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Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic
transplantations. Although traditional treatments restore the blood supply of
ischemic organs, the damage caused by IRI is always ignored. Therefore, the
ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a
type of polyphenols, processing such properties as anti-oxidative stress, anti-
inflammation and anti-apoptosis. However, although many researches have been
confirmed that curcumin can exert great effects on the mitigation of IRI, there are
still some controversies about its underlying mechanisms among these
researches. Thus, this review is to summarize the protective role of curcumin
against IRI as well as the controversies of current researches, so as to clarify its
underlying mechanisms clearly and provide clinicians a novel idea of the therapy
for IRI.

KEYWORDS

curcumin, ischemia-reperfusion injury, oxidative stress, inflammation, cell death

1 Introduction

IRI is one of the most important clincial issues that limits the development of organic
transplantations and tissue repair. Although it is critical to restore the blood supply of
ischemic tissuses promptly, therapies targeting on the exact mechanisms of IRI-induced
damage could make further improvements on the clinical efficacy.

During ischemia phase, intracellular mitochondrial oxidative phosphorylation
induces the anaerobic metabolism, acidification and ion channels dysfunctions
(Sarighieh et al., 2020). Subsequently, intracellular Ca2+ overload and abnormal
hyperosmosis both occur and thus lead to the cell injury (Wu et al., 2018). During
reperfusion phase, the excessive activation of oxidative stress and inflammation as well
as Ca2+ overload seriously impair the structural integrity of outer membranes of
mitochondia, which leads to the opening of the mitochondrial permeability
transition pore (mPTP), resulting in the release of cytochrome C into cytoplasm and
thus triggers apoptosis (Bonora et al., 2022; Fedotcheva et al., 2022). Simultaneously, the
excessive free radicals leads to the lipid peroxidation of membranous structure,
impairment of the structures and functions of proteins and nucleic acid, causing cell
injury (Daverey et al., 2020).

Curcumin is isolated from turmeric and its molecular formula is C21H20O6, of
which the main chain is unsaturated fat and aromatic family groups (Daverey et al.,
2020). Compared with other types of Traditional Chinese Medicine, curcumin has a
huge advantage because it processes several biological properties such as scavenging
free radicals, anti-inflammation, anti-apoptosis, etc., (Pang et al., 2022). Recently, it
has been accepted that curcumin can alleviate cell injury during ischemic phase and
suppress the excessive oxidative stress and inflammation during reperfusion phase
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(Figure 1) (Table 1). However, there is still some controversies
over the mechanisms of the suppression of curcumin on cell
death.

2 Therapeutic approaches for IRI

Current therapeutic approaches are various and its foundations
are alleviating ischemia and restoring reperfusion (Mohamadian
et al., 2022). Therapeutic approaches can be divided into surgery,
physiotherapy and pharmacology.

With the development of microsurgical techniques, surgery has
promoted the prognosis of IRI. Removing thrombus, establishing
collateral circulation and anastomosing broken blood vessels are
important in alleviating ischemia and restoring reperfusion (Ferreira
et al., 2022). For example, percutaneous coronary intervention (PCI)
is applied to treat myocardial IRI. And percutaneous transluminal
angioplasty (PTA), endarterectomy and bypass operation are
applied for the treatments of organic IRI caused by vascular diseases.

Mild hypothermia and hyperbaric oxygen are important
physiotherapeutic methods for IRI. The main functions of mild
hypothermia include decreasing the metabolism and oxygen
consumption of organs, alleviating vasopermeability and
microcirculation. In clinics, mild hypothermia has been used for the
treatments ofmyocardial IRI and cerebral IRI (Micó-Carnero et al., 2022).

Hyperbaric oxygen therapy refers to the inhalation of pure
oxygen under more than one atmosphere, which can increase the
blood oxygen concentration and oxygen reserve of tissues, promote
the self-update and viability of cells (Neheman et al., 2020). For
instance, hyperbaric oxygen therapy is a necessary method for
cerebral IRI and chronic wounds.

Types of pharmacological therapies for IRI are various and can
be divided into antioxidant and anti-inflammatory agents (Gao

et al., 2022). Antioxidant agents can fight against oxidative stress
by eliminating free radicals or consuming materials which can
produce free radicals, which can be divided into composite and
endogenous types. For example, composite antioxidative agents
include edaravone, metformin, quercetin, probucol and α-thioctic
acid et al. Endogenous antioxidative agents include melatonin,
vitamin B, vitamin C, vitamin E and superoxide dismutases et al.
Anti-inflammatory agents mainly include leucocyte inhibitors,
interleukin-1 (IL-1) inhibitors (prednison, prednisolone and
dexamethasone), TNF-α inhibitors, ICAM-1 inhibitors and
cyclooxygenase 2 (COX2) inhibitors (Non-steroidal Anti-
inflammatory Drugs, NSAIDs).

Surgery has two main disadvantages: expensive and traumatic, so
that it is not suitable for elderly patients. Physiotherapy needs
professional medical equipments and it usually acts affiliated role in
treating IRI. Although pharmacological therapies are various,
combinating different mechanisms drugs can exert the best
therapeutic effectiveness and some of these durgs have serious side
effects (Mohamadian et al., 2022). However, as a classic and popular
type of TCM, curcumin has gained a great attention for its multiple
mechanisms such as antioxidant, anti-inflammatory, suppressing Ca2+

overload andmediating autophagy et al. Therefore, due to its distinctive
and various pharmacological properties, curcumin might be the
promosing candidate for the treatment of IRI.

