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Bone tissue engineering (BTE) has become a hopeful potential treatment strategy
for large bone defects, including bone tumors, trauma, and extensive fractures,
where the self-healing property of bone cannot repair the defect. Bone tissue
engineering is composed of three main elements: progenitor/stem cells, scaffold,
and growth factors/biochemical cues. Among the various biomaterial scaffolds,
hydrogels are broadly used in bone tissue engineering owing to their
biocompatibility, controllable mechanical characteristics, osteoconductive, and
osteoinductive properties. During bone tissue engineering, angiogenesis plays a
central role in the failure or success of bone reconstruction via discarding wastes
and providing oxygen, minerals, nutrients, and growth factors to the injured
microenvironment. This review presents an overview of bone tissue
engineering and its requirements, hydrogel structure and characterization, the
applications of hydrogels in bone regeneration, and the promising roles of
hydrogels in bone angiogenesis during bone tissue engineering.
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1 Introduction

Bone is the largest tissue in the human body with several pivotal physiological functions,
such as detoxification and maintaining body shape, as well as its considerable role as an
endocrine organ in keeping and releasing mineral substances (DiGirolamo et al., 2012; Xue
et al., 2021). Bone defects, including infection, trauma, and tumor, could impair its functions.
Although the self-regenerative property of bone tissue repairs the defects, bone regeneration
cannot heal when defects exceed critical size (ASTM, 2014). As a gold standard, autografts
are used to repair critical-sized bone defects in orthopedics due to their excellent
osseointegration, osteoconductivity, and osteoinductivity properties (Zhu et al., 2021).
Despite promising outcomes, autografts also have some critical limitations, including
disease transfer, inflammation, and lack of donor bone transplantation (Younger and
Chapman, 1989; St John et al., 2003). Additionally, autografts have a heavy economic
burden on healthcare systems. It has been estimated that the bone graft substitutes market
will reach 5 × 109 $ in 2025 (Lobb et al., 2019). In Germany, it has been reported that
autologous and allogenic bone graft percentages changed up to −14.3% and +74.1%,
respectively, between 2008–2018, whereas the using biomaterials increased up to
+134.4% (Rupp et al., 2022). Bone tissue engineering (BTE) has been developed to
address bone failures with new prospects.
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Several biomaterials, as scaffolds, have been designed and tested
in BTE owing to their unique characteristics. Polylactic acid (PLA),
polyglycolic acid (PGA), poly (lactic-co-glycolic acid) (PLGA), poly
ε-caprolactone (PCL), polyethylene glycol (PEG), polybutylene
terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl
alcohol (PVA), polypropylene fumarate (PPF), and polyacrylic acid
(PAA) have been approved by FDA for BTE as polymeric scaffolds
(Ghassemi et al., 2018). Other commercial products also have been
manufactured for bone regeneragtion, including OSTEOSET®,
OsSatura®, Cortoss®, Vitoss BA®,TruGraft™, ChronOS®, Healos®,
and Calciresorb C35® (Ge et al., 2008; Xue et al., 2022). In addition to
their potency in delivering various factors that are required for cell
survival and differentiation, scaffolds should have non-
immunogenicity, non-cytotoxicity, and good biodegradability and
biocompatibility properties (Dixon and Gomillion, 2021).
Moreover, it has been shown that the vascularization system of
scaffold plays a central role in the failure or success of bone repair by
providing oxygen, minerals, growth factors, and nutrients, as well as
discarding waste products from the regeneration microenvironment
(Diomede et al., 2020). Thus, the development of scaffolds with
available blood supply and coupling the angiogenesis with
osteogenesis is a challenge in BTE. Hydrogels have attracted
attention in BTE because of their good biocompatibility and
porous structure, similar to the extracellular matrix (ECM). The
soft texture of hydrogels also can minimize their inflammatory
response in contact with adjacent cells and tissues (Buwalda
et al., 2017). In this review, we summarized the requirements of
BTE, the properties of hydrogels and their application in BTE, and
the importance of angiogenesis during BTE. Finally, we focused on
the effects of hydrogel-based scaffolds in promoting bone
angiogenesis.

2 Bone tissue engineering and its
requirements

Several processes and compartments play essential roles in bone
regeneration and healing, including homing progenitor cells,
osteoblast and osteocyte formation, ECM, and osteoid
mineralization (Wang et al., 2013). The ECM is defined as a 3D
and non-cellular structure containing specific polysaccharides and
proteins secreted by cells into the extracellular space. Bone ECM
comprises organic (collagen type I, glycoproteins, proteoglycans,
small integrin-binding ligands N-linked glycoproteins, and γ-
carboxyglutamate-containing proteins) and inorganic
(hydroxyapatite) components (Lin et al., 2020). During bone
defect healing, two main processes are involved:
intramembranous ossification and endochondral ossification.
Intramembranous ossification is associated with a direct
transition of progenitor cells to bone-forming osteoblasts and
forms the flat bones of the jaw and skull, whereas endochondral
ossification is associated with a cartilage intermediate before the
formation of bone and forms long bones (Bahney et al., 2019; Dewey
and Harley, 2021). The BTE aims to prepare biomaterials to mimic
ECM roles in mineralized matrix deposition and support cellular
attachment after introducing them to the defect site. To this end, the
compartments of BTE are reviewed in detail in the following
sections.

2.1 Scaffolding materials

Scaffolds are temporary mechanical structures consisting of
metals, ceramics, and polymers, in most cases, to provide an
environment for ECM mimicking and bone remodeling with
negligible complications (Kantaros et al., 2016). To design an
ideal scaffold in BTE, four main types of requirements could be
considered: biomaterial composition (ceramics, polymers,
composites, etc.), structural features (bioinspired, customized
shapes, biomimetic, surface topography, mechanical properties,
pore interconnection, and high porosity), biological requirements
(smart, bioactive, non-toxic, bioresorbable, biodegradable, non-
immunogenic, and biocompatible), and fabrication process
(conventional techniques: solvent casting, gas foaming, and freeze
drying; and advanced techniques: rapid prototyping and
electrospinning) (Roseti et al., 2017). The advantages and
disadvantages of the most used scaffolds are listed in Table 1.

