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Background: Inter-individual differences in drug response based on genetic
variations can lead to drug toxicity and treatment inefficacy. A large part of this
variability is caused by genetic variants in pharmacogenes. Unfortunately, the
Single Nucleotide Variant arrays currently used in clinical pharmacogenomic (PGx)
testing are unable to detect all genetic variability in these genes. Long-read
sequencing, on the other hand, has been shown to be able to resolve complex
(pharmaco) genes. In this study we aimed to assess the value of long-read
sequencing for research and clinical PGx focusing on the important and highly
polymorphic CYP2C19 gene.

Methods and Results:With a capture-based long-read sequencing panel wewere
able to characterize the entire region and assign variants to their allele of origin
(phasing), resulting in the identification of 813 unique variants in 37 samples. To
assess the clinical utility of this data we have compared the performance of three
different *-allele tools (Aldy, PharmCat and PharmaKU) which are specifically
designed to assign haplotypes to pharmacogenes based on all input variants.

Conclusion: We conclude that long-read sequencing can improve our ability to
characterize theCYP2C19 locus, help to identify novel haplotypes and that *-allele
tools are a useful asset in phenotype prediction. Ultimately, this approach could
help to better predict an individual’s drug response and improve therapy
outcomes. However, the added value in clinical PGx might currently be limited.
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1 Introduction

One drug does not have the same effect for everyone; inter-individual differences in drug
response can lead to toxicity and drug inefficacy (Weinshilboum and Wang, 2004). A large
part of this variability is caused by genetic variants in genes, called ‘pharmacogenes’, which
are involved in the pharmacokinetic and pharmacodynamic processes occurring as part of
drug metabolism (Scharfe et al., 2017; Tafazoli et al., 2021). Variants in these pharmacogenes
are associated with diverse drug responses. After the discovery that over 97% of the general
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population carries at least one pharmacogenomic (PGx) variant
which can potentially affect drug response (Dunnenberger et al.,
2015), personalized medicine is slowly becoming standard of care
instead of a ‘one size fits all’ approach. This implementation of PGx
in clinical practice to guide treatment decisions is crucial to
maximize the effectiveness of a treatment and minimize harm.

The pharmacogene CYP2C19 is a member of the cytochrome
P450 (CYP) superfamily and is involved in the metabolism of many
commonly prescribed drugs such as clopidogrel and proton-pump-
inhibitors (harmGKB). Moreover, CYP2C19 is highly polymorphic;
50%–65% of the population is characterized with an not ‘normal’
metabolic capacity based on the genetic make-up of their CYP2C19
resulting in the need for dose adjustments (Hicks et al., 2017). This

combination of clinical relevance and high abundance of genetic
variants makes it a highly important pharmacogene which is
frequently tested in hospital laboratories to guide treatment
decisions (Pratt et al., 2018). In order to use genetic information
of CYP2C19, the star (*)-allele nomenclature and accompanying
predicted phenotypes are used (Figure 1). Based on the combination
of genetic variants identified, a haplotype or “*-allele” is assigned to
the maternal and paternal allele according to the *-nomenclature
system (Ingelman-Sundberg et al., 2000; Gaedigk et al., 2018). The
two *-haplotypes are then combined into a diplotype. Based on the
enzyme activity corresponding to the assigned diplotype, this
diplotype is translated into a predicted phenotype (Figure 1).
Different predicted phenotype categories are recognized which

FIGURE 1
Visualization of the process towards predicting a phenotype. Genetic variants of the CYP2C19 gene on the maternal (pink) and paternal (blue) allele
are assigned a haplotype, which combined form a diplotype (purple). This diplotype is translated into a predicted phenotype on which the treatment will
be based.

TABLE 1 Overview of *-allele tools and their specifications. For every *-allele tool selected, the supported input file format(s), the used reference genome, the
prerequisite software and the reference database onwhich the *-allele tool analysis is based are depicted. When ‘WGS’ is stated, these tools assume input files with
WGS data. ‘Tweak’ indicates that an adjustment was necessary before the *-allele tool supported this input file.

Stargazer Aldya PharmCata Cyrius StellarPGX PharmaKUa PharmVIPa

Input format VCF X X (tweak) X X X

BAM X X WGS WGS X

CRAM X WGS WGS

SAM X

Reference Genome GRCh37 X X X X X

GRCh38 X X X X X X

Prerequisite Software Windows X

Linux X X X

MacOS X X X

Java X

DRAGEN X

Webbased X X

Reference database PharmVar X X X

PharmGKB X X X (PharmCat)b

Own X

Other X X (CPIC)b

a*-allele tools assessed in this study.
bThis is based on the tool/database specified.