3 Curcumin attenuates cell injury
during ischemia phase

Ischemia phase, the first stage of IRI and ischemia, not only poses
direct damage on normal cells, but also lays the foundation for the
pathological changes induced by reperfusion injury. During ischemia
phase, both the excessive upregulation of hypoxia-inducible factor-1α

FIGURE 1
The effectiveness therapeutiveness of curcumin to attenuate organic IRI.
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TABLE 1 Characteristics of studies included in this review.

Animal models/Cell models/
Experimental techniques

Drug administrations Dose/
Concentration

Mechanisms References

Cell injury

Chronic intermittent hypoxia-induced
myocardial injury mice model

Oral gavage 100 mg/kg Preventing myocardial cell death
signalling

Moulin et al. (2020)

Hypoxia/reoxygenation (H/R)
treatment in rat bone marrow
mesenchymal stem cells

Mixed with medium 10 mM Preventing H/R injury by protecting
mitochondrial function,
destabilization of HIF-1α and
activation of Epac1-Akt signaling
pathway

Wang et al. (2019)

Human colorectal cancer cells Mixed with medium 10, 20, 40 and 50 μmol/L Inhibiting aerobic glycolysis and
inducing mitochondrial-mediated
apoptosis through hexokinase II

Wang K. et al. (2015)

N-Methyl N-Nitrosourea induced
neurotoxicity on mouse cerebellum
and cerebrum

Oral gavage 60 mg/kg Reducing the activities of
carbohydrate metabolizing enzymes

Singla et al. (2010)

Oxidative stress

Hypoxia/reoxygenation treatment in
H9C2 cells

Mixed with medium 5, 10 and 20 μM Downregulating Notch signaling Zhu et al. (2019)

Renal ischemia and reperfusion injury
rat model

Oral gavage 200 mg/kg Antioxidant effects Bayrak et al. (2008)

Cerebral ischemia/reperfusion injury
rat model

Intraperitoneal injection 10, 20 and 40 mg/kg Attenuating oxidative stress,
inflammation, and apoptosis and
activating endogenous antioxidant
defenses

Wicha et al. (2017)

TGF-β1 mediated basal alveolar
epithelial cells epithelial mesenchymal
transition

Mixed with medium 20 μM Triggering the p53-fibrinolytic
system

Shaikh et al. (2021)

Hepatocellular carcinoma cells Mixed with medium 10, 20 and 40 μM Regulating the TET1/Wnt/β-catenin
signal pathway

Zhu et al. (2019)

Middle cerebral artery occlusion
(MCAO) rat model

Intraperitoneal injection 100 mg/kg The neurogenesis-related lncRNA/
circRNA-miRNA-mRNA ceRNA
networks

Li et al. (2022)

Isolated guinea pig hearts ischemia
and reperfusion injury

Mixed with perfusion buffer 0.2 and 0.5 ?M Attenuating activities of GPx and GR Ilyas et al. (2016)

Liver warm ischemia and reperfusion
injury rat model

Injecting into a branch of superior
mesenteric vein

50 mg/kg Regulation of heat shock protein and
antioxidant enzymes

Shen et al. (2007)

Computational method -- -- Increasing catalase activity of bovine
liver catalase

Mofidi et al. (2017)

Multispectral analysis and
simultaneous docking simulations

-- -- Inhibiting catalase activity Khataee et al. (2019)

Inflammation

Liver damage rat model Oral gavage 30 mg/kg Suppressing the levels of AST, LDH,
HDL, LDL, triglyceride, and total
cholesterol in serum, and fibrosis,
caspase-3, Bax, and TNF-α
expressions in the liver

Huyut et al. (2022)

Renal ischemia-reperfusion injury rat
model

Oral gavage -- Regulating expression level of
macrophage subtypes

Fan et al. (2019)

Human umbilical vein endothelial cell
exposed to urban particulate material
or titanium dioxide nanoparticles

Mixed with medium 1, 10 and 100 μM Suppressing the expression of E− and
P-selectins, ICAM-1, VCAM-1 and
platelet-endothelial cell adhesion
molecule-1

Montiel-Dávalos et al.
(2017)

Ischemia and reperfusion injury rabbit
ear wounds

Intravenously administration 6, 30 and 60 μg/kg Decreasing proinflammatory
cytokines IL-1, IL-6 and IL-8

Jia et al. (2014)

(Continued on following page)
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TABLE 1 (Continued) Characteristics of studies included in this review.

Animal models/Cell models/
Experimental techniques

Drug administrations Dose/
Concentration

Mechanisms References

Ischemia and reperfusion injury retina
model

Diet 100, 500 and 2,500 ppm in
diets

Inhibiting injury-induced activation
of NF-kB and STAT3, and on over-
expression of MCP-1

Wang et al. (2011)

Myocardial ischemia and reperfusion
injury rat model

Oral gavage 300 mg/kg Inhibiting the expression of TLR2 Kim et al. (2012)

Human placenta, visceral adipose
tissue (VAT) and subcutaneous
adipose tissue (SAT) explants

Mixed with medium 60 μM Supressing proinflammatory
cytokines (IL1A, IL1B, and IL6) and
chemokine (CCL2-4, CXCL1,
CXCL5 and CXCL8) and increased
anti-inflammatory cytokine IL4 and
IL13

Nguyen-Ngo et al.
(2020)

Limb ischemia and reperfusion injury
rat model

Intraperitoneal injection 200 mg/kg Regulating miR-21/TLR4/NF-κB
signalling pathway

