fromeachmousewere pooled (OVA n=4, OVA/TH5487 n= 5). Individual geneswith a difference in fold regulation
of >2.5 are highlighted in the graph. (B) List of genes with a fold regulation of >2.5. (C) Metascape protein network analysis displaying key proteins
(>Log2.5) and the associated gene-ontology terms (color-coded). (D) Key gene-ontology terms displaying significantly downregulated Log10P
values following treatment with TH5487.
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cause damage of proteins through modification of tyrosine residues

(Wu et al., 2000; MacPherson et al., 2001). CCL11 (eotaxin-1) plays

a central role in the recruitment of eosinophils and is primarily

produced by the epithelium in response to allergen exposure within

the airways. However, during an allergen challenge the primary

source of CCL11 is switched to macrophages (Rothenberg, 1999). In

asthmatic patients and OVA-sensitized mice, macrophages are

polarized towards an M2 phentoype (Girodet et al., 2016; Nie

et al., 2017), suggesting that these cells are an important source

of CCL11 during allergic asthma. In this study, we found a reduced

expression of Ccl11 in lung tissue and lower CCL11 levels in the

BALF after treatment with TH5487, which could be explained by a

reduction in M2 macrophages. Indeed, reductions in the expression

of the two M2 markers Arg1 and Mrc1 were seen in lung tissue of

mice treated with TH5487. This was further established by

immunofluorescent staining of ARG1 in cytospins from BALF

samples and lung sections, where TH5487 administration

resulted in less immunoreactivity. M2 macrophages produce

several different factors, including the anti-inflammatory cytokine

IL-10. Studies in mice lacking expression of IL-10 have shown an

increased survival of type 2 cells, leading to an increased expression

of IL-5 which exacerbates pulmonary inflammation through an

influx of eosinophils (Yang et al., 2000; Coomes et al., 2017).

Moreover, M2 macrophages further exacerbate the type

2 response by releasing IL-13, CCL17, CCL18, CCL22, CCL24

(eotaxin-2), and CCL26 (eotaxin-3), thereby increasing eosinophil

chemotaxis (Siddiqui et al., 2013). Consequently, a reduction of

M2 macrophages in allergic asthma would decrease the production

of type 2 cytokines and reduce eosinophil recruitment to the lungs.

Gene expression profiling of lung tissue from OVA and

OVA/TH5487 mice respectively, revealed differences in

mRNA fold changes of several genes. Two genes were

upregulated more than 2.5-fold, including Bcl6, which has

been shown to negatively regulate type 2 responses and

macrophage related chemokines (Arima et al., 2008).

Knockout of Bcl6 in mice results in eosinophilic inflammation

due to an overproduction of type 2 cytokines (Dent et al., 1997).

The ability of BCL6 to reduce the type 2 response is due to its

ability to regulate the expression of several genes. BCL6 decreases

the expression of IL-5 in T-cells by binding to a silencing element

of the IL-5 gene (Arima et al., 2002). BCL6 also suppresses the

expression of IL-6 and CCL2 in macrophages (Toney et al., 2000;

Yu et al., 2005) as well as MIP-1α and NF-κB in lymphocytes

(Shaffer et al., 2000; Li et al., 2005). However, several studies have

shown IL-6 signaling is involved with CCL2 production which

promotes the prolonged recruitment of monocytes and

macrophages, immune cells which sustain inflammation

within the lung (Gabay, 2006; Lee et al., 2008; Farahi et al.,

2017; Esnault et al., 2021). Additionally, Tnfrsf 4 was

downregulated by TH5487, a gene known to attenuate T cell-

mediated responses (Herrick and Bottomly, 2003; Ward-

Kavanagh et al., 2016; Martín-Orozco et al., 2017). More

FIGURE 6
TH5487-mediated differences in airway function in OVA-challenged mice. Airway hyperresponsiveness (AHR) was measured with a small
animal ventilator (FlexiVent; Scireq), as described in Materials and Methods. (A–C) Dynamic, elastic, and central resistance (Rrs, Ers, and Rn,
respectively), peripheral tissue damping (D), tissue elastance (E), and central airway compliance (F) were recorded. The results are expressed as
mean ± SEM (n = 4–9). Vehicle only (vehicle), TH5487 only (TH5487), ovalbumin-challenged (OVA), and ovalbumin-challenged/TH5487-
treated (OVA/TH5487). Statistical comparisons were performed using a one-way ANOVA followed by a Dunnett’s post-hoc test (****p < 0.0001,
***p < 0.001, **p < 0.01, *p < 0.05, vs. respective OVA/TH5487, ####p < 0.0001, ###p < 0.001, ##p < 0.01, #p < 0.05 vs. respective vehicle).