BAM, binary alignment map; CRAM, Compressed Reference-oriented Alignment Map; SAM, sequence alignment map; VCF, variant call format; WGS, whole genome sequence.
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are used in the dosing guidelines of the Clinical Pharmacogenetics
Implementation Consortium (CPIC) (Caudle et al., 2017) and the
Dutch Pharmacogenetics Working Group (DPWG) (Swen et al.,
2008). For CYP2C19, CPIC defines five different metabolizer types:
Poor Metabolizers (PM), Intermediate Metabolizers (IM), Normal
Metabolizers (NM), Rapid Metabolizers (RM) and Ultra-rapid
Metabolizers (UM). DPWG on the other hand does not use the
RM predicted phenotype. To aid in the interpretation of the high
amount of variants that can be detected with sequencing approaches,
*-allele tools have been developed. There is a great variety in these
bioinformatic tools; each tool is based on a different reference
database and genome, runs on different software and supports
different input file formats (Table 1). Since they all make
different assumptions, the output of each tool may differ. A
detailed analysis of the methods behind each tool, the
performance of each tool and an analysis of their applicability
using long-read sequencing is yet to be performed.

In the *-allele nomenclature, 71 CYP2C19 variants are
currently taken into account, of which only three are
recommended for standard clinical testing by the association
for molecular pathology (Pratt et al., 2021). In routine PGx for
both clinical practice and research purposes, the variants of
interest are generally genotyped with SNV (Single Nucleotide
Variant) arrays (Mukerjee et al., 2018). These arrays directly
interrogate the genomic positions of known variants. However,
in Gnomad a total of 975 variants have been reported in
CYP2C19 so far. The fact that routine PGx uses a limited
number of variants means that they are unable to identify all
variants (including rare and novel variants). Moreover, the
variants that are detected cannot be phased to their allele of
origin. Phasing determines whether variants are located on the
same allele or on opposing alleles (e.g., CYP2C19 *2/*3 (PM) or
CYP2C19 *1/*2+*3 (IM)) which can be of major importance for
enzyme activity. Hence, phasing is expected to improve
haplotype assignment and therefore phenotype prediction
(van der Lee et al., 2022). These two limitations, (novel)
variant detecting and haplotype phasing, are hindering the
ability of SNV arrays to fully characterize pharmacogenes.

To resolve these limitations, improve phenotype prediction and
get a better understanding of genetic make-up, more advanced
technologies are needed. While Next-Generation short read
Sequencing (NGS) can help to identify all variants within the
genes of interest (van der Lee et al., 2020a), it remains difficult to
resolve complex regions and to perform direct (read based)
haplotype phasing with short reads (100–200 bp). However, long-
read sequencing has the ability to overcome the limitations
mentioned above, since it is able to resolve larger regions and
enables us to look into phased haplotypes. Due to the length of
the reads (~5.000 base pairs (bp) for capture based approaches),
variants can be assigned to their allele of origin (Midha et al., 2019).
While single pass accuracy is still limited with Pacific Bioscience
(PacBio, 2023) HiFi sequencing, the circular consensus reads -
which are obtained by combining multiple sequencing passes of
the same molecule—are highly accurate (Wenger et al., 2019). To
date, long-read sequencing for PGx has only been applied in a single
gene setting (Qiao et al., 2016; Borràs et al., 2017; van der Lee, 2021)
or with publicly available data of one individual (van der Lee et al.,
2022). Recently, a long-read sequencing panel using PacBio

technology, which consists of a selection of clinically relevant
pharmacogenes, has been developed at the Leiden University
Medical Center (LUMC).

While the application of long-read sequencing for clinical PGx
might still be too costly and time intensive, due to the rapid decline
in costs it can be expected that long-read sequencing originating
from research applications becomes more abundantly available. This
offers the opportunity to repurpose this data to extract a PGx profile
using all *-allele variants and the phasing information. Hence, it is of
importance to assess the performance of long-read sequencing for
clinical PGx as well as for research. Therefore the aim of this study is
to investigate the benefit of long-read sequencing for both of these
applications, by resolving the CYP2C19 locus, identifying (novel)
variants, and assessing the performance of different *-allele tools.
The knowledge gained from this exploratory study might give a
focus and direction for further PGx research.