Zou et al. (2020)

Atherosclerotic lesions at the aortic
sinus mice model

Diet 0.1% diet Inhibiting Toll-like receptor
4 expression

Zhang et al. (2018)

Endotoxic mice model Intravenous injection 10 mg/kg Blocking the LPS-TLR4/
MD2 signaling activation

Wang Y. et al. (2015)

Histamine-induced itching mice
model

Topical application 10 mg/mL Activation of transient receptor
potential vanilloid 1

Lee et al. (2018)

Rat basophil leukemia (RBL)-2H3 and
human pre-basophils (KU812) cell
lines

Mixed with medium 0.2–200 μg/mL Inhibiting FceRI protein expression
and protein kinase C delta
translocation

Kong D. et al. (2020)

Pentylenetetrazol-induced seizures Intraperitoneal injection 150 mg/kg Blocking 5-HT1A, 5-HT2C, 5-HT4
and 5-HT7 receptors

Arbabi et al. (2018)

Cardiotoxicity rat model Oral gavage 50 mg/kg Antioxidant effect Mohammed et al.
(2020)

Molecular modeling and docking
techniques

-- -- Inhibiting phospholipase A2 Dileep et al. (2011)

Review -- -- Inhibiting IL-1, IL-2, IL-6, IL-8 and
IL-12, TNF-α, monocyte
chemoattractant protein-1

Kocaadam et al. (2017)

Cerebral ischemia and reperfusion
injury rat model

Intraperitoneal injection 300 mg/kg Inhibiting inflammation and
apoptosis

Li et al. (2017)

Intestinal ischemia and reperfusion
injury rat model

left femoral vein administration of 1 and 5 mg/kg Inhibiting NF-κB signaling pathway Fan et al. (2014)

Mesenteric ischemia and reperfusion
injury rodent model

Oral gavage 40 mg/kg Suppressing oxidative stress and
increased HSP 70

Karatepe et al. (2009)

Cerebral ischemia and reperfusion
injury rat model

Oral gavage 100 and 300 mg/kg Downregulation of miR-7-5p Xu et al. (2019)

Liver ischemia and reperfusion injury
mice model

Intraperitoneal injection 100 mg/kg Activation of peroxisome
proliferator-activated receptor

Liu et al. (2018)

Limb ischemia and reperfusion rat
model

Femoral blood injection 200 mg/kg Suppressing Notch2/Hes-1 signaling
pathway

Bo et al. (2020)

Ca2+ overload

MCAO rat model Oral gavage 100 mg/kg Suppressing the activation of
P2X7 receptor

Wang X. et al. (2020)

Albumin-induced cell stress and
proinflammatory response

Mixed with medium 10 μM Inhibiting Ca2+ overload Nazıroğlu et al. (2019)

H2O2-induced oxidative dress in
astrocytes

Mixed with medium 10 μM Inhibiting Ca2+ influx Daverey et al. (2020)

(Continued on following page)
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(HIF-1α) and anaerobic metabolism play significant roles in direct cell
injury posed by ischemia. However, multitudes of researches have
demonstrated that curcumin can attenuate ischemia-induced cell
injury through mediating the mechanisms mentioned above.

3.1 Curcumin suppresses the excessive
upregulation of HIF-1α

Curcumin is able to suppress the excessive upregulation of HIF-
1α, mitigating cell injury caused by ischemia. The foremost change
of ischemia is hypoxia which can stimulate the stable expression of

HIF-1α, leading to the upregulation and nuclear translocation of
HIF-1α (Ding et al., 2022). Subsequently, in nucleoli, HIF-1α
combines with hypoxia response elements (HRE) located in the
promoter region of hypoxia response genes (HRG), which promotes
vascular endothelial growth factor (VEGF) and erythropoietin
(EPO) expressions, enhancing the ischemia tolerance (Zhao et al.,
2020). However, excessive upregulation of HIF-1α contributes to the
expressions of several pro-apoptosis genes such as cysteinyl
aspartate specific proteinase 3 (Caspase-3) and BCL2-Associated
X Protein (Bax), resulting in apoptosis induced by hypoxia and
ischemia (Wang X. et al., 2020). Furthermore, several researches had
confirmed that curcumin could mitigate IRI through suppressing

TABLE 1 (Continued) Characteristics of studies included in this review.

Animal models/Cell models/
Experimental techniques

Drug administrations Dose/
Concentration

Mechanisms References

Human breast carcinoma cells Mixed with medium 1 mg/mL Inhibiting PI3k/AKT/mTOR and
RhoA/ROCK signaling pathways

Badr et al. (2018)

Mouse fibroblast cells Mixed with medium 15 and 20 μM Suppressing PKC activity Liu et al. (1993)

Cochlear fibroblasts of diabetic rat
model

Oral gavage 200 and 400 mg/kg Inhibiting PKC expression Haryuna et al. (2019)

Human pulmonary artery smooth
muscle cells

Mixed with medium 20 μM Inhibiting PLD activity Chakraborti et al.
(2018)

Neonatal hypoxic-ischemic brain
injury mice model

Intraperitoneal injection 22, 44, 100, 200 and
400 ug/ul

Inhibiting inflammation and
oxidative stress

Rocha-Ferreira et al.
(2019)

Autophagy

OGD/R-treated primary cortical
neurons

Mixed with medium 2, 5, 10 and 20 μM Up-regulating AKT/mTOR
signalling pathway and decrease
autophagy

Shi et al. (2019)