Among the structural features, the scaffold’s pore size and
porosity are determining factors in the success of BTE due to
their roles in the delivery of nutrients and vascularization.
Although the high porosity of scaffolds guarantees the ingrowth
of bone cells, their excessive porosity may negatively affect
mechanical properties (Kuttor et al., 2014). There is evidence that
pores with a size of almost 100 μm favor nutrient transport and cell
migration (Zhang B. et al., 2018), whereas pores with ≥200 μm
support vascularization and bone formation (Walpole et al., 2009).
Studies also concluded that small pores (50–100 μm) were optimal
for prompting endochondral ossification and large pores with
100–300 μm improved intramembranous ossification and
enhanced vascularization (Wu et al., 2010; Daugela et al., 2018).
In addition to pore size, grain size (structural dimension or the
dimension of particles or grains within the scaffold and the size
between the pores) of scaffolds also affects cellular adhesion,
differentiation, and proliferation. For instance, Zhang et al.
(2014) found that surface microstructural features of tricalcium
phosphate (TCP) ceramics, TCP-S and TCP-B, have an
indispensable role in their osteoinduction capacity. They reported
that TCP-S (grain size < 1 μm) could stimulate osteogenic
differentiation of human bone marrow stromal cells (BMSCs),
characterized by overexpression of osteocalcin and osteopontin
and increasing the activity of alkaline phosphatase (ALP) in vitro,
compared with TCP-B with 3–4 μm grain size. After 12 weeks, the
implantation of TCP-S into dog dorsal muscles led to the induction
of bone formation, whereas TCP-B implants could not form any
bone tissue. Furthermore, the optimal diameter for pore
interconnectivity reported ranges from 700 to 1,200 μm, which
supports the infiltration depth and bone deposition (Ghayor and
Weber, 2018; Collins et al., 2021). Topography also could affect the
osteogenic potential of progenitor cells within scaffolds. For
instance, Zhou et al. (2016) constructed five nanorod-shaped 3D
topographies with different interrod spacing and similar nanorod
diameters and investigated their osteogenic effects on MSCs. They
reported that interrod spacings <96 nm displayed dramatically
enhanced osteogenic differentiation of MSCs, but constructs with
interrod spacings >137 nm inhibited osteogenesis. Xu et al. (2017)
found that fabricating islandlike structures on the nanofiber scaffold
with chitosan provides appropriate interface for preosteoblast cell
adhesion and proliferation and enhances their bone-forming
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capability. The stiffness is another property of scaffolds in
determining the outcome of BTE. There is evidence that the
stiffness of scaffolds affects cellular behavior in bone tissue, such
as their proliferation, differentiation, migration, and contractility
(Ping et al., 2021). In a study, Zhang J. et al. (2020) constructed 3D
bone-like tissue constructs and evaluated the effects of scaffold
stiffness on their osteogenesis potential. They indicated that soft
scaffolds (0.66 kPa) not only induced osteogenic differentiation of
stem cells and increased ALP activity, but also remarkably improved
ECM mineralization and cellular organization compared with stiff
scaffolds (5.4 kPa). On the other hand, Chatterjee et al. (2010)
reported that the higher hydrogel stiffness could enhance
osteogenic differentiation and later mineralization. Due to the
conflicting reports, the effect of scaffold stiffness on osteogenic
differentiation requires more investigation.

2.2 Cells

Although cell-free scaffolds have been applied in BTE, providing
exogenous cells with osteogenesis potential is crucial for the
damaged tissue lacking osteoprogenitor cells (Maisani et al.,
2017). To this end, various cells have been used in BTE,
including embryonic stem cells (ESCs), MSCs, dental stem cells,
adipose-derived stem cells (ADSCs), and induced pluripotent stem
cells (iPSCs).

ESCs, derived from the blastocyst’s inner cell mass (ICM), are
pluripotent stem cells with the capability to differentiate into all cell
types that teratoma formation in vivo and ethical restrictions are
their concerns, whereas MSCs are considered “safe cells” for tissue

regeneration (Lalu et al., 2012; Goradel et al., 2018). The osteogenic
properties of MSCs could be related to their potential to generate a
pro-osteogenic microenvironment through the secretion of
paracrine factors. For instance, Ogata et al. (2017) revealed that
cytokines in the secretomes of MSCs play a central role in
osteoclastogenesis, as well as the recruitment and proliferation of
angiogenic and osteogenic cells. Another study indicated that MSCs
not only could improve bone regeneration and angiogenesis by
producing various growth factors in a critical size calvarial defect,
but also could suppress immune response initiation with paracrine
effects (Gao X. et al., 2014). Moreover, scaffolds and their products
also are involved in the osteogenic differentiation of MSCs.
Naruphontjirakul et al. (2019) found that spherical
monodispersed strontium containing bioactive nanoparticles (Sr-
BGNPs) induced differentiation of MSCs into bone-forming cells
and improved ECM mineralization. Mechanistically, Sr ions were
the main actor in the osteogenic differentiation ofMSCs without any
cytotoxicity effects on their viability. ADSCs attracted increasing
attention in bone regeneration due to their easy isolation and harvest
and their proliferative and differentiative capacity into osteogenic
and angiogenic linages (Paduano et al., 2017). For example,
Calabrese et al. (2016) showed that combining human ADSCs
(hADSCs) with collagen/hydroxyapatite scaffold promoted the
differentiation of hADSCs into osteoblasts, characterized by ECM
mineralization and maturation and upregulation of osteocalcin,
osteopontin, and osterix. In another study, Jin et al. (2019)
compared the osteogenic and angiogenic potential of ADSCs and
dental pulp stem cells (DPSCs). They concluded that ADSCs showed
higher osteogenic potential and upregulated osteoblast-related genes
with superior mineral deposition, whereas DPSCs promoted

TABLE 1 The advantages and disadvantages of the most used scaffolds in BTE.