2 Methods

2.1 Long-read sequencing panel

48 samples originating from old PGx studies performed at the
clinical pharmacy and toxicology department of the Leiden
University Medical Center (LUMC), were available and
anonymized. These samples were sequenced using the PacBio
long-read sequencing panel developed by the department of
clinical pharmacy and toxicology and the department of human
genetics of the LUMC. This panel includes core PGx genes as well as
genes that were of interest for specific projects at the departments.
For every gene, ~10.000 bp upstream and downstream of the
transcription start and end site, respectively, were included in the
panel. In short, DNA concentration and quality were checked by
using the Qubit Fluorometer and the Qubit dsDNA Broad Range
Assay kit (Invitrogen, Carlsbad, CA) and verified on the Femto Pulse
system (Agilent Technologies, CA, United States). Subsequently, the
DNA was sheared to an average size of ~8 kb using the Diagenode
Megaruptor three and purified using washed AMPure XP beads
(Beckman-Coulter Woerden, Netherlands). End repair, A-tailing
and adapter ligation was performed using 500 ng of sheared DNA
product and the Twist Library Preparation Kit 1 (Twist Bioscience,
CA, United States ) and the PacBio annealed barcoded adapter
(10 μM, desalt-purified (Integrated DNA Technologies (IDT),
Coralville, IA)). After further purification and size selection (3.7x
diluted washed AMPure XP beads), the DNA was amplified using
the Takara LA Taq HotStart kit (TaKaRa Bio United States, Inc.).
The reaction was performed in two reaction volumes (100 μL)
containing: 50–100 ng of DNA, 0.5 μM PacBio universal primer
(/5Phos/gcagtcgaacatgtagctgactcaggtcac (IDT, Coralville, IA)),
0.1 mM of each dNTP, 1x LA PCR buffer, and 0.03 U Takara LA
Taq. The PCR parameters were 2 min at 95°C, followed by six cycles
of 20 s at 95°C, 15 s at 64°C and 10 min at 68°C, and a final extension
of 5 min at 68°C. After amplification the two reaction volumes were
pooled and the product was checked for concentration and quality
with the Qubit Fluorometer and the Femto Pulse system. The
product of eight samples was equimolarly pooled. Next, the
capture was performed using the Twist Hybridization and Wash
Kit (Twist Bioscience, CA, United States) and the Twist Probe
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Custom panels (Twist Bioscience, CA, United States). The pools
were then amplified using the Takara LA Taq HotStart kit in two
reaction volumes (100 μL) each containing: 50 μL captured sample
pool, 0.5 μM PacBio universal primer, 0.2 mM of each dNTP, 1x LA
PCR buffer, and 0.03 U Takara LA Taq. After another step of quality
control with the Qubit Fluorometer and the Femto Pulse system,
sequence libraries were prepared using 500 ng of the captured
pooled samples. The library was sequenced on the Sequel® II
(Pacific Biosciences, CA, United States) on a 8 M SMRT cell at
an on-plate concentration of 80 p.m. with the following
specifications: sequencing primer V4, Sequencing kit 2.0 and
binding kit 2.0 and a 30 h movie time. HiFi CCS (Circular
concensus reads) were obtained for further processing (Wenger
et al., 2019; PacBio, 2023).

2.2 Data preprocessing

The data was preprocessed using the LUMC developed variant
calling pipeline specifically for the PacBio PGx sequencing project
(Redmar van den Berg, 2021). The CCS subreads were
demultiplexed using LIMA (Lima, 2023). Duplicate reads were
marked using pbmarkdup (Pdmarkdup, 2023). Next,
demultiplexed CCS bam files were mapped to the reference
genome (GRCh38) using pbmm2 (Pbmm2, 2023). Thereafter, the
variant calling was performed with GATK4 (GATK, 2023) and
phased using WhatsHap (Martin et al., 2016). Finally, the results
were aggregated and reported with MultiQC (Multiqc, 2023). The
output was reported in both BAM (Binary Alignment Map) and
VCF (Variant Call Format) files for each sample. Samples with less
than 10% of the target bases reaching at least 30X coverage were
excluded from the analysis.

All variants will be described according to Human Genome
Variation Society (HGVS) nomenclature for GRCh38 (den Dunnen
et al., 2016), using genomic positions on chromosome 10 NC_
000010.11 (location of CYP2C19). If more applicable, dbSNP
Reference SNP (RefSNP or rs) numbers are used (Sherry et al.,
2001), as they are widely known and recognized in the PGx field.

2.3 Variant characterization

For variant characterizations, all VCF files were cross-referenced
with a bed file containing the genomic coordinates of the start and end
positions of the included genes to obtain a VCF file specific to the PGx
genes.Moreover, clinically relevant variants were flagged based on their
presence in PharmVar (PharmVar, 2022) or, if the gene was not
available in PharmVar, their presence in the Ubiquitous
pharmacogenomics consortium’s (U-PGx) variant panel (upgx,
2020; van der Wouden et al., 2019). Thereafter, the number of
known variants (variants present in Pharmvar and/or the U-PGx
panel) and novel variants (variants not used in the clinic) identified
per gene were calculated using Excel. In this study, we refer to variants
which are not in current PGx nomenclature as novel variants. For
CYP2C19 all clinically relevant variants were obtained fromPharmVar.

The predicted impact of CYP2C19 variants was assessed using
the Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016)
including SIFT (Kumar et al., 2009) and PolyPhen (Adzhubei et al.,

2010) for missense variants and the Combined Annotation
Dependent Depletion (CADD) score (Rentzsch et al., 2021) was
used to predict the magnitude of the impact of non-synonymous
variants, selecting on CYP2C19 (transcript: ENST00000371321.9).
The ~10.000 bp upstream and downstream regions were also taken
into account during the impact analysis. While in silico algorithms
have a limited accuracy in predicting enzymatic function (80%
accuracy) (Han et al., 2017), we use them here as one of the
tools to explore the potential impact of (novel) variants as no
PGx specific in silico tools are available. The CADD score was
selected as prediction tool to assess what part of the identified
variants is classified as high impact (CADD score >10) and is a
candidate for further functional assessment. It has previously been
shown that, of the non-class specific tools, the CADD score performs
best on pharmacogenes (Han et al., 2017).