OGD/R-treated cardiomyocytes Mixed with medium 0.1, 1 and 10 μM Down-regulating AMPK/mTOR
signaling pathway and Promoting
Autophagy

Yang et al. (2013)

MCAO rat model Intraperitoneal injection 20 mg/kg Promotion of P62-LC3-Autophagy Zhang et al. (2019)

MCAO rat model Intraperitoneal injection 100 mg/kg Regulating Mitophagy and
Preserving Mitochondrial Function

Wang Z. et al. (2020)

Hepatic fibrosis rat model Intraperitoneal injection 100, 200 and 400 mg/kg Up-regulating signaling pathways of
autophagy AMPK and PI3K/AKT/
mTOR

Kong Z. L. et al. (2020)

Pyroptosis

Rat necrotising enterocolitis model Oral gavage 20 and 50 mg/kg Activating SIRT1/NRF2 and
inhibiting the TLR4 signalling
pathway

Yin et al. (2020)

Doxorubicin-induced cardiac injury
mice model

Intraperitoneal injection 100 and 200 mg/kg Activating Akt/mTOR signalling
pathway

Yu et al. (2020)

Ferroptosis

MCAO rat model Intraperitoneal injection 5 mg/kg Inhibiting ferroptosis Tuo et al. (2017)

Doxorubicin-induced cardiac injury
mice model

Intraperitoneal injection 1 μM Upregulation of Hmox1 via
Nrf2 activation

Fang et al. (2019)

Renal ischemia and reperfusion injury
mice model

-- -- Inhibiting ferroptosis Linkermann (2016)

OGD/R-treated TM4 mouse Sertoli
cells

Gene knockdown -- Activating GPX4 and inactivating
p38 MAPK

Li et al. (2018)

Lewis lung carcinoma mice model Intraperitoneal injection 100 mg/kg Inhibiting autophagy and ferroptosis Tang et al. (2021)
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the excessive upregulation of HIF-1α. Moulin et al. (2020) found that
curcumin attenuated myocardial IRI through suppressing IRI-
induced HIF-1 activation in mice. Wang et al. (2019) found that
curcumin pretreatment (10 μM) could increase the survival rate of
bone derived stromal cells (BMSCs) under IRI condition partly
through the induction of HIF-1α destabilization.

In addition, a train of researches has manisfested that during
ischemia phase, the suppression of prolyl hydroxylase (PHD) can
contribute to the reduction of cellular oxygen consumption and the
promotion of cellular ischemia tolerance. Huan et al. (2020)
confirmed that the knockdown of PHD1 gene could promote the
tolerance of skeletal muscle in mice against ischemia and hypoxia.
However, researches investigating curcumin and PHD suppression
during ischemia phase are still blank. Therefore, fulfilling this gap is
helpful for the comprehensive elucidation of the machanisms of
curcumin alleviating IRI.

3.2 Curcumin suppresses the anaerobic
metabolism

Oxygen deficiency induces the anaerobic metabolismwhich causes
the perturbation of intracellular homeostasis, leading to cell destruction
and death (Nguyen et al., 2022). When anaerobic metabolism occurs,
there are some corresponding changes in cells including decreasing
levels of ATP and PH, increasing lactate concentration and ion
channels dysfunctions, resulting in intracellular abnormal
acidification and hyperosmosis (Versluis et al., 2022). A series of
researches had confirmed that curcumin could suppress anaerobic
metabolism, maintaining intracellular homeostasis. Wang K. et al.
(2015) showed that curcumin could block anaerobic metabolism and
induce mitochondrial-mediated apoptosis in two different lines of
human colorectal cancer cells (HCT116 and HT29 cells) in a
concentration-dependent manner through the downregulation of
the activity of hexokinaseⅡ(HK Ⅱ), a key enzyme of anaerobic
metabolism. In vivo, (Singla et al., 2010) also showed that curcumin
co-administered with N-Methyl N-Nitrosourea (MNU, one of the
potent neuro-carcinogens) could significantly reduce the activity of HK
both in the cerebrum and cerebellum of mice.

4 Curcumin suppresses the excessive
oxidative stress

Curcumin can suppress the excessive oxidative stress induced by IRI
effectively. High free radicals levels and low antioxidase activities are
characteristic of oxidative stress (Jelic et al., 2021).And its keymechanisms
include mitochondrial injury, the aggregation and activation of a huge
amount of neutrophils, increase in xanthine oxidase production as well as
catecholamin oxidation (Lai et al., 2022). Curcumin can suppress IRI-
induced oxidative stress by reducing free radicals levels and enhancing
antioxidase activities during reperfusion phase.

4.1 Curcumin reduces free radicals levels

Curcumin is a type of effective anti-inflammation agents. The
unstable chemical property of free radicals can lead to the lipid

peroxidation and destruction of the structures and functions of
proteins as well nucleic acid, aggravating organic IRI (Peker et al.,
2019). Reactive Oxygen Species (ROS) is the main component of free
radicals, including superoxide anion (O−2), nitric oxide (NO), hydrogen
peroxide (H2O2), etc. In vitro, (Zhu et al., 2019) demonstrated that
curcumin could protected H9C2 cardiomyocytes against IRI, reversing
the IRI-induced increases in ROS and malondialdehyde (MDA) levels.
Bayrak et al. (2008) demonstrated that the oral adminstration of
curcumin greatly alleviated renal IRI of rats via its inhibition of
MDA and NO levels. In vivo, (Wicha et al., 2017) demonstrated that
treatment with hexahydrocurcumin offered its neuroprotection against
IRI in rats through significantly decreasing the levels ofMDA andNOof
damaged brain tissues. Otherwise, in vivo, a series of researches had
confirmed that curcumin and its demethoxy derivatives such as
demethoxycurcumin (Dmc), bisdemethoxycurcumin (Bdmc),
tetrahydrocurcumin (THC), hexahydrocurcumin (HHC) and
octahydrocurcumin (OHC) could eliminate 1,1-diphenyl-2-
trinitrophenylhydrazine (DPPH), NO, hydroxy radical (OH·) and
O−2 directly by providing electrons to reduce free radicals (Shaikh
et al., 2021; Zhu et al., 2022; Shahbazizadeh et al., 2021). Taken
together, curcumin can reduce free radical levels so as to mitigate IRI.