Scaffolds Advantages Disadvantages Ref

Polymers - Personalized manufacturing - Slow biodegradability Thavornyutikarn et al. (2014), Shi et al. (2016)

- Good mechanical properties - Inflammatory reactions because of acid degradation
products

- Biocompatible

- High young modulus

Ceramics - Good mechanical properties - Low elasticity Seitz et al. (2005), Bose and Tarafder (2012), De Witte et al.
(2018)

- Personalized manufacturing - Hard and brittle

- Resistance to corrosion

- Biocompatible

Metals - Biocompatible - Bioinert De Witte et al. (2018), Li Y et al. (2020)

- Excellent mechanical
properties

- Risk of toxicity with metal ions

- Personalized manufacturing - Risk of corrosion

- Osteointegration - Slow biodegradability

Composites - Supporting cell activity - High stiffness Gao C et al. (2014), Thavornyutikarn et al. (2014)

- Excellent biocompatibility - Low flexibility

- Osteoconductivity - Brittle

- Easy to handle
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angiogenesis with higher proliferative and migratory potential.
Moreover, their implantation into a mandibular defect indicated
that ADSCs could promote greater and faster bone regeneration in
rats after 6 weeks.

2.3 Biochemical factors

To initiate the repair process, biochemical factors, in addition to
scaffold and cells, are required to provide signals for attracting
inflammatory and progenitor cells to the injured site. Three types of
cues are required to induce osteogenesis: physical (mechanical
action and morphology), chemical (composition differences and
crosslinking), and biological. Among these cues, the physical factors
are mentioned throughout the review; thus, we focus on chemical
and biological factors here.

It has been shown that the mineral contents could affect the
bone healing process. For instance, Zheng et al. (2014) found that β-
TCP addition to the collagen solution showed notably better
biological and mechanical properties in scaffolds. Mechanistically,
the released Ca2+ from β-TCP activated calcium-sensitive receptors,
leading to better newly formed bone in terms of quality and quantity
without adverse effects. In another study, Wu et al. (2012)
constructed cobalt (Co)-containing mesoporous bioactive glass
(Co-MBG) scaffolds for mimicking hypoxia in BTE, in which Co
acted as a chemical inducer of hypoxia-inducible factor 1α (HIF-1α).
They reported that Co ions remarkably upregulated HIF-1α,
vascular endothelial growth factor (VEGF), and bone-related
genes in MSCs, and supported the proliferation and attachment
of MSCs to the scaffold. In addition to the mineral contents,
crosslinking is another chemical factor affecting BTE. There is
evidence that collagen crosslinking plays a critical role in
stimulating angiogenesis and stabilizing its conformation (Lindert
et al., 2016). Kikuchi et al. (2004) indicated that adding
glutaraldehyde, as a crosslinker, to hydroxyapatite/collagen (HA/
Col) could improve the mechanical characteristics of the scaffold.
Although glutaraldehyde can lead to adverse immune responses in
the host system, its use in 8% is considered non-toxic and safe
(Krishnakumar et al., 2019).

Various growth factors have been incorporated into the scaffolds
to accelerate bone regeneration, including VEGF, bone
morphogenetic proteins (BMPs), transforming growth factor β
(TGFβ), insulin-like growth factor (IGF), and fibroblast growth
factors (FGFs) (Azevedo and Pashkuleva, 2015). These growth
factors are classified into inflammatory, osteogenic, and
angiogenic. Since inflammation is the first step in healing bone
fractures and inflammatory cells are recruited to the injured site,
inflammatory factors are vital in BTE, such as macrophage colony-
stimulating factor (M-CSF), interleukin-1 (IL-1), IL-6, and FGF2
(De Witte et al., 2018). Multiple pro-osteogenic growth factors have
been used to recruit progenitor cells and promote their
differentiation into bone-forming cells, including BMPs, IGF,
FGF, TGFβ, and platelet-derived growth factor (PDGF)
(Lienemann et al., 2012). The FDA has approved BMP-2 and
BMP-7 incorporation in bone regeneration systems (Farokhi
et al., 2016). Furthermore, IGF-1 acts as a mitogenic factor and
is released when osteoclasts resorb fractured bone matrix,
promoting the growth and differentiation of embryonic cells to

osteoblasts (Kim et al., 2012; Nyberg et al., 2016). Angiogenic factors
are discussed in detail in the following sections.

3 Hydrogel scaffolds in bone tissue
engineering

Hydrogels are 3D network structures with high water content
(more than 90%) that are formed with crosslinking among
hydrophilic polymers. Hydrogels promote cell survival,
proliferation, and differentiation relying on providing a
microenvironment similar to ECM in terms of mechanics and
architecture. They are widely classified into two classes: natural
hydrogels, which are derived from natural polymers, including
collagen, hyaluronic acid (HA), alginate, chitosan, gelatin, and
fibrin; and synthetic hydrogels, which are derived from
chemically modified natural biopolymers or synthetic polymers
(Zhu and Marchant, 2011). Although naturally derived hydrogels
are attractive for BTE owing to their good biocompatibility, they
suffer from the potential immunogenic response, uncontrollable
biodegradation rate, low mechanical strength, low stiffness, and
variability in production. The poor mechanical properties of
hydrogels limit their application as load-bearing structures (Li
J. et al., 2022; Charlet et al., 2022). On the other hand, synthetic
hydrogels, such as polycaprolactone (PLC), polylactic acid (PLA),
polyoxyethylene (PEO), poly (vinyl alcohol) (PVA), and poly
(ethylene glycol) (PEG), possess more extended durability, tough
mechanical strength, and flexible structure, while lacking biological
activity (Xue et al., 2021). In addition to classification based on their
origin, hydrogels are also classified based on their durability (durable
and degradable), response to environmental stimuli (conventional
and smart), charge (neutral, cationic, anionic, and ampholytic),
structure (semi-crystalline and amorphous), and composition
(homopolymer, copolymer, and semi-interpenetrating network)
(El-Sherbiny and Yacoub, 2013). Various parameters have been
determined to characterize hydrogels, including morphology,
chemical composition, mechanical properties, biocompatibility
and biodegradability, and swelling, which are evaluated by
different techniques (Figure 1).