Frontiers in Pharmacology frontiersin.org11

Tanner et al. 10.3389/fphar.2022.999180

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.999180


specifically, CD4+ T cell responsiveness to allergen exposure

correlates well with asthma diagnosis, with associated

increases in type 2 cytokines, increased total mucins, and

increased MUC5AC in the airways of allergic asthma patients

(Cho et al., 2016). Whilst, T cell recruitment was not measured

during this study, type 2 cytokines and MUC5AC were both

decreased by TH5487 treatment. Finally, Bcl6−/− mice have

increased amounts of IgE due to immunoglobulin class

switching in B cells (Harris et al., 1999). In our study,

administration of TH5487 resulted in significantly lower

concentrations of IL-5, IL-6, CCL2 and MIP-1α in BALF,

decreased phosphorylation of NF-κB in the lungs and a

reduction in total IgE and OVA-specific IgE, which is

consistent with the increased expression of Bcl6 after

TH5487 treatment.

The effectiveness of TH5487 stems from the inhibition of

OGG1, which has pleiotropic roles in gene expression by binding

to intrahelical 8-oxoG located in regulatory regions and facilitates

transcription factor DNA occupancy (Schreck et al., 1990; Ghosh

andMitchell, 1999; Pan et al., 2017; Hao et al., 2018). OGG1 creates

specific DNA structural changes that facilitate NF-κB (and other

transcription factors) recognition and binding to its consensus motif

(Schreck et al., 1990; Ghosh and Mitchell, 1999; Bruner et al., 2000;

Pan et al., 2017). In addition, OGG1-mediated incision of DNA as

part of base excision repair is also linked to modulation of gene

expression (Pastukh et al., 2015; An et al., 2016; Zhu et al., 2018;

Fleming et al., 2019). Excision of 8-oxoG by OGG1 generates

apurinic sites in gene regulatory regions, particularly in

promoters of inflammatory genes (An et al., 2016; Zhu et al.,

2018; Fleming et al., 2019). Studies using Ogg1 knockout animals

and biochemical approaches have shown distinct roles for OGG1 in

gene expression in a stimuli- and context-dependent manner

(Perillo et al., 2008; Sampath et al., 2012; Hao et al., 2018;

Sampath and Lloyd, 2019; Simon et al., 2020). This phenomenon

is also true for NF-κB of which activity is dependent upon activation

pathway(s), posttranslational modifications, and combinatorial

effects of subunits (Cartwright et al., 2016). Importantly,

treatment with TH5487 during OVA-induced airway

hyperresponsiveness was significantly attenuated, indicative of an

effect on the airway reactivity that is highly relevant for human

asthma-related symptoms.

A limitation of this study is whether treatment of allergic asthma

with TH5487 is feasible in humans, for which further studies are

needed. Another important limitation of this study is the

administration route of the drug, which is injected

intraperitoneally in the mice. Due to the acute nature of allergic

asthma a rapid andmore directed route would be optimal, such as an

inhaler. No evident changes in generalmurine health statuswere seen

in this study, but more long-termmonitoring of potential side effects

is required before initiating clinical trials. However, previous studies

on TH5487 (Visnes et al., 2018, 2020; Baquero et al., 2021) and

Ogg1−/−mice (Li et al., 2012) showed no adverse health effects in short

term experimentation. Conversely, long term studies onOgg1−/−mice

showed increased risk for tumorigenesis (Sakumi et al., 2003), a result

which should be studied further in TH5487 long term trials.

Collectively, our findings display OGG1 inhibition by

TH5487 as a novel, potent pharmacological approach to treat

allergic asthma. TH5487 inhibition of proinflammatory genes

prevents type 2 driven downstream activation of immune cells,

resulting in reduced NF-κB activation, decreased immune cell

recruitment to the lungs, lowered levels of IgE and OVA-specific

IgE in plasma, reduced mucus production in the small airways,

improved airway function and finally, decreased M2macrophage

populations in BALF and lung tissue. These data support further

development of TH5487 and other OGG1-inhibitors as

templates for novel drugs against allergic asthma.
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