4.2 Curcumin enhances antioxidase
activities

Curcumin can change the structures of many types of antioxidase
such assuperoxide dismutases (SOD), catalase, glutathione reductase
(GR) and glutathione peroxidase (GPx) and enhance its expressions and
activities. On one hand, (Li et al., 2022). found that chronic curcumin
treatment on cerebral IRI in rats could reduce neurological scores and
inhibit IRI-induced apoptosis by enhancing enzyme activities of SOD,
catalase and GR. Ilyas et al. (2016) also found that curcumin exerted its
protective role against myocardial IRI in pigs by increasing enzyme
activities of GR andGPx. Shen et al. (2007). demonstrated that curcumin
could ameliorate warm hepatic IRI and inhibit hepatocyte apoptosis in
rats through inducing the over expression of SOD and catalase. On the
other hand, curcumin can increase antioxidase activities via altering its
structures.MofidiNajjar et al. (2017) showed that various concentrations
of curcumin could increase the amount of α-helix content of catalase,
which played an important role in the enhancement of the enzyme
activity of catalase. Afterward, they also found that curcumin
supplement resulted in the decreases in accessible surface area (ASA)
and pKa of catalase, leading to the enhancement of the enzyme activity of
bovine liver catalase (BLC) (Khataee et al., 2019). Therefore, curcumin
can enhance the enzyme activities of various types of antioxidase,
mitigating the excessive oxidative stress during reperfusion phase.

5 Curcumin suppresses the over-
activated inflammation

Curcumin can suppress over-activated inflammation during
reperfusion phase. IRI increases the percentage of inflammatory
cells infiltration. Take myocardial IRI of dogs for an example, the
percentage of neutrophils in endocardium increases for about 25%
only after reperfusion for 5 min. Inflammatory cells such as
neutrophils, monocyte-macrophages and mast cells can harm
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normal cells through the direct damage or secreting inflammatory
mediators (Hassanzadeh et al., 2022). Taken together, curcumin can
suppress inflammatory cells infiltration and decrease inflammatory
mediators levels, so as to suppress the over-activated inflammation
induced by IRI during reperfusion injury.

5.1 Curcumin suppresses inflammatory cells
infiltration

5.1.1 Curcumin suppresses the over expression of
cell adhesion molecules

Cell adhesion molecules mainly includes integrin, selectin,
ICAM-1 and vascular adhesion molecule-1 (VCAM-1), which
can mediate inflammatory cells infiltration (Sawada et al., 2020).
Evidences showing that curcumin can decrease the level of TNF-α-
induced VCAM-1 in vascular endothelial cells and the level of
ICAM-1 in aneurysmal walls (Huyut et al., 2022; Fan et al.,
2019). Otherwise, (Montiel-Dávalos et al., 2017) showed that air
pollutants such as inhalable particles with an aerodynamic diameter
of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs)
could induce the dysfunctions and abnormal activation of
endothelial cells, which led to the over expressions of ICAM-1,
VCAM-1, E-selectin and P-selectin, causing the excessive
inflammatory cells infiltration and damage in the endothelial
cells. And their results manifested that curcumin had an anti-
inflammatory role by attenuating the dysfunctions and abnormal
activation of endothelial cells by the exposures to PM10 and
TiO2-NPs.

5.1.2 Curcumin decreases the chemokines
contents

Curcumin can decrease the abnormally high contents of multiple
types of chemokines induced by IRI. In IRI, the excessive
inflammatory reactions are over activated, which leads to the
release of a huge amount of chemokines, contributing to
inflammatory cells infiltration. Jia et al., (2014) showed that
curcumin treatment could lower IL-8 level in rabbit ear IRI model.
(Wang et al., 2011; Kim et al., 2012) showed that curcumin decreased
monocyte chemotatic protein-1 (MCP-1) level in retinal IRI and
myocardial IRI respectively. In addition, (Nguyen-Ngo et al., 2020)
also found that curcumin significantly suppressed TNF-induced such
chemokines as C–C motif ligand 2 (CCL2), CCL3, CCL4, C-X-C
motif ligand 1 (CXCL1), CXCL5 and CXCL8 expressions in human
placenta, visceral adipose tissue and subcutaneous adipose tissue.
Therefore, researches had confirmed both in vitro and vivo that
curcumin could inhibit the release of a huge amount of
chemokines, mitigating inflammatory cells infiltration.