Hydrogels in BTE require some primary properties:
compatibility with tissue and cells, osteoconductive activity, and
osteoinductive activity. The ability of hydrogels to form new bone on
their surface refers to osteoconduction, while the osteoinduction
characteristic is related to the ability of hydrogels to absorb
endogenous growth factors, induce the migration of stem cells
into the scaffold, and promote bone formation (Yue et al., 2020).
The development of hydrogels in BTE tries to cover the primary
properties. For instance, Kazemi-Aghdam et al. (2021) introduced
Icariin (IC)-loaded modified halloysite nanotubes (mHNTs) into
chitosan hydrogel to develop a nanocomposite hydrogel for BTE. In
the IC@mHNTs construct, IC acted as a bone inducer agent that
promotes osteogenic differentiation. The in vitro studies
demonstrated that the scaffold is a biocompatible structure that
enhances the proliferation and differentiation of encapsulated
MSCs. In another study, Saravanan et al. (2018) investigated the
properties and bone regeneration capacity of thermosensitive
chitosan (CS) and glycerophosphate (GP) based hydrogel
containing graphene oxide (GO) (CS/GP/GO). They indicated
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that the CS/GP/GO hydrogel with pores >150 μm and ~50%
porosity was biocompatible to MSCs, promoting osteogenic
differentiation of MSCs, characterized by overexpression of
osteocalcin, ALP, Runt-related transcription factor 2 (Runx2),
and Type -1 collagen. Also, the potential of carbon dots/
hydroxyapatite/poly (vinyl alcohol) (CDs/HA/PVA) double-
network (DN) hydrogel for BTE was reported by Liu et al.
(2020) through the ability of the hydrogel to support MSCs
proliferation and differentiation as well as repair bone defects in
vivo. Evidence shows that the mechanical properties, degradation
behavior, swelling behavior, and water content of CDs/HA/PVADN
hydrogel are determined by the number of freezing/thawing cycles
(Wang Y. et al., 2019). Recently, Dibazar et al. fabricated a hydrogel
nanocomposite containing bacterial polyglucuronic acid (PGU) and
sodium alginate (Alg) composite with carbon nanofibers (CNFs) to
study its bone regeneration properties. The hydrogel with
interconnected pores architecture and biocompatible
characteristics was hemocompatible with insignificant hemolysis
induction. Furthermore, the PGU/Alg/CNFs hydrogel supported
the growth of bone cells, suggesting it as a new scaffold for BTE.
Table 2 summarizes the application of other hydrogels in BTE and
their therapeutic effects on bone regeneration.

4 Importance of angiogenesis in bone
development and repair

It has been reported that the vasculature system not only
transports nutrients and oxygen and recruits cells within the
bone, but also plays crucial roles in regulating osteogenesis and
bone repair (Grosso et al., 2017; Di Maggio and Banfi, 2022).
Therefore, fabricating scaffolds supplying functional blood is

considered a challenge for BTE to couple osteogenesis and
angiogenesis. Several factors and mediators regulate osteogenesis
and type H vessel formation, including VEGF, Notch, HIF-1α,
SLIT3, and PDGF-BB, which are produced by endothelial cells
(ECs), osteoblasts, osteoclasts, and chondrocytes (Figure 2). The
roles of factors are discussed below in detail.

4.1 VEGF

There is evidence that the VEGF family is the master regulator of
angiogenesis. The VEGF family is composed of five members,
including VEGF-A, -B, -C, -D, and placental growth factor
(PlGF), and three cognate receptors, including VEGF-R1, -R2,
and -R3 (Goradel et al., 2017; Hashemi Goradel et al., 2018).
Although angiogenesis is a complex process, VEGF-A and
VEGF-R2 are the key ligand and receptor involved in
angiogenesis (Goradel et al., 2019). Various cell types in the bone
microenvironment, such as recruited inflammatory cells and
osteoprogenitors, express VEGFs that interact with their
receptors on osteoclasts, pericytes, and again inflammatory cells
and osteoprogenitors (Hu and Olsen, 2017).

Deleting VEGF and its receptors in osteoblasts and osteoblast
precursors have been reported to impair their differentiation, leading to
low bone density and bone development (Liu et al., 2012; Duan et al.,
2015; Duan et al., 2016). Berendsen and Olsen (2014) indicated that
VEGF directly controls the fate of mesenchymal stromal progenitor, in
which VEGF blocks adipogenesis and stimulates osteoblastic
differentiation. Interestingly, they found that the intracellular VEGF
determines the fate of stem cells, not the exogenous one. Furthermore,
the interaction between theVEGF familymemberswith the ECMcould
regulate angiogenesis. Different affinity degrees of three major isoforms

FIGURE 1
Characterization of hydrogels. The synthesized hydrogels are characterized by evaluating their morphology, chemical composition, mechanical
properties, biocompatibility and biodegradability, and swelling. SEM, scanning electron microscope; TEM, transmission electron microscope; NMR,
nuclear magnetic resonance; IR, infrared.
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of VEGF-A transcript resulting from alternative splicing to ECM and
the balance between their binding and diffusivity in physiological
conditions plays an important role in controlling the osteogenic
microenvironment (Gianni-Barrera et al., 2020; Di Maggio and
Banfi, 2022). It is worth noting that type H vessels, which are
characterized by higher expression of Endomucin (Emcn) and
CD31, could induce osteogenesis by stimulating the proliferation
and differentiation of osteoprogenitor cells (Peng et al., 2020).