2.4 *-Allele calling and phenotype prediction

For every sample the predicted metabolizer type was assigned
based on the identified genetic variants in CYP2C19. To investigate
the performance of *-allele tools on long-read sequencing data and
to study potential differences in underlying assumptions of these
tools, a comparison was made between manual *-allele assignments
and assignments from four different *-allele tools. Manual curation
was used as the ground truth as we could check phasing and variants
manually for all samples, thereby omitting the risk of inaccurate
phasing assumptions. Moreover, the results were used to determine
the predicted phenotypes of the samples according to the CPIC
guidelines (Caudle et al., 2017). To ensure a broad selection, these
four tools were selected based on three criteria: 1) every tool uses
reference genome GRCh38, 2) all tools support VCF as input file and
3) they all require different software to run. For the automatic
processing, four *-allele tools were selected: PharmVIP
(Piriyapongsa et al., 2021), Aldy v3.0 (Numanagić et al., 2018),
PharmaKU (John et al., 2021) and PharmCat 1.8.0 (Sangkuhl et al.,
2020). PharmVIP and PharmaKU were used as described in the
literature (Piriyapongsa et al., 2021) (John et al., 2021). Since they are
both web-based, no installations were necessary. In order to run
Aldy, Ubuntu 20.04.4 was installed inside VirtualBox (6.1), Aldy was
run using the VCF option by changing the default from hg19 to
hg38. PharmCat was run on Java 16.0.2. Since these tools use the
CPIC definition of the metabolizer types, the CPIC guidelines were
also used for the manual assignment. The manual assignment was
performed using the phased VCF files and the PharmVar database of
CYP2C19 (June 2022) (PharmVar, 2022).

Due to limitations in the processing of samples in the PharmVIP
tool, a complete analysis of all samples could unfortunately not be
performed. PharmVIP limits the storage of the results to 10 days and
ten samples at any one time, making it not applicable for clinical
practice and not suitable for this study. Hence, the remaining three
*-allele tools are assessed in more detail and no PharmVIP analyses
are included in the results.

The results of the tool-based analyses were combined into one
file, after which the manual *-allele assignments were added. Based
on this, the accuracy (compared to the manual curation) and ease of
use of the different *-allele tools and added value of phasing were
assessed.
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2.5 Statistical analysis

If not specifically stated, analyses were performed using the
software as described in the tool documentation. Data was processed
with Excel, R version 1.4.1717 and Python 3.9.12. Visualizations
were performed with R version 1.4.1717 and Adobe
Illustrator 25.2.3.

3 Results

3.1 Variant identification

To assess the ability of long-read sequencing to detect (novel)
genetic variants, the number of variants identified per gene was
analyzed. Out of the 48 samples, 11 samples are excluded from the
study due to a lack of coverage (<10% Target Bases 30X)
(Supplementary Figure S1). For the remaining 37 samples, an
average of 84.1% of the target bases reached 30X coverage
(range: 33%–96%). Moreover, the average read length was
5,418 bp (range: 3,980–6,277 bp) and the average haploblock size
7,507 bp (range 4,863–9,806 bp). After this exclusion, 813 unique
CYP2C19 variants can be identified in the entire CYP2C19 region
(including upstream and downstream regions) of which 13 are
present in the current PGx nomenclature. 303 of the 813 variants
are singletons; they are only detected once in our cohort. The same
trend is observed for the other genes in the panel, where many more
variants are identified compared to the number currently used in the
guidelines (Supplementary Table S1). This discrepancy remains

when only looking at the core gene (without taking the flanking
regions into account). For CYP2C19, 683 variants are identified in
the core gene (start to end position of the gene) of which 8 variants
are present in PharmVar. Besides identifying the CYP2C19 variants
in the cohort, the variants were also phased. In total, an average of
76% (11%–100%) of the variants in the CYP2C19 locus could be
phased to their allele of origin in relation to at least one other variant.

Next, we investigated the predicted impact of all 813 variants
using the Combined Annotation Dependent Depletion (CADD)-
score generated by the Ensembl Variant Effect Predictor (VEP).
Based on these CADD-scores, no relationship between the presence
of a variant in the current nomenclature and its CADD-score could
be established (Figure 2A). This lack of association between CADD-
scores was visible for all VEP categories (e.g., missense, splice site,
upstream). In total, only four variants had a CADD score above the
cut-off of 10. The most common clinical deleterious variant in our
cohort (g.94781859G>A, *2) was assigned the highest score (16.4).
The other three variants are not part of *-allele nomenclature (one
synonymous, one missense and one downstream).

All variants found in the cohort that are present in PharmVar
are either upstream (n = 5), intronic (n = 2), synonymous (n = 3) or
missense variants (n = 3) (Figure 2B). For the other variants
identified in the cohort, these numbers were: upstream (n = 27),
intronic (n = 643), synonymous (n = 1) and missense variants (n =
1), the remainder of the variant types is shown in Figure 2B. This
enrichment of variants in the missense category in the clinical group
(3 missense variants of 13 known variants) compared to the novel
group (1 missense variant out of 675 novel variants) can be expected
as the non-coding variants are often not regarded as impactful and

FIGURE 2
Variant impact analysis for identified CYP2C19 variants. The variant impact analysis by VEP, resulted in Combined Annotation Dependent Depletion
(CADD) scores (A, left) and predicted variant effect (B, right), for every identified variant of CYP2C19 in our cohort. (A) Available CADD-scores of all
detected CYP2C19 variants. The blue line marks the cut-off CADD score of 10. (B) Predicted variant effect of all detected CYP2C19 variants. Clinical
variants are based on the PharmVar database.
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may not be included in the guidelines and nomenclature as rapidly
as variants in coding regions are. The four missense variants were
predicted to be not deleterious by SIFT (tolerated) and PolyPhen
(benign). Three of these missense variants are part of the *-alleles
(PharmVar, 2022). The first (g.94775507G>A>) is characteristic for
*11 which is associated with a normal function allele. The second
(g.94842866A>G) is a core variant of multiple *-alleles including
*1 and is not expected to have an impact on enzyme function. The
third missense variant (g.94775165G>C) is not a core variant and
only associated with three minoralleles of *2 (*2.002, *2.010 and
*2.012).