5.1.3 Curcumin suppresses the activation of toll-
like receptors

During ischemia phase, ligands such as high mobility group box 1
(HMGB1) and RNA are significantly released by necrotic cells, which
are combined by Toll-like receptors (TLRs) (Upadhyay et al., 2022).
Subsequently, the excessive activation of TLRs translocates the nuclear
transcription factors into nucleoli through theMyeloid Differentiation
Factor 88 (MyD88) dependent signaling pathway, which produces
pro-inflammatory cytokines and chemokines, inducing cascade

inflammatory reactions (Zhang et al., 2021). Zou et al. (2020)
showed that curcumin post-treatment could suppress
TLR4 expression in the injuried lung tissues induced by limb
ischaemia-reperfusion in rats. Zhang et al. (2018) also confirmed
that curcumin supplementation suppressed TLR4 expression and
macrophage infiltration in atherosclerosis plaque as well as
protected against atherosclerosis in ApoE−/− mice. Additionally,
(Wang Y. et al., 2015) demonstrated that in mice sepsis models,
curcumin analog L48H37 could inhibit lipopolysaccharide-induced
TLR4 signaling pathway activation so that led to the decrease of
downstream inflammatory mediators expression.

5.2 Curcumin reduces the inflammatory
mediators contents

5.2.1 Curcumin reduces the vasoactive amines
contents

Vasoactive amines such as histamine and 5-hydroxytryptamine
(5-HT) are released earliest during the inflammatory reactions,
which can be suppressed by curcumin (Chong et al., 2022).
Histamine mainly exists in the granules of mast cells and
basophilic granulocytes, increasing vascular permeability through
the combination with histamine 1 receptors in vascular endothelial
cells (Matsumoto et al., 2021; Midzyanovskaya et al., 2021). In vitro,
several researches had all confirmed that curcumin could inhibit the
activation and degranulation of mast cells during reperfusion phase,
which led to the suppression of histamine release, resulting in the
decrease of vascular permeability (Nabil et al., 2018; Lee et al., 2018;
Kong D. et al., 2020). 5-HT mainly exists in platelets, of which the
release leads to the vasoconstriction (Krege et al., 2022). Arbabi
Jahan et al. (2018) demonstrated that curcumin could reduce 5-HT
7 gene expression. Also, (Mohammed et al., 2020) showed that
curcumin nanoparticles exerted its protective effect on the
cardiotoxicity induced by doxorubicin via the suppression of
abnormal vasoconstriction through inhibiting platelet aggregation
and 5-HT release. Taken together, the protective role of curcumin in
IRI partly contributes to the reductions of vasoactive amines
contents and the mitigation of abnormal vascular changes.

5.2.2 Curcumin reduces the contents of
arachidonic acid and its metabolite

The metabolite of arachidonic acid (AA) includes prostaglandin,
leukotriene (LT) and lipoxin, which are important inflammatory
mediators participating in inflammation and coagulation responses
(Yamaguchi et al., 2022). Dileep et al. (2011) found that curcumin and
its analogs suppressed AA release via inhibiting the enzyme activity of
phospholipase A2 (PLA2) in that PLA2 contributed to AA release by
hydrolyzingmembrane phospholipids. In addition, curcumin can block
the synthesis of AA and its metabolite by suppressing the
cyclooxygenase 2 (COX2) and lipoxygenase (LOX) (Kocaadam et al.,
2017). Therefore, curcumin can alleviate IRI-induced inflammatory
reactions through the reductions of AA and its metabolite.

5.2.3 Curcumin reduces the pro-inflammatory
factors release

TNF-α, IL-1β and IL-6 play significant roles in the initiation and
promotion of inflammation, produced by activated macrophages,
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mast cells and endothelial cells (Oettgen, 2022; Xiao et al., 2022).
When IRI occurs, as strong extracellular stimuli, ischemia, oxygen
deficiency and oxidative stress can initiate the transcriptions and
expressions of pro-inflammatory factors (TNF-α, IL-1β and IL-6)
through the upregulation of intracellular nuclear factor κB (NF-κB)
and Notch signaling pathways (Li et al., 2017; Fan et al., 2014). In
turn, these types of pro-inflammatory factors also can upregulate
intracellular NF-κB and Notch signaling pathways, and thus forms
vicious “positive feedback” (Karatepe et al., 2009; Christopoulos
et al., 2021). On one hand, (Xu et al., 2019). found that curcumin
inhibited oxygen glucose deprivation/reperfusion (OGD/R)-
induced cell damage by downregulating RelA p65, an important
subunit of NF-κB. Also, (Liu et al., 2018) showed that curcumin
exerted positive effects on hepatic IRI in mice through activating
peroxisome proliferator-activated receptor γ (PPAR γ) by the
downregulation of NF-κB signaling pathway. On the other hand,
(Bo et al., 2020) demonstrated that curcumin post-treatment
alleviated lung IRI in rats via the inhibition of Notch2/Hes-
1 signaling pathway and the releases of pro-inflammatory factors
(TNF-α and IL-1β). Taken together, curcumin treatment is related
to the inhibition of pro-inflammatory releases through the
regulation of inflammation-associated signaling pathways.

6 Curcumin inhibits the Ca2+ overload

Ca2+ overload plays an important role in the pathogenesis of IRI
and it mainly occurs during reperfusion phase, of which the principal
causes are the increased calcium influx, abnormal activation of protein
kinase C (PKC) as well as cell membranes damage (Kashio et al., 2022;
Wang et al., 2022). However, curcumin can inhibit IRI-induced Ca2+

overload through targeting the mechanisms mentioned above.