4.2 Notch

The Notch receptors (Notch1–5) initiate signaling pathways
after binding to their ligands, including Delta-like (Dll) 1, 3, or 4 and

the Jagged family of Serrate homologs (Jag1, and Jag2), leading to
cleavage and translocation of Notch intracellular domain (NICD)
into the nucleus which coordinates cell proliferation, apoptosis, and
differentiation (Pakvasa et al., 2021). It has been shown that the
Notch signaling pathway plays dual roles in bone tissue
development depending on cell type, the timing of signaling
activation, and the stage of cell differentiation. The activation of
Notch signaling promotes the differentiation of MSCs into
osteoblasts and bone mineralization and suppresses osteogenesis
via inhibiting the Wnt/β-catenin pathway (Luo et al., 2019).
Recently, Kraus et al. (2022) showed that Notch signaling
activation could accelerate cartilage callus conversion into bone
and increase bone repair, whereas the inhibition of the signaling
pathway delays the transformation of the cartilage callus into bone.

TABLE 2 The application of hydrogels in BTE.

Composition Preparation SC/GF Characterization Effects/results Biodegradability
(days)

Ref

CMCh-ACP hydrogel pH-triggered,
Self-assembled

BMP-9 DLS, SEM, TEM, FTIR,
Viscosity, Injectability,
pH responsiveness

Biocompatibility,
Osteoinductive, Supporting
MSC differentiation and
adhesion, Enhancing bone

formation

NA Zhao et al.
(2019)

GelMA-PEGDA-nHA
composite hydrogel

Continuous
ultrasound

— SEM, FTIR, Swelling ratio,
Degradation, Mechanical

properties

Biocompatibility,
Biodegradability, Supporting
osteoblast adhesion and

proliferation

56 Wang et al.
(2020)

Electrospun nanofiber
mesh and alginate

hydrogel

Carbodiimide
chemistry

rhBMP-2 2D radiographs and 3D in
vivo μCT imaging,
Histological analysis,
Torsional testing

Enhancing bone formation,
Improving infiltration of

osteoprogenitor cells without
adverse effects on
revascularization

NA Kolambkar
et al. (2011)

GNF-collagen
injectable hybrid

hydrogel

Thermo-gelation
process

hASCs FTIR, Rheology
analysis, SEM

Supporting cell adhesion and
proliferation, Promoting
differentiation of hASCs,
Enhancing bone-like
structures formation

NA Maisani et al.
(2018)

Oxidized alginate-
gelatin hydrogel

Covalently
crosslinked

mBMSCs SEM, Porosity, FTIR,
Degradation behavior

Supporting osteogenic
differentiation of mBMSCs

28 Sarker et al.
(2016)

GHH hydrogel Enzyme-
catalyzed

TMSCs Blood analysis, visceral fat
mass measurements, μCT

Imaging

Biocompatibility, Reducing
visceral fat, Enhancing bone

formation

NA Kim G et al.
(2018)

GO-CS hybrid
hydrogel

Crosslinking hDPSCs FTIR, XRD, SEM, EDX,
Swelling tests, Weight loss

evaluation

Enhancing minerals
deposition, Supporting

osteogenic differentiation of
hDPSCs

28 Amiryaghoubi
et al. (2020)

Cx-HA hydrogel Mixing BP/hDPSCs Rheology analysis, Injection
force, Fluorescence imaging

Biocompatibility, Promoting
osteogenic differentiation of

hDPSCs

28 Park et al.
(2020)

Alginate/FmocFF
composite hydrogel

Solvent switch Preosteoblast
cells

SEM, Rheology analysis Biocompatibility, Facilitating
calcium mineralization,
Promoting osteogenic

differentiation, Exhibiting
excellent mechanical

properties

NA Ghosh et al.
(2019)

SC, stem cell; GF, growth factor; CMCh, carboxymethyl chitosan; ACP, amorphous calcium phosphate; DLS, dynamic light scattering; SEM, scanning electron microscopy; TEM, transmission

electronmicroscopy; FTIR, fourier transform infrared spectroscopy;MSC,mesenchymal stem cell; NA, not available; GelMA, gelatinmethacrylamine; PEGDA, poly (ethylene glycol) diacrylate;

nHA, nano hydroxyapatite; PECE, PEG-PCL-PEG, copolymer; rhBMP-2, recombinant bonemorphogenetic protein-2; GNF, Glyco-nucleo-lipids containing a fluorinated carbon chain; hASCs,

human adipose tissue-derived mesenchymal stromal cells; mBMSCs, murine bone marrow stromal cells; GHH, gelatin-hydroxyphenyl propionic acid; TMSCs, tonsil-derived mesenchymal

stem cells; GO, graphene oxide; CS, chitosan; hDPSCs, human dental pulp stem cells; XRD, X-ray diffraction; EDX, energy dispersive X-ray; Cx, click-crosslinking; HA, hyaluronic acid; BP,

BMP-2, mimetic peptide; FmocFF, fluorenylmethoxycarbonyl-diphenylalanine.

Frontiers in Pharmacology frontiersin.org06

Liu et al. 10.3389/fphar.2023.1050954

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1050954


In another study, Goel et al. (2019) reported that Notch signaling
suppression in osteoclasts improves bone formation rate and healing
in mice, characterized by larger bony calluses and increased bone
mineral density. Additionally, blood flow in type H vessels regulates
Notch signaling; a low rate suppresses the pathway, leading to
defective osteogenesis and angiogenesis (Ramasamy et al., 2016).
On the other hand, there is evidence that activation of Notch
signaling could induce the formation of type H vessels (Tang
et al., 2021). Liao et al. (2017) investigated the angiogenesis-
osteogenesis coupling in MSCs in response to dual stimulation
with BMP-9 and Notch signaling. They indicated that
NICD1 promoted osteogenic differentiation of MSCs in a BMP-
9-dependent manner. Furthermore, the implantation of transduced
MSCs with BMP-9 andNICD1 in combination with a biocompatible
scaffold induced bone formation with upregulation of angiogenic
regulators and extensive vascularization.