Out of the four missense variants identified in the entire
cohort, three are in the PharmVar database. The fourth missense
variant is not present in PharmVar even though literature
confirmed the potential deleterious effect of this variant
(g.94842860C>T) (Medicine Nlo. rs59734894, 2022;
PharmGKB, 2022) and the CADD score is 10.4. The variant
is reported to be associated with a decreased expression of
CYP2C19 compared to the reference allele, which would lead
to a decreased metabolic capacity of CYP2C19 and subsequent
dose adjustment. The individual carrying this variant was
characterized as a *1/*17, unfortunately due to a decrease in
coverage in intron five for this individual we are unable to
determine if the novel variant (exon 7) is on the same allele
as the *17 variant (upstream) or not.

3.2 Phenotype prediction

The data of the identified CYP2C19 variants was used for a
manual and *-allele tool based *-allele prediction.

3.2.1 Manual
The manual *-allele assignment resulted in an overview of the

haplotype predictions for every sample. The *1/*17 (RM) diplotype
was observed to be the most frequent diplotype in our cohort (35%)
and only eight samples (21.6%) did not have any actionable PGx
variants. Six of the 37 patients (16.2%) were carriers of
CYP2C19*38.003 + g.94781616A>G which is not yet part of the
*-allele nomenclature. All six samples showed 100% phasing
(Figure 3), affirming that g.94781616A>G is indeed present on
the CYP2C19*38 allele. According to PharmVar, the intronic
g.94781616A>G variant is currently only associated with
CYP2C19*3.002 and not present in any other (minor)*-alleles.
This makes it a potential novel (minor)*-allele with a relatively
high frequency.

3.2.2 *-Allele tools
Based on the criteria put (GRCh38 as reference, support of VCF

files and different platforms as their basis), three *-allele tools were
selected; Aldy, PharmaKU and PharmCat. Advantages and
disadvantages of these tools are described in Supplementary
Table S2.

Assignments from Aldy were in agreement with the manually
assigned diplotypes based on major (e.g., *2) and minor alleles (e.g.,
*2.002) for 56.8% of the assignments (n = 21) (Table 2). Due to this
tool’s transparency, we could observe that the Aldy resource file was
not up to date with PharmVar as several *-alleles were not included,
explaining the differences between the manual prediction and the
assessment of Aldy. Moreover, Aldy is the only tool which also
returns minor alleles (PharmaKU and PharmCat only return major
alleles). When only looking at the major alleles, as they are most
commonly used in clinical practice, the prediction by Aldy

FIGURE 3
Percentage of CYP2C19 variants phased to their allele of origin per sample. For every sample (n = 37) the percentage (%) of the variants which could
be phased to their allele of origin was calculated. The blue line displays the average percentage of phased variants for the 37 samples (76%).
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TABLE 2 Overview of haplotype prediction by different *-allele tools. The 37 samples were assessed by different *-allele tools (Aldy, PharmaKU and PharmCat) and
manually. The predicted haplotypes are depicted for each sample.

Samples Manual, *-alleles (predicted
phenotype)

Aldy, *-alleles (predicted
phenotype)

PharmaKU, *-alleles (predicted
phenotype)

PharmCATb

1 *1.002/a38.003 + 94781616A>G (NM) *1.001 + rs17885098/*1.005 (NM) *1/*1 (NM) *1/*5

2 *1.002/*38.003 + 94781616A>G 6 (NM) *1.001 + rs17885098/*1.005 (NM) *1/*1 (NM) *1/*5

3 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

4 *1.002/b17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

5 *1.002 +94842865C>T/
*2.002–94842865C>T (IM)

*1.002/*2.002 (IM) *1/*2 (IM) *1/*2

6 *1.002/*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

7 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

8 *1.002/b17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

9 *1.002/b17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

10 *1.002b*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

11 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

12 *1.002b*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

13 *1.002/*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

14 *1.002/*1.006 (NM) *1.002/*1.006 (NM) *1/*1 (NM) *1/*1

15 *17.001/*38.003 + 94781616A>G (RM) *1.001/*17.001 (RM) *1/*17 (RM) *4/*38 (*17/
*38)a

16 *1.002b*2.011 + 94775507G>A (IM) *2.001/*11.001 + rs4986894 (IM) *1/*2 (IM) *1/*2

17 *1.002/*2.012 (IM) *1.002/*2.002 (IM) *1/*2 (IM) *1/*2

18 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

19 *1.002b*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

20 *1.002b*38.003 + 94781616A>G (NM) *1.001 + rs17885098/*1.005 (NM) *1/*1 (NM) *1/*5

