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Background: A steep increase in new drug applications has increased the overhead
of writing technical documents such as medication guides. Natural language
processing can contribute to reducing this burden.

Objective: To generate medication guides from texts that relate to prescription drug
labeling information.

Materials and Methods: We collected official drug label information from the
DailyMed website. We focused on drug labels containing medication guide
sections to train and test our model. To construct our training dataset, we
aligned “source” text from the document with similar “target” text from the
medication guide using three families of alignment techniques: global, manual,
and heuristic alignment. The resulting source-target pairs were provided as input
to a Pointer Generator Network, an abstractive text summarization model.

Results: Global alignment produced the lowest ROUGE scores and relatively poor
qualitative results, as running themodel frequently resulted inmode collapse. Manual
alignment also resulted in mode collapse, albeit higher ROUGE scores than global
alignment. Within the family of heuristic alignment approaches, we compared
different methods and found BM25-based alignments to produce significantly
better summaries (at least 6.8 ROUGE points above the other techniques). This
alignment surpassed both the global and manual alignments in terms of ROUGE and
qualitative scoring.

Conclusion: The results of this study indicate that a heuristic approach to generating
inputs for an abstractive summarization model increased ROUGE scores, compared
to a global ormanual approachwhen automatically generating biomedical text. Such
methods hold the potential to significantly reduce the manual labor burden in
medical writing and related disciplines.
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1 Introduction

The increased discovery and development rate of novel drugs has led to a steep increase in
new drug applications submitted to health authorities. This has resulted in an increased volume
of medical writing-related technical documents such as protocols, clinical study reports,
summaries of drug efficacy and safety, clinical, and non-clinical summaries of
pharmacology (ICH, 2022). These technical documents are the source of information for
other types of documents such as plain-language summaries and medication guides written for
patients, and prescription drug labeling, typically written for healthcare professionals.
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Structured Product Labeling (SPL) is a Health Level Seven
International standard which defines the content of human
prescription drug labeling in an XML format. The “drug labeling”
includes all published material accompanying a drug, such as the
Prescribing Information, a technical document containing detailed
information needed to use the drug safely and effectively. As of Release
four of the SPL standard, 22,000 United States Food Drug
Administration (FDA) informational product inserts have been
encoded according to the standard (FDA, 2022).

SPL documents contain both the content of labeling (i.e., all text,
tables and figures) for a product along with additional machine
readable information (i.e., drug listing data elements). Drug listing
data elements include information about the product (i.e., proprietary
and non-proprietary names, ingredients, ingredient strengths, dosage
forms, routes of administration, appearance, DEA schedule) and the
packaging (i.e., package quantity and type). Large scale publicly
accessible databases of SPL data are available, such as Dailymed
(FDA, 2019).

Within SPL data, the medication guide is an electronic page or
paper handout that accompanies the prescribing information (FDA,
2020). The medication guide does not contain any new information
but instead represents a condensed summary of the most important
information from all sections of the SPL. The medication guide is
recommended by the FDA for certain products in order to provide
information regarding known side effects of the product, as well as
instructions for safe and effective storage and use. While there are
exceptions, a typical medication guide presents information in
sections, each headed by a guiding question. Six questions are used
most frequently: “What is . . . ?“, “What is the most important
information I should know about . . . ?“, “Who should not take . . .

?“, “How should I take . . . ?“, “What should I avoid while taking . . . ?“,
“What are the possible side effects of . . . ?”

Medication guides aremanually compiled by expertmedical writers.
Given the considerable length of drug labels, as well as the necessary
quality checks, developing these documents is a time-consuming and
costly process. An alternative to this approach is to use natural language
processing techniques, such as text summarization, to automatically
generate medication guides from SPL information.

We conducted a series of studies to test the hypothesis that text can
be autogenerated from predefined source documents. Specifically, we
present the application of a Pointer-Generator Network (PGN)
summarization model to create medication guides from
prescription drug labeling information. We compared the
effectiveness of various input data selection and model training
schemes. We choose to focus on autogenerating medication
guides for two main reasons. First, there are thousands of
medication guides publicly available. Second, the published
medication guides represented an appropriate control for text
generated by the algorithm.