4.3 HIF-1α

Under normoxic conditions, the hypoxia-inducible factor-1 α
(HIF-1α) transcription factor undergoes the ubiquitin-proteasome
degradation pathway following hydroxylation of the lysine and
proline residues on the oxygen-dependent degradation domain
and interacts with the Von Hippel–Lindau (VHL) E3 ubiquitin
ligase (Pereira et al., 2006). To adapt cells with hypoxia conditions,
the stable HIF-1α forms a heterodimer with HIF-1β, leading to the
translocation of HIF-1α to the nucleus and activating the
transcription of various target genes (Jin et al., 2020). There is
evidence that HIF-1α is involved in both osteogenesis and
angiogenesis and their coupling. Due to the hypoxic condition of
the bone microenvironment in defects, Zhang J. et al. (2018) used
preconditioned MSCs with hypoxia to repair bone. The hypoxic

MSCs overexpressed HIF-1α, which enhanced the osteogenesis and
angiogenesis potential of MSCs and improved their survival rate
under severe conditions in vitro. The transplantation of hypoxic
MSCs into critical-sized mandible defects in aged rats also improved
bone defects. Also, the highly expressed HIF-1α MSCs, in
combination with calcium-magnesium phosphate cement
(CMPC) scaffold, repaired critical-sized calvarial defects in rats
by promoting the upregulation of osteogenic markers (Zou et al.,
2011). Due to the stabilizing effect of cobalt ions on HIF-1α, Quinlan
et al. (2015) incorporated resorbable bioactive glass particles with
cobalt ions into the glass network to fabricate bioactive glass/
collagen–glycosaminoglycan scaffolds. They reported that the
constructed scaffolds supported osteoblast proliferation and
osteogenesis and promoted tubule formation. Recently, Amir
et al. (2022) indicated that HIF-1α plays an indispensable role in
BMP-9-mediated preosteoblasts differentiation into osteoblasts and
vascularization, whereas HIF-1α knockdown or inhibition
significantly suppressed the expression of osteogenic markers and
matrix mineralization in a BMP-9-dependent manner. In another
study, Guo et al. (2020) revealed that the protective activity of
salidroside on bone loss is related to its stimulatory effects on
angiogenesis-osteogenesis coupling via regulating the HIF-1α/
VEGF axis.

4.4 SLIT3

Although slit guidance ligand 3 (SLIT3) is considered an axon-
guidance molecule, there is evidence that it also plays physiological
functions outside the nervous system, including carcinogenesis,
regulation of stem cells, immunoregulation, and skeletal
development (Li N. et al., 2020). Kim B.-J. et al. (2018) revealed
that SLIT3 could stimulate the proliferation and migration of

FIGURE 2
Angiogenesis and osteogenesis coupling in bones through cellular and molecular mediators and their crosstalk.
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osteoblasts through the activation of β-catenin. It also inhibited the
differentiation of osteoclast in an autocrine manner, resulting in
suppression of bone resorption, whereas Slit3 or its receptor, Robo1,
deficient mice showed osteopenic phenotypes because of promoting
bone resorption and inhibition of bone formation. Furthermore,
higher levels of circulating SLIT3 were related to increased bone
mass in postmenopausal women. In another study, Xu et al. (2018)
tried to clarify how to type H vessels positively coordinate bone
formation. They demonstrated that osteoblast-derived SLIT3 acts as
a proangiogenic factor, promoting bone formation and increasing
type H vessel numbers. On the other hand, Slit3 deletion in
osteoblast cells not only reduced skeletal type H vessels, but also
decreased osteoblasts’ activity and reduced bone formation.
Moreover, SLIT3-mutant mice exhibited defective fracture repair,
whereas exogenous SLIT3 administration improved bone healing.
These results suggest the essential roles of SLIT3 in coupling
osteogenesis and angiogenesis.

4.5 PDGF-BB

Platelet-derived growth factor (PDGF) family consists of five
members, including PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC,
and PDGF-DD, in which PDGF-BB is a potent angiogenic,
chemoattractant, and mitogenic molecule that is considered as a
regulatory factor in tissue regeneration (Fredriksson et al., 2004;
Wang C. et al., 2019). There is evidence that PDGF-BB can promote
MSCs-based bone regeneration (Caplan and Correa, 2011; Zhang N.
et al., 2021). In this regard, Zhang M. et al. (2018) investigated how
PDGF-BB promotes MSCs-based bone regeneration by genetically
modifying PDGF-BB-overexpressing MSCs. They exhibited that
PDGF-BB not only suppressed adipogenic differentiation and
enhanced osteogenic differentiation of MSCs, but also increased
the migration of ECs and angiogenesis through regulation of the
PI3K/AKT and ERK1/2 pathways. Also, PDGF-BB-overexpressing
MSCs improved osteogenesis and angiogenesis during bone
regeneration in a critical-sized rat calvarial defect model. Xie
et al. (2014) found that the secreted PDGF-BB from
preosteoclasts increased type H vessel numbers and bone
formation during bone modeling remodeling. In contrast to the
mentioned studies, Luvizuto et al. (2016) reported that the
supplementation of biomaterials with PDGF-BB had no
remarkable effects on bone formation. Despite the beneficial
effects, PDGF-BB has a short half-life within the blood; thus,
local and sustained delivery of PDGF-BB is essential to achieve
ideal outcomes.

5 Hydrogel scaffolds promote bone
angiogenesis

Before considering the importance of hydrogel scaffolds in
providing structures for enhancing bone angiogenesis, it is worth
noting that hydrogel effectively creates contiguous hyaline articular
cartilage. Owing to the avascular structure of cartilage, its self-
healing ability is limited during cartilage damage. On the other
hand, biomaterials for the replacement of hyaline cartilage that
lubricates joint movement exhibited undesirable side effects

(Beddoes et al., 2016). To overcome these side effects, hydrogels
have been introduced as promising material due to their excellent
lubrication ability, producing contiguous hyaline articular cartilage
matrix and seamless integration with native cartilage under the
regular mechanical forces, constructing matchable structures with
the different hyaline cartilage present in the body (Beddoes et al.,
2016; Meppelink et al., 2016). Regarding the importance of
angiogenesis during bone development and regeneration,
fabricating hydrogel scaffolds with angiogenic properties or
supporting systems for angiogenesis besides their osteogenesis
capacity is an advantage for BTE (Figure 3). We divided
harnessing hydrogel capcities in the activation of angiogenesis
and bone regeneration into four strategies as below.