21 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

22 *1.002b*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

23 *1.002b*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

24 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

25 *1.002b*2.011 (IM) *1.002 + rs4986894/*2.001 (IM) *1/*2 (IM) *1/*2

26 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

27 *1.002b*2.011 (IM) *1.002 + rs4986894/*2.001 (IM) *1/*2 (IM) *1/*2

28 *1.002/*17.001 (RM) *1.002/*17.001 (RM) *1/*17 (RM) *1/*4 (*1/*17)a

29 *1.002b*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

30 *1.002/*2.011 (IM) *1.002 + rs4986894/*2.001 (IM) *1/*2 (IM) *1/*2

31 *1.002/*2.011 (IM) *1.002 + rs4986894/*2.001 (IM) *1/*2 (IM) *1/*2

32 *1.002/*2.011 (IM) *1.002 + rs4986894/*2.001 (IM) *1/*2 (IM) *1/*2

33 *1.002/*1.002 (NM) *1.002/*1.002 (NM) *1/*1 (NM) *1/*1

34 *1.002/*2.011 (IM) *1.002 + rs4986894/*2.001 (IM) *1/*2 (IM) *1/*2

35 *1.002/*38.003 + 94781616A>G (NM) *1.001 + rs17885098/*1.005 (NM) *1/*1 (NM) *1/*5

36 *2.011/*17.001 (IM) *2.001/*17.001 + rs4986894 (IM) *2/*17 (IM) *2/*4 (*2/*17)a

(Continued on following page)
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overlapped for 81.1% with our manual assignment (n = 30).
Unfortunately, the Aldy output does not include predicted
phenotypes or drug guidelines.

PharmaKU does include phenotype predictions and
guidelines and predicted 83.8% of the major diplotype calls
accurately compared to the manual analysis (n = 31)
(Table 2). The simple upload screen makes PharmaKU an
easy and clear tool to use. Unfortunately, the program behind
PharmaKU is a black box compared to the transparent script of
Aldy as the tool is fully webbased. After uploading the VCF file of
interest, the output file starts downloading automatically.
Moreover, the analysis only includes major *-alleles; minor
alleles are not taken into account.

The final *-allele tool tested was PharmCat. Since this tool
reports all possible haplotypes for a sample, with only 34 variants
as reference database, the prediction accuracy was rather poor
compared to the manual prediction (45.9% overlap, n = 17)
when selecting the first reported diplotype (Table 2). This is due
to the software’s algorithm which assumes any genomic positions
not present in the VCF file to be missing and not wildtype. With
background knowledge or a prior manual assessment, the accurate
prediction was frequently present in the output list (only not as the
first *-allele assignment) increasing the accuracy to 86.5% compared
to the manual assignment. Similar to PharmaKU, the output only
includes core *-alleles, but it does include drug guidelines and
hyperlinks to literature with more information.

The high degree of phasing in these samples was shown to be of
importance in assigning the CYP2C19 haplotypes for multiple
samples (e.g., sample 25 and sample 27). These samples were
manually assigned with a CYP2C19*1.002/*2.011 diplotype.
However, when using *-allele tool Aldy, these samples were
predicted to be CYP2C19*1.002 + rs4986894/*2.001
(Supplementary Figure S2). Rs4986894 corresponds to
g.94762608T>C, which is the variant responsible for the
distinction between CYP2C19*2.001 and CYP2C19*2.011;
CYP2C19*2.001 + rs4986894 is CYP2C19*2.011. Due to the 100%
phasing in those samples (Figure 3), it can be concluded with
certainty that the rs4986894 is present on the CYP2C19*2 allele.
Hence, the correct haplotype would be CYP2C19*1.002/*2.011.
Other tools (PharmCat and PharmaKU) both assigned *1/*2 as
predicted haplotype to these samples, as these tools do not use minor
alleles the discrepancy was not seen there).

Overall, 35% of the individuals were regarded as normal
metabolizers based on the manual assignments. A further 27%
was IM and 38% was classified as RM. No individuals were
classified as PM or UM. PharmCat phenotypes were not assigned
due to the ambiguity in the genotyping as described above. For the

remaining tools there was no discrepancy on a phenotype level
(Table 2).

4 Discussion

In current routine PGx, phenotype predictions are most
commonly based on SNV array data. Despite the advantages of
this method, such as rapid turnaround times and a straightforward
interpretation, it also has limitations; it is not possible to detect all
variants and direct (read based) phasing cannot be performed. In the
present study, we assessed the performance of long-read sequencing
and *-allele tools for the characterization of CYP2C19. We showed
that with long-read sequencing, novel PGx variants can be identified
and that the majority (on average 76% for the CYP2C19 locus) of
these variants can be phased to their allele of origin. Moreover, we
have been able to identify a potentially impactful variant currently
not used in PGx nomenclature as well as a novel minor allele of
CYP2C19*38. Finally, the majority of the assessed *-allele tools result
in accurate predicted phenotype assignments while the diplotypes
did differ between the different tools. These findings show the
benefits and potential of applying long-read sequencing in PGx
for CYP2C19 in a research setting and provide a glimpse into the
future of clinical PGx.