6.1 Curcumin blocks the increased Ca2+

influx

Increased Ca2+ influx greatly contributes to IRI-induced Ca2+

overload. During ischemia phase, intracellular anaerobic
metabolism and energy deficiency both lead to the reduction of
Na+ pump activity, resulting in the increase of intracellular Na+

content. During reperfusion phase, ischemic cells recover the supply
of oxygen and nutritious materials and high intracellular Na+

content immediately activates Na+/Ca2+ exchangers, which causes
the excessive Ca2+ influx, leading to the Ca2+ overload and cell injury
(Junho et al., 2022). In vitro, (Wang Z. et al., 2020) found that
curcumin protected against cerebral IRI in rats through the blockage
of excessive Ca2+ influx by inhibiting P2X7 receptor activation, a one
of the conduits for Ca2+ influx in dendric cells. Nazıroğlu et al. (2019)
confirmed that curcumin treatment could block the increased Ca2+

influx in renal collecting duct cells through the downregulation of
transient receptor potential M2 (TRPM2) channel which mediated
oxidative stress-induced Ca2+ influx. Moreover, in vivo, (Daverey
et al., 2020) also showed that curcumin mediated its protective role
in spinal cord white matter hypoxia of rats through extracellular
inhibition of calcium channels as well as intracellular inhibition of
Ca2+. In turn, curcumin treatment can attenuate IRI-induced Ca2+

overload by blocking increased Ca2+ influx.

6.2 Curcumin suppresses PKC activation

Increased endogenous catecholamin release induced by IRI
contributes to PKC activation and activated PKC promotes Na+/
Ca2+ exchange and Ca2+ influx. Furthermore, (Chen et al., 1998)
established cerebral IRI models in rats finding that the activated
PKC aggravated cerebral IRI because it could lead to
vasoconstriction and degenerate cytoskeleton components. Fan et al.
(2019) showed that PKC β inhibitor could mitigate inflammatory cells
infiltration in renal IRI tissues and promote the expression of
alternatively activated macrophage (M2), a type of macrophages
processing anti-inflammatory effects. To the best of our knowledge,
several researches had confirmed that curcumin could suppress PKC
activation. Badr et al. (2018) confirmed that curcumin analogue
J1 blunted the phosphorylation of PKC-theta in the breast cancer
cells. Liu et al. (1993) showed that treatment with 15 or 20 μmcurcumin
for 15 min could inhibit 12-0-tetradecanoyl-phorbol-13-acetate (TPA)-
induced PKC activity in mice fibroblast cells. Haryuna et al. (2019) also
found that intraperitoneal administration with curcumin for 3 or 8 days
could reduce PKC expression in the cochlear fibroblasts of diabetic rats.

6.3 Curcumin maintains the integerity of cell
membranes

Cell membranes are significant structures for maintaining the
ionic equilibrium between the intracellular and extracellular. The
destruction of cell membranes increases its permeability which
causes Ca2+ influx following the concentrationgradient, greatly
contributing to Ca2+ overload. Chakraborti et al. (2018) found
that curcumin could alleviate ROS-induced damage on cell
membranes by suppressing the phospholipase D (PLD) activity
in pulmonary artery smooth muscle cells under oxidative stress
condition. Other study also showed that curcumin could attenuate
mitochondrial dysfunction and stabilize the cell membranes,
reducing injury severity in adult models of spinal cord injury,
cancer as well as cardiovascular disease (Rocha-Ferreira et al., 2019).

7 Curcumin affects autophagy in
mitigating IRI

Autophagy-induced cell death, also termed as autosis, has been
confirmed to exist in IRI and the regulation of autophagy plays an
important role in the fate of cells that suffer with IRI (Shi et al., 2019;
Cao et al., 2021) demonstrated that curcumin analogues, 7-(4-Hydroxy-
3-methoxyphenyl)-1-phenyl-4E-hepten-3-one (AO-2) could alleviate
OGD/R-induced damage on cortical neurons isolated from rats by
inhibiting autophagy and cell apoptosis through an mTOR-
dependent mechanism. On the contrary, (Yang et al., 2013)
established the murine myocardial I/R model demonstrating
that curcumin exerted its protective role against myocardial IRI
through the upregulation of autophagy in murine cardiomyocytes.
Additionally, in vitro and vivo, a series of researches had confirmed
that several therapeutic agents or measure for cerebral IRI such as
astragaloside IV, resveratrol and ischemic postconditioning (IPC)
inhibited cerebral damage following IRI mainly through the
upregulation of autophagy (Zhang et al., 2019; Sun et al., 2018;
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He et al., 2017). However, whether autophagy is beneficial or
harmful to the IRI still remains controversial, of which the possible
reasons include complicated autophagy regulation networks,
differences in the durations of ischemia and reperfusion as well
as different interventions, etc., (Wang X. et al., 2020; Kong D. et al.,
2020). Collectively, the exact autophagy mechanisms mediating
curcumin alleviating IRI still need further investigations.