5.1 Ion-incorporated hydrogels

Due to the stimulatory effects of Mg2+ on cell differentiation and
neovascularization in the bone microenvironment (Yoshizawa et al.,
2014; Yu et al., 2017), Zhang X. et al. (2021) constructed an Mg2+-
incorporating dual-crosslinked hydrogel using photopolymerization
strategy and Mg-S coordination. The constructed hydrogel
supported the adhesion, proliferation, spreading, and osteogenic
differentiation of MSCs. The Mg2+-enriched hydrogel also enhanced
the formation of tube-like structures and the number of branches in
ECs, indicating its stimulatory effects on angiogenesis. The
implantation of the Mg2+-enriched hydrogel into rats with a
calvarial defect model improved bone formation and
angiogenesis, characterized by upregulation of CD31 and higher
density of blood vessels. Another ion that is incorporated into
hydrogel scaffolds is the silicate ion due to its neovascularization
capacity. Dashnyam et al. (2019) fabricated a silicate-shelled
hydrogel fiber scaffold and examined its effect on bone

FIGURE 3
The stimulatory effects of hydrogels on osteogenesis and
angiogenesis. PG/TCB, poly ethylene glycol maleate citrate (PEGMC)
with β-TCP; GelMA, gelatin methacrylate; BMP-2, bone
morphogenetic protein 2; VEGF, vascular endothelial growth
factor; DMOG, dimethyloxallylglycine.
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regeneration. The released silicate and calcium ions from the
scaffold upregulated angiogenic markers, including HIF1-α,
bFGF, endothelial nitric oxide synthase (eNOS), KDR, and
VEGF, and enhanced tubular networking in ECs. The implanted
scaffold also improved bone formation and angiogenesis in rats. The
released ions from the hydrogels could recruit progenitor cells to the
bone microenvironment and stimulate the endogenous expression
of VEGF, collectively resulting in bone repair (Yang et al., 2022). In
another study, Sun et al. (2021) indicated that cobalt-incorporated
hydrogels promote osteogenesis and angiogenesis. The tunable
nanocomposite hydrogel with controlled release of cobalt ions
induced osteogenesis and neovascularization and repaired the
calvarial defect in a rat model because the released cobalt ion can
mimic hypoxia to stimulate angiogenesis.

5.2 Vesicle-encapsulated hydrogels

In addition to the ions, MSC-derived vesicles also contribute to
coupling osteogenesis and angiogenesis. For instance, exosomes
affect cell-cell communication by carrying various materials and
secret chemical signals (Zhang B. et al., 2021). It has been reported
that pro-angiogenesis and pro-osteogenesis properties of MSCs-
derived exosomes are associated with their effects on the activation
of the HIF-1α/VEGF and the BMP-2/Smad1/Runx2 signaling
pathways (Zhang L. et al., 2020). Recently, Wu D. et al. (2022)
found that hydrogel-encapsulated small extracellular vesicles (sEVs)
derived from MSCs with excellent thermosensitive properties could
augment bone regeneration and repair calvarial defects in vivo.
Mechanistically, MSCs-derived exosomes carry miR-21 that
targets Sprouty2 (Spry2), leading to angiogenesis enhancement.
Since Spry2 is an antagonist of fibroblast growth factor (FGF),
there is evidence that Spry2 could control the integrity and
quiescence of ECs and downregulate the angiogenesis process
(Wietecha et al., 2011; Peier et al., 2013). Also, the pro-
angiogenesis activity of exosomal miR-21 is associated with its
modulatory effects on the NOTCH1/DLL4 pathway (Zhang Y.
et al., 2021). In another study, Cheng et al. (2022) revealed that
Nidogen1-enriched EVs (EV-NID1) enhanced the migration and
angiogenesis potential of rat arterial endothelial cells (RAECs) by
targeting myosin-10 which led to a reduction in the adhesion
strength of RAECs. Moreover, loading EV-NID1 into a
composite hydrogel accelerated angiogenesis and bone
regeneration in an in vivo model of the femoral defect. NID1 is
an ECM protein and an essential component of the vascular
basement membrane that supports vascular and endothelium
integrity (Marchand et al., 2019). Therefore, combining the
delivery capacity of hydrogel with EVs with a high capacity to
carry biological factors is a promising strategy to repair bone defects.

5.3 Hydrogels with antibacterial and
immunomodulatory capabilities

Besides the osteogenesis and angiogenesis capacity, scaffolds
need to be antibacterial with immunomodulatory capabilities. To
this end, Cheng et al. (2020) constructed an injectable hydrogel
with osteogenesis, angiogenesis, and antibacterial and called it

‘three-in-one’ platform, in which 4-arm-polyethylene glycol-thiol (4-
arm-PEG-SH) hydrogel filled with liposomes-calcium phosphate
nanoparticles (Lip#CaP). Firstly, they showed that the PEG-40Lip@
DFO#CaP system is biocompatible owing to desirable effects on the
viability of ECs. Furthermore, the treatment of ECs and
preosteoblast cells with PEG-40Lip@DFO#CaP revealed the
angiogenesis and osteogenesis potential of the hydrogel. The
PEG-40Lip@DFO#CaP system also indicated antibacterial
activities against Escherichia coli, Staphylococcus epidermis, and
Staphylococcus aureus owing to carrying Ag+ and PEG in its
structure. Lastly, they demonstrated that the implantation of the
PEG-40Lip@DFO#CaP system into a rat calvarial critical-size defect
model remarkably promoted osteogenesis and angiogenesis after
8 weeks. In another study, Ji et al. (2020) developed MSC-loaded
thermosensitive hydroxypropyl chitin hydrogel (HPCH)
incorporated with a 3D poly (ε-caprolactone) (PCL)/nano-
hydroxyapatite (nHA) scaffold for BTE. The PCL/nHA + HPCH
scaffold promoted the osteogenic differentiation of MSCs,
characterized by the upregulation of osteopontin, osteocalcin, and
Runx. Additionally, the PCL/nHA + HPCH scaffold enhanced
angiogenesis by activating macrophages to secret VEGF and
PDGF-BB. Furthermore, the MSCs-HPCH platform exerted
immunomodulatory effects on macrophages by suppressing the
M1 phenotype and their transition toward M2. Indeed,
M1 macrophages secret VEGF and are involved in the initiation
of angiogenesis; whereas M2 are responsible for the later stages of
angiogenesis, stabilizing the vasculature, and typically secreting
PDGF-BB. Consistent with in vitro results, the MSC-encapsulated