Based on the long-read sequencing data, a missense variant
(g.94842860C>T, T = 0.00013 in Caucasians (Medicine Nlo.
rs59734894, 2022) in CYP2C19 could be identified which,
according to literature, decreases CYP2C19 expression but is not
(yet) included in the current PGx databases. Since the assigned
diplotype of the patient carrying g.94842860C>T is *1/*17 (RM),
which is associated with a higher activity of CYP2C19, carrying this
missense mutation might have major consequences. It is possible
that carrying this mutation reverses the higher enzyme activity due
to CYP2C19*17, making this patient a normal or even intermediate
metabolizer to whom different drug dosages apply than the
recommended dose for a rapid metabolizer. Hence, this variant
warrants further study and should, if previous findings are
confirmed, be added to the PGx nomenclature. The same holds
true for other variants identified. For example, splice site variants
can have a high impact since they might result in aberrant proteins
(Riolo et al., 2021) and a non-functional CYP2C19 enzyme.
Intriguingly, none of the splice site variants detected in CYP2C19
(n = 2) are present in the current PGx databases. One of these
variants (g.94781806A>G) is located in intron four on the junction
with exon five and the other (94852716A>G) in intron eight on the
junction with exon 9 (Kent et al., 2002). No literature describing the
potential impact of the variants could be found and they were

TABLE 2 (Continued) Overview of haplotype prediction by different *-allele tools. The 37 samples were assessed by different *-allele tools (Aldy, PharmaKU and
PharmCat) and manually. The predicted haplotypes are depicted for each sample.

Samples Manual, *-alleles (predicted
phenotype)

Aldy, *-alleles (predicted
phenotype)

PharmaKU, *-alleles (predicted
phenotype)

PharmCATb

37 *1.002b*38.003 + 94781616A>G (NM) *1.001 + rs17885098/*1.005 (NM) *1/*1 (NM) *1/*5

aThe haploype predictions depicted are the first predictions in the output list. The haplotype prediction between brackets is added, when the prediction corresponding to the manual assessment,

was present in the list but not as first output.
bNo phenoypes are assigned for PharmCat due to ambiguity in haplotype assignments.

NM, normal metabolizer; IM, intermediate metabolizer; RM, rapid metabolizer.
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assigned CADD scores below 10. Moreover, only a few specific
intron variants are recorded in PharmVar. The emphasis lies on
variants affecting the coding sequence, even though it has been
proven that intronic variants can potentially create or disrupt a
splice site, affecting the enzyme activity (Ingelman-Sundberg and
Sim, 2010).

Using the CADD scores to identify potentially deleterious
variants resulted in four variants with a CADD score of 10 or
higher. One of these variants was a well-known clinical variant (the
g.94781859G>A, *2), another was confirmed by literature to be
potentially deleterious. The remaining two (one synonymous and
one downstream) have an unknown impact. It should be kept in
mind that many pharmacovariants have small effects (decreased
function) which do not result in completely inactive or absent
protein. These smaller effects do add up in a clinical setting but
are difficult to predict with available in silico tools. Hence, high
CADD scores might be useful to identify potential high impact
variants but on the other hand a low CADD score does not mean
that the variant has no impact on enzyme function.

Besides applying long-read sequencing for variant identification,
it also enabled us to phase the identified variants back to their allele
of origin using read backed phasing with WhatsHap. The variability
in the phasing percentages can have two major causes. First, the read
length might not have been sufficient due to DNA fragmentation,
resulting in limited coverage. As we selected samples based on
overall quality this is not likely to be the major cause. On the
other hand, this fragmentation and lack of coverage can be the cause
of the 11 samples that did not meet our criteria. The second reason
for low phasing is a possible lack of heterozygous variants; to phase
two reads together, forming a phasing haploblock, at least one
heterozygous variants is needed.

Moreover, it is important to keep in mind that read backed
phasing differs from statistical phasing, resulting in possible
discrepancies between the *-allele assignments. This was seen in
our study for multiple samples, where the manual assignment based
on read backed phased VCF and BAM files was CYP2C19 *1.002/
*2.011 while *-allele tool Aldy, using statistical phasing, assigned
CYP2C19 *1.002 + rs4986894/*2.001. Conventionally, haplotypes
are assigned using statistical phasing based on population statistics
which might not be accurate for the individual. For those haplotype
assignments, linkage disequilibrium (LD) is used. However, it is
known that some variants can occur separately despite their strong
linkage disequilibrium (van der Lee et al., 2020b) and the statistical
phasing depends on the LD-threshold that is set (e.g., r2 > 0.8 or r2 >
0.85), which results in differences between the predictions. Read
backed phasing, as with long-reads, is more accurate for individual
patients.

Finally, the long-read sequencing data was used to predict the
phenotype of every sample and to explore the performance of
different *-allele tools. For six out of the 37 patients, the manual
*-allele assignment identified a CYP2C19*38.003 haplotype.
However, in all six cases, the clinical variant g.94781616A>G
(rs7088784) was found on the same allele as CYP2C19*38.003,
confirmed by closer analysis of the BAM files. This variant is
currently only associated with CYP2C19*3.002 (PharmVar, 2022).
In combination with the high frequency of this occurring in our
cohort (16%), this might point towards a novel suballele of
CYP2C19*38. This new minor allele would include all the

variants of CYP2C19*38.003 plus g.94781616A>G, the shared
variant with CYP2C19*3.002. It should be noted that
g.94781616A>G is not a core SNV of CYP2C19*3, nor is it a
variant with a high impact; according to PharmVar the variant
impact is ‘No Change’. This would point towards a new minor allele
without a clinical impact.