2 Methods

2.1 Data

The dataset was collected from the DailyMed website. This article
used the September 2019 edition, providing the official drug labels in
XML format. Out of the total 5,357 prescription drug labels 27% of
files (1437) provided medication guides. For the remainder of this

study we will focus only on these drugs with medication guides
present. Medication guides varied in completeness and did not
always address all six guiding questions. Table 1 lists the frequency
of each question in the dataset alongside the average number of words
dedicated to answering the respective question.

2.2 Model

Text summarization can be divided into two broad categories:
extractive (Nallapati et al., 2017; Zhou et al., 2018; Liu and Lapata,
2019) and abstractive (Rush et al., 2015; Nallapati et al., 2016; See et al.,
2017). Given a source document, the goal is to produce a target
summary that contains the relevant information in a semantically-
condensed form, i.e., using fewer words. Extractive summarization
methods produce summaries by selecting and concatenating
subsequences of the initial document. For example, a word-level
extractive summarization model might summarize the sentence “I
am going to take Paracetamol tablets after dinner to reduce side effects
of the COVID-19 vaccine, which are muscle aches and chills.” into “I
am going to take Paracetamol tablets to reduce muscle aches and
chills.” No novel n-grams are produced by the model, as it merely
combines pieces of the original text. Similarly, a sentence-level
extractive summarization model might summarize a document by
selecting and concatenating the introductory sentences of each
paragraph.

Abstractive summarization models, on the other hand, create
summaries by producing novel n-grams that do not necessarily
exist in the source text. The added flexibility can provide richer
and more cohesive summaries, tying concepts together in ways that
the source text does not. Using the previous word-level example, a
strong abstractive summarization model could produce the summary
“I will take Paracetamol tablets to reduce side effects of the COVID-19
vaccine”, even though “will” is not in the initial text.

Recurrent neural networks and attentional networks both provide
strong frameworks to process sequential data via encoder-decoder
architectures. Basic Seq2Seq models, which largely follow the encoder-
decoder paradigm, have no built-in mechanism for ensuring that the
generated information is factually or conceptually correct. For
example, an abstractive summarization model might erroneously
produce a summary that states “I am going to take two
Paracetamol tablets”, when in fact that piece of information was
never specified in the source text.

The PGN (illustrated in Figure 1) aims to solve this information
accuracy problem by introducing a pointer mechanism. This allows
the model to select and copy tokens from an input text, improving
factuality (See et al., 2017).

Nevertheless, long document summarization is still an open
challenge due to memory constraints. Particularly notable is the
attention mechanism in the Transformer architecture, which
requires O (n2) attention computations and parameters for an
n-token document. In addition, the pointer mechanism requires
another O (n2) computations and parameters (See et al., 2017).

We evaluated three training variants to learn to generate
medication guides. This includes a one-shot approach using the
entire document and entire medication guide, a manual alignment
using domain knowledge, and heuristic alignment using a number of
similarity approximations (see Figure 2). Table 2 visually illustrates
these variants. All experiments were performed on 16GB Quadro RTX
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5000 GPUs. Model hyperparameters and other reproducibility
information are listed in Supplementary Material.

2.2.1 Global alignment
The global approach (Figure 2A) takes the entire drug label (without

the medication guide) as input and attempts to generate the full
medication guide in a single generation step. This baseline model, due
to the O (n2) complexity of the attention mechanism, quickly reaches a
memory bottleneck when scaled to fit longer documents such as drug
labels. For relatively long documents, standard GPUs may become
insufficient. In these cases, we cap the size of the input document to
ensure no memory overflow occurs. Due to this loss of information, the
quality of generated medication guides is expected to suffer.

2.2.2 Manual alignment
Using domain knowledge, we manually selected sections of the

input drug label corresponding to medication guide questions
(Figure 2B). Instead of generating the entire medication guide at
once, here we separately generate answers to each guiding question

based on the manually identified drug label sections. This condition
simulates an idealized setting and represents a headroom analysis of
what an effective alignment can achieve.

2.2.3 Heuristic alignment
As a more realistic divide and conquer condition, we split

the input document into smaller subsections following the
existing section dividers and again generate answers to each
medication guide question separately (Figure 2C). Instead of
relying on manual alignment, we explored a number of text
similarity heuristics to model the similarity of drug label
sections (input) to medication guide answers (output). The
single subsection with the highest similarity is used for
training, and the remainder of the label discarded. Like manual
alignment, this allows us to generate smaller input documents that
contain key information for summarization. The generalized
heuristic alignment process is formalized in Appendix B.
We explored five text similarity heuristics for automatic input/
output alignment: (1) TF-IDF ‘best match’, (2) TF-IDF ‘average

TABLE 1 Frequency of guiding questions in the dataset.