FIGURE 4
Hydrogel-based scaffolds enhance angiogenesis by modulating
macrophage phenotype. Hydrogel-based scaffolds carry various ions
and biomolecules, such as Li+ ions that promote differentiation of
MSCs into bone-forming cells and TGF-β1 that stimulates M1
macrophage polarization toward M2 phenotype. M1macrophages are
involved in the early stage of bone angiogenesis by secreting VEGF,
whereas M2 ones promote angiogenesis in the late stage by secreting
PDGF-BB. M2 macrophage also is involved in osteogenesis through
the secretion of BMP-2. TGF-β1, transforming growth factor beta 1;
VEGF, vascular endothelial growth factor; PDGF-BB, platelet-derived
growth factor-BB; BMP-2, bone morphogenetic protein 2.
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PCL/nHA + HPCH hybrid scaffold enhanced bone formation and
angiogenesis in vivo. Recently,Wu Z. et al. (2022) indicated that lithium
(Li) -modified bioglass-hydrogel stimulates osteogenesis and
neovascularization in a high glucose microenvironment by polarizing
the differentiation of macrophage in vitro. Macrophage polarization
from M1 toward M2 provided an anti-inflammatory
microenvironment and relieved inflammation, resulting in bone
regeneration in a diabetic rat bone defect. Similarly, Li D. et al.
(2022) showed that incorporating TGF-β1 into Li-based hydrogel
promotes both osteogenesis and angiogenesis, in which TGF-β1
guides macrophage polarization toward the M2 phenotype and Li
ions enhance osteogenesis. Figure 4 represents how a hydrogel-based
scaffold enhances angiogenesis by modulating macrophage phenotype.

5.4 Other strategies

Liu et al. (2019) developed a bioinspired 3D gelatin-
methacrylate (Gel-MA) hydrogel incorporated with ECs and
MSCs to study the capacity of the scaffold in bone
vascularization. They reported that the co-culture of ECs and
MSCs in the hydrogel system could promote angiogenesis both
in vitro and in vivo. In this system, the differentiation of MSCs
toward pericytes was the underlying mechanism of vascularization.
In another study, Anada et al. (2019) prepared a bone-mimetic 3D
hydrogel structure using GelMA, octacalcium phosphate (OCP),
and ECs, and studied its osteogenesis-angiogenesis potential. The
amount of OCP in the GelMA was a determinant factor in the
proliferation and differentiation of MSCs; a higher amount of OCP
decreased cell proliferation, while a higher amount of OCP increased
othe steogenic differentiation of MSCs. Furthermore, GelMA
concentration affects athe ngiogenesis and sprouting capacity of
ECs; a higher GelMA concentration inhibits sprout formation. Chen
et al. (2020) designed a gelatin-polyhedral oligomeric silsesquioxane
(POSS) hybrid hydrogel (Gel-POSS) by an esterification reaction for
BTE. They indicated that the introduction of POSS into gelatin
provides a proper microenvironment for incubating ECs and MSCs
on the hydrogel and supports angiogenic tube formation and
extension. The addition of BMP-2 and VEGF to the hydrogel
scaffold and its implantation into critical-sized rat calvarial
defects revealed that the hydrogel supported the sustained release
of the growth factors in vivo, leading to a higher blood vessel
formation in defect regions. It has been shown that incorporating
POSSmoieties into biomaterials could enhance their matrix stiffness
and make them porous structures (Wu et al., 2018; Tamburaci et al.,
2019). Although simvastatin has a stimulatory effect on bone
formation and simvastatin/poloxamer 407 hydrogel exhibited
weak immunogenicity and low toxicity (Pillai and Panchagnula,
2003; Zhao et al., 2014; Tan et al., 2016), poor mechanical properties
of thermosensitive simvastatin/hydrogel limit their application in
BTE. On the other hand, although titanium alloys have low stiffness
like cortical bone and are hopeful scaffolds for orthopedic uses, they
are poorly compatible with bone growth owing to their bio-inert
nature. Liu et al. (2016) designed 3D-printed porous titanium
scaffolds (Ti6Al4V) containing simvastatin/hydrogel to use the
advantages of both structures. They found that the constructed
scaffolds not only significantly increased bone formation and bone
mineral density, but also enhanced angiogenesis around and in the

scaffolds. Dimethyloxallylglycine (DMOG) is another drug
incorporated into the hydrogel scaffold in BTE. DMOG is an
angiogenic drug that could improve both osteogenesis and vessel
formation during bone repair. Mechanistically, the stimulatory
effects of DMOG on osteogenesis and angiogenesis are due to
HIF-1α activation (Yegappan et al., 2019). Therefore,
incorporating pro-osteogenesis and pro-angiogenesis drugs into
hydrogel scaffolds is a hopeful strategy to accelerate bone
regeneration.

6 Conclusion

To date, various techniques have been developed to prepare
hydrogels with desirable properties for BTE, including non-toxicity,
good biocompatibility, controllability, and enhanced performance.
Although more and more studies reported the advantages and
benefits of hydrogels in BTE, the lack of clinical studies
signifying their value limited their translation into the market.
Some questions must be considered when designing polymers to
construct hydrogels for BTE. First, will the hydrogel be used in vitro
or in vivo? 2) Does the hydrogel constructed as 3D architecture or a
space-filling one? 3) What is the fate of hydrogel in the long term? 4)
Should cells be inert or be adhered to the hydrogel polymer?
Currently, angiogenesis is a key bottleneck in BTE that is
necessary to be overcome and considered. A thorough
understanding of the bone repair phases to develop a reliable
hydrogel-based scaffold is a required avenue for future studies.
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