8 Curcumin and pyroptosis in IRI

Pytoptosis, also termed as inflammation-related cell death, is an
important natural immune response of the body (Hu et al., 2022;
Naryzhnaya et al., 2022). Although there are no researches reporting
the possible relationships between pyroptosis and curcumin
alleviating IRI yet, the inhibition of pyroptosis has been confirmed
to mitigate IRI. Nucleotide-binding oligomerization domain-like
receptor protein 3 (NLRP3) is the key protein of IRI-induced
pyroptosis (Luan et al., 2022). In the development and progression
of IRI, increased NLRP3 level induces violent pytoptosis, which is led
by the upregulation of NF-κB signaling pathway, increased
mitochondrial fragments, impaired autophagy functions and high
ROS levels, etc., (Song et al., 2018; Yu et al., 2022). Therefore, a series
of researches had confirmed that several types of TCM such as total
glucosides of paeonia (TGP), emodin, β-asarone and gastrodin could
alleviate myocardial IRI and intestinal IRI via inhibiting pyroptosis in
cardiocytes and intestinal mucosal epithelial cells (Zheng et al., 2019;
Ye et al., 2019; Xiao et al., 2020; Sun et al., 2019). As for curcumin
treatment, (Yin et al. 2020) found that curcumin could attenuate
necrotising microscopic colitis by inhibiting pyroptosis in newborn
rats. Yu et al. (2020) found that curcumin could protect against
doxorubicin-induced cardiac injury via suppressing pyroptosis in
mice. Taken together, the inhibition of pyroptosis by curcumin
might be one of the most significant mechanisms of allevating IRI
and more high-qualified researches should be performed.

9 Curcumin and ferroptosis in IRI

Ferroptosis, a new type of regulated cell death that has been
discovered recently, which is induced by iron-dependent lipid
peroxidation (Li H. et al., 2020; Ma et al., 2023). Currently, it has
been widely accepted that it plays an importantly detrimental role in
many IRI models (Yan, 2020). As mentioned above, IRI is
accompanied by oxidative damage and the accumulation of ROS.
Additionally, Zhao et al., (2018) and Scindia et al., (2019) both had
found that IRI could cause elevated intracellular iron levels, which was
induced by excessive oxidative stress, and iron overload was also a
main source of oxidative stress in turn, aggravating IRI. These
pathomechanisms related to IRI are main causes of ferroptosis.
Elevated intracellular iron promoted lipid oxidation by Fenton
reaction, contributing to the induction of ferroptosis (Hirschhorn
et al., 2019). Therefore, given the relationships between ferroptosis
and IRI, a series of researches had demonstrated the protective role of
iron chelators against IRI models. Tuo et al. (2017) showed that tau
alleviated cerebral IRI in rats by ferroptotic inhibition, of which the
main mechanism was mediating stroke-induced iron accumulation
and outcome. In vivo, (Fang et al., 2019) also showed that ferrostatin-1,

a classical type of iron chelators, could ameliorated heart failure
induced by both acute and chronic myocardial IRI in mice. In
addition, (Linkermann, 2016) concluded that such iron chelators as
desferoxamine, ferrostatin-1, liproxstatin and the compound
16–86 could greatly attenuate tubular cell necrosis and
synchronized death of renal tubules caused by renal IRI. In vitro,
(Li et al., 2018). demonstrated that supplement with liproxstatin-1 and
deferoxamine could block testicular IRI-induced cell death of germ
cells and Sertoli cells. To our best understanding, curcumin treatment
has been reported to inhibit ferroptosis. Guerrero et al. (2019) had
showed that curcumin treatment could mitigate renal damage relating
to rhabdomyolysis through inhibting ferroptosis-induced cell death. Li
R et al. also showed that curcumin could suppress the growth of breast
cancer cells and decrease the survival rate of osteosarcoma cells by
inducing ferroptosis-mediated cell death. Collectively, curcumin can be
both ferroptosis inhibitor and ferroptosis trigger (Tang et al., 2021).
However, whether curcumin can exert its protective role against IRI by
ferroptosis-associated mechanisms should be explored further.

10 The side effect of curcumin usage
and the suggested administrations

There are also some side effects of curcumin. For example,
external application of curcumin might cause contact dermatitis
and urticaria (Chen L. et al., 2022). And its possible explantation
is that external application of curcumin can induce the allergic
reaction of skin. Oral administration of curcumin might cause
gastrointestinal pain, nausea, vomit and liver poisoning (Xie et al.,
2022). Otherwise, the overdose of curcumin can aggravate the
cholecystolithiasis in that curcumin is mainly metabolized by the
liver, so that the excessive administration of curcumin can induce liver
dysfunction. In addition, curcumin can inhibit the coagulation
process so that people suffered from hemorrhagic diseases,
postoperative patients and pregnant women should take curcumin
with great caution (Chen et al., 2022). Futhermore, curcumin can
reduce the blood pressure and blood glucose so that people who take
hypotensor and hypoglycemic drugs are forbidden to take curcumin.
In clinics, take as mycardial infarction patients an example. In my
opinion, administration of curcumin should act as an auxiliary role in
treating mycardial infarction and should be given right after the
ischemic event (Li J. et al., 2020). Taken together, there is a long way
from scientific to clinical.

11 The limitations of the review

Our review also had a few limitations. For instance, the study did
not review the molecular structure of curcumin. Besides, this review
did not include our own exprimental data. In addition, the
characteristics of the molecular structure of curcumin and relevant
experiments should be investigated in our next aticle in the future.

Conclusion

In conclusion, curcumin has been confirmed to alleviate IRI.
During ischemia phase, curcumin can suppress the excessive
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upregulation of HIF-1α and anaerobic metabolism, reducing
ischemia-induced injury on cells. During reperfusion phase,
curcumin can inhibit the excessive oxidative stress through
decreasing free radicals levels and increasing antioxidase
activities. Simultaneously, curcumin can mitigate the excessive
inflammation through suppressing inflammatory cells infiltration
and decreasing inflammatory mediators contents. Additionally,
curcumin also can inhibit intracellular Ca2+ overload by blocking
the increased Ca2+ influx, suppressing PKC activation and
maintaining the integerity of cell membranes.
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