Question Frequency (out of 1437) Answer length (in words)

“What is the most important information I should know about . . . ?” 87% (1248) 818.34

“What is . . . ?” 89% (1278) 828.02

“Who should not take . . . ?” 63% (910) 1019.53

“How should I take . . . ?” 70% (1002) 1081.59

“What should I avoid while taking . . . ?” 52% (752) 1343.50

“What are the possible side effects of . . . ?” 77% (1111) 541.55

FIGURE 1
Pointer-generator network.
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FIGURE 2
Alignment algorithms. (A) is Global alignment, (B) is Manual alignment, (C) is Heuristic alignment.

TABLE 2 Comparison of training variants. *: When enough memory is available.

Memory complexity Covers full document? Global attention? Generalizable?

Global O (n2) Yes* Yes Yes

Manual O (n) No No No

Heuristic O (n) Yes No Yes
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TABLE 3 Test set performance.

Method F1 ROUGE-1 F1 ROUGE-2 F1 ROUGE-L

Global 0.462 0.441 0.43

Manual “Contraindications” 0.63 0.56 0.617

Manual “Interactions” 0.57 0.44 0.55

Manual “Warnings” 0.33 0.21 0.319

LSH Jaccard 50.50 47.20 48.20

BERT 52.0 43.90 48.50

TF-IDF ‘best match’ 58.90 52.26 55.0

TF-IDF ‘average match’ 60.20 54.20 56.70

TF-IDF ‘median match’ 67.0 64.0 64.0

TABLE 4 Manual alignment examples.

Section Source text References summary Generated summary

Contra-
indications

Potassium chloride is contraindicated in patients on
triamterene and amiloride

Concomitant use with triamterene and
amiloride (4,7.1)

Concomitant use with triamterene or amiloride (.4).
Concomitant use with triamterene or amiloride (.4).
Known hypersensitivity or amiloride (4). Patients
with in patients with triamterene or amiloride

Interactions Concomitant administration with gemfibrozil, a
strong inhibitor of CYP2C8, doubled exposure to
selexipag and increased exposure to the active
metabolite by approximately 11-fold. Concomitant
administration of UPTRAVI with strong inhibitors
of CYP2C8 (e.g., gemfibrozil) is contraindicated [see
Contraindications (4) and Clinical Pharmacology
(12.3)]. Concomitant administration of UPTRAVI
with clopidogrel, a moderate inhibitor of CYP2C8,
had no relevant effect on the exposure to selexipag
and increased the exposure to the active metabolite
by approximately 2.7-fold [see Clinical
Pharmacology (12.3)]. Reduce the dosing of
UPTRAVI to once daily in patients on a moderate
CYP2C8 inhibitor [see Dosage and Administration
(2.4)]. Concomitant administration with an inducer
of CYP2C8 and UGT 1A3 and 2B7 enzymes
(rifampin) halved exposure to the active metabolite.
Increase dose up to twice of UPTRAVI when co-
administered with rifampin. Reduce UPTRAVI
when rifampin is stopped [see Clinical
Pharmacology (12.3)]

Moderate cyp2c8 inhibitors (e.g., clopidogrel,
deferasirox and teriflunomide) increase exposure to
the active metabolite of uptravi. reduce the dosing of
uptravi to once daily (2.4,7.1,12.3).
CYP2C8 inducers (e.g., rifampin) decrease exposure
to the active metabolite. Increase up to twice the
dose of uptravi (7.2, 12.3)

CYP2C8 inhibitors (7.1). Concomitant use of
clopidogrel, a cyp2c8, doubled exposure with
CYP2C8 (7.3). Moderate CYP2C8 (e.g.): reduced
moderate CYP2C8 (rifampin): increased risk of
approximately CYP2C8 (7.3)