Interestingly, the *-allele assignment by *-allele tools did not
show g.94781616A>G in their output at all. As it is only a minor
mutation of CYP2C19*3.002, it is only reported if its parent allele is
present. The absence of g.94781616A>G in the *-allele tool output
illustrates how the *-allele tools work; they return the diplotype
prediction in whichmost variants are accounted for and generally do
not mention all additional variants observed, making the
identification of possible new *-alleles by using *-allele tools
challenging. Moreover, *-allele tools do not always agree as 45%
of the calls in this study were the same in all tools based on the major
alleles and the first diplotype presented by PharmCat. After
manually checking the PharmCat diplotypes this agreement
increased to 81%. This is largely caused by different assumptions
made by the tools and the various (updates of) reference databases
they use. For example, for one individual sample PharmCat
predicted *17/*38, while *17/*1.001 was predicted by Aldy. This
discrepancy can be explained by the fact that *38 is not included in
the Aldy3 database. After adding *38 to Aldy’s database, all
*38 alleles were detected and predicted accurately. On a
phenotype level, there were no discrepancies between manual
assignments, Aldy and PharmaKU indicating that the difference
between the tools for our cohort were minor and not of clinical
influence. However, care should still be taken as the difference could
be of clinical relevance when they concern rare variants which are
part of *-alleles nomenclature but maybe not yet present in all the
tools algorithms. Furthermore, the most applicable tool will depend
on the skills and interests of the user. For a physician, a
straightforward tool with an accurate prediction and clear output
would be ideal. Hence, physicians might favor PharmaKU. However,
for the researcher with a grasp of bioinformatics and the urge to
understand every detail, the more transparent and adaptable *-allele
tool Aldy would be the first choice. Lastly, it is important to mention
that most *-allele tools are dynamic tools and, as a result, are subject
to change and updates.

While we were able to identify interesting variants and
haplotypes, the sample size of this cohort is small. An analysis of
more samples would yield more information and increase the power
of our study. However, despite the small cohort of this study, we
already identified novel variants and a novel minor allele. The fact
that this is possible with only a limited number of samples
strengthens our analysis; repeating this study for a larger cohort
will presumably result in even more discoveries. Hence, it is
anticipated that, by using long-read sequencing, new clinically
relevant PGx variants and haplotypes will be discovered in the
near future.

It is important to note the difference in requirements between
clinical PGx and PGx in a research setting. In a clinical setting, quick
results of well-known variants are needed to guide drug treatment.
Although long-read sequencing is decreasing rapidly in costs and in
turn-around time, it is not yet close to the SNP assays used in clinical
practice. Therefore, the role of long-read sequencing in current PGx
will be limited to those cases where conventional PGx cannot
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provide an answer or to cases where sequencing data is available and
PGx can be extracted as a bonus. Nonetheless, as pre-emptive
genotyping is slowly being adapted, the longer turn-around time
of sequencing based PGx will become less of an issue and the added
data that can be obtained will be a major benefit. Therefore, we
envision that in the near future long-read sequencing based clinical
PGx will become more common.

Non-etheless, one major limitation does remain: the impact of
novel variants and haplotypes. While more and more variants are
identified in sequencing based studies, the clinical impact of these
variants is still unknown. Meanwhile, most clinical studies focus only
on well-known and established variants with the use of SNP panels.
The clinical data collected in these studies is of crucial importance to
assign functional effects to novel variants and haplotypes. Efforts
should be made to integrate these type of studies by adding
sequencing to clinical PGx studies and clinical data to sequencing
studies when possible. The same holds true for a clinical setting, when
sequencing data is used for clinical PGx the outcomes of the patients
treatment can be used to inform researchers and clinicians on
potential effects of novel variants. Vice versa, sequencing data can
help to identify novel and potentially deleterious variants whichmight
cause an unexpected drug response.

The establishment of more cohorts with clinical data and
advanced genetic data also offers the opportunity to develop
better phenotype prediction tools. *-Allele tools offer the
opportunity to assign haplotypes known within the current
nomenclature. However, the current categorical system is unable
to account for small individual variant effects and relies on
classifying an individual into limited phenotype categories.
Previous studies have shown that using more advanced
phenotyping methods which predict drug response on a
continuous scale substantially improves the explained variability
of the drug metabolizing enzyme CYP2D6 (McInnes et al., 2020; van
der Lee et al., 2021). For CYP2C19, similar models could be
developed based on (long-read) sequencing data and clinical
outcomes. However, datasets which have both advanced genetic
data and clinical outcomes are limited.

In conclusion, our study highlights the value of long-read
sequencing for PGx in regard to accurate phenotype prediction.
It shines a light on the possible role that long-read sequencing can
play, together with *-allele tools, in future clinical PGx and in
research. This study only shows the tip of the iceberg and
highlights that a new focus on computational tools and big data
is required to ultimately improve our ability to predict drug
metabolism and thereby drug outcomes for the individual patient.
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