Warnings Excessive diuresis may cause potentially
symptomatic dehydration, blood volume reduction
and hypotension and worsening renal function,
including acute renal failure particularly in salt-
depleted patients or those taking renin-angiotensin
aldosterone inhibitors. Worsening of renal function
can also occur with concomitant use of nephrotoxic
drugs (e.g., aminoglycosides, cisplatin, and
NSAIDs). Monitor volume status and renal function
periodically. Torsemide can cause potentially
symptomatic hypokalemia, hyponatremia,
hypomagnesemia, hypocalcemia, and
hypochloremic alkalosis. Treatment with torsemide
can cause an increase in blood glucose levels and
hyperglycemia. Asymptomatic hyperuricemia can
occur and gout may rarely be precipitated. Monitor
serum electrolytes and blood glucose periodically.
Tinnitus and hearing loss (usually reversible) have
been observed with loop diuretics, including
torsemide. Higher than recommended doses, severe
renal impairment, and hypoproteinemia, appear to
increase the risk of ototoxicity

Hypotension and worsening renal function: monitor
volume status and renal function periodically (5.1).
Electrolyte and metabolic abnormalities: monitor
serum electrolytes and blood glucose periodically.
(5.2).Ototoxicity (5.3, 7.6)

Symptomatic volume reduction reduction and
hypotension, acute renal failure particularly in salt-
depleted salt-depleted serum electrolytes of
nephrotoxic drugs. (5.1). Hyperglycemia and renal
impairment: blood serum electrolytes and blood
glucose of nephrotoxic drugs (5.2)
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match’, (3) TF-IDF ‘median match’, (4) LSH + Jaccard Similarity, (5)
BERT. The technical details of these similarity metrics are discussed
in Appendix C.

3 Results

The dataset was split into 60% training data, 20% testing, and 20%
validation sets. The following results are from model runs on the test
sets. Table 3 reports model performance in terms of F1 ROUGE-1,
F1 ROUGE-2, and F1 ROUGE-L scores between generated and
reference medication guides.

3.1 Global alignment

As expected, one-shot summarization of entire medication guides
produced both quantitatively and qualitatively poor results. This is
likely due to the model’s inability to attend over the entire input drug
label, and thus only capturing a limited amount of the text to use for
summarization. Furthermore, unlike other methods, there is no
guarantee that the available (pre-cutoff) tokens contain salient
information for producing summaries.

Qualitative inspection showed frequent mode collapse and often
contained extremely repetitive or vague summaries. For example, the
following summary or a highly similar version was produced for
21 input documents in a sample of 100:

“The risk of getting an ulcer or bleeding increases with: past
history of stomach ulcers, or stomach or intestinal bleeding with use of
NSAIDs taking medicines called corticosteroids, anticoagulants,
SSRIs, or SNRIs increasing doses of NSAIDs longer use of NSAIDs
smoking drinking alcohol older age poor health advanced liver disease
bleeding problems past history of stomach ulcers, or stomach or
intestinal bleeding with use of NSAIDs taking medicines called
corticosteroids, anticoagulants, SSRIs, or SNRIs increasing doses of
NSAIDs longer use of NSAIDs smoking drinking alcohol older age
poor health advanced liver disease bleeding problems.”

This summary, while producing a decent ROUGE score for many
documents, is rather unspecific to any drug and lacks the proper
structure of a medication guide.

3.2 Manual alignment

We compared manually selected input pairings from three different
sections (“Contraindications”, “Interactions”, and “Warnings”). The
manually aligned “Contraindications” section demonstrated the best
performance overall, with higher ROUGE-1, ROUGE-2, and ROUGE-L
scores than the global or any of the othermanually aligned sections by at
least six ROUGE points (Table 3). However, experiments for all three
sections resulted in mode collapse, and qualitatively the generated
summaries were consistently poor (Table 4). The model seemed to
underperform for “Warnings” in particular, and we suspect this is
because the source text tended to be significantly longer in this section.

TABLE 5 Heuristic alignment examples.

Example References text Generated text

Example 1 Take lamotrigine tablets (chewable, dispersible) exactly as prescribed. Your
healthcare provider may change your dose. Do not change your dose without
talking to your healthcare provider. Do not stop taking lamotrigine tablets
(chewable, dispersible) without talking to your healthcare provider. Stopping
lamotrigine tablets (chewable, dispersible) suddenly may cause serious problems.
For example, if you have epilepsy and you stop taking lamotrigine tablets
(chewable, dispersible) suddenly, you may have seizures that do not stop. Talk
with your healthcare provider about how to stop lamotrigine tablets (chewable,
dispersible) slowly. Do not take 2 doses at the same time. If you take too much
lamotrigine, call your healthcare provider or your local poison control center or
go to the nearest hospital emergency room right away. You may not feel the full
effect of lamotrigine tablets (chewable, dispersible) for several weeks. If you have
epilepsy, tell your healthcare provider if your seizures get worse or if you have any
new types of seizures. Lamotrigine tablets (chewable, dispersible) may be
swallowed whole, chewed, or mixed in water or fruit juice mixed with water. If the
tablets are chewed, drink a small amount of water or fruit juice mixed with water
to help in swallowing. To break up lamotrigine tablets (chewable, dispersible), add
the tablets to a small amount of liquid (1 teaspoon, or enough to cover the
medicine) in a glass or spoon. Wait at least 1 min or until the tablets are
completely broken up, mix the solution together, and take the whole amount right
away

Take lamotrigine tablets (chewable, dispersible) exactly as prescribed. Your
healthcare provider may change your dose. Do not change your dose without
talking to your healthcare provider. Do not stop taking lamotrigine tablets
without talking to your healthcare provider. Stopping lamotrigine tablets
suddenly may cause serious problems. For example, if you have epilepsy and you
stop taking lamotrigine tablets suddenly, you may have seizures that do not
stop. Talk with your healthcare provider about how to stop lamotrigine tablets
slowly

Example 2 Do not stop taking carbamazepine without first talking to your healthcare
provider. Stopping carbamazepine suddenly can cause serious problems.
Stopping seizure medicine suddenly in a patient who has epilepsy may cause
seizures that will not stop (status epilepticus). Take carbamazepine exactly as
prescribed. Your healthcare provider will tell you how much carbamazepine to
take. Your healthcare provider may change your dose. Do not change your dose of
carbamazepine without talking to your healthcare provider. Take carbamazepine
with food. Carbamazepine extended - release tablets: do not crush, chew, or break
carbamazepine extended - release tablets. Tell your healthcare provider if you can
not swallow carbamazepine extended - release tablets whole. Carbamazepine oral
suspension: shake the bottle well each time before use. Do not take carbamazepine
oral suspension at the same time you take other liquid medicines. If you take too
much carbamazepine, call your healthcare provider or local poison control center
right away

Do not stop taking carbamazepine without first talking to your healthcare
provider. Stopping carbamazepine suddenly can cause serious problems.
Stopping seizure medicine suddenly in a patient who has epilepsy may cause
seizures that will not stop (status epilepticus). Take carbamazepine exactly as
prescribed. Your healthcare provider will tell you how much carbamazepine to
take. Your healthcare provider may change your dose. Do not change your dose
of carbamazepine without talking to your healthcare provider. Take
carbamazepine with food. Carbamazepine extended - release tablets: do not
crush, chew, or break carbamazepine extended - release

Frontiers in Pharmacology frontiersin.org06

Meyer et al. 10.3389/fphar.2023.1086913

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1086913


3.3 Heuristic alignment

Among automatic alignment techniques, the ‘median match’
TF-IDF approach demonstrated the best performance overall, with
higher ROUGE-1, ROUGE-2, and ROUGE-L scores than any of the
other heuristic alignment approaches by at least 6.8 ROUGE points
(Table 3). The ‘median match’ TF-IDF heuristic also produced the
most natural appearing medication guides. In some cases, it was
able to generate the exact guide. The best automatic alignment
technique even outperformed the manual alignment in terms of
ROUGE score. We suspect that this is because the heuristic
alignment’s use of text similarity metrics allowed for creating
closer source/target matches as input for the PGN. Table 5
shows two examples of reference texts and their generated
summaries created with this heuristic.

4 Discussion

The main goal of this study was to test whether neural text
generation is a viable approach to support the development of
regulatory documents. In order to test this hypothesis we used
medication guides as source documents because large datasets are
publicly available, and they represent an appropriate control for
automatically generated text. Our results indicate that the ROUGE
scores increased when the model shifted from a global to a heuristic
approach. These results are not entirely surprising as the global
approach is more complex and, due to text length, prone to GPU
memory issues.

These results are relevant for several reasons. First, to the best of
our knowledge, this is the first time that an algorithm has been used to
generate medication guides with robust accuracy.

Second, we believe that accurate generation of text can improve
efficiency in medical writing. For example, medication guides are
typically generated manually by medical communication
specialists and medical writers who choose specific information
from the labeling information mainly based on personal
experience.

The results of this study also indicates that approximately
only a third of sponsor-generated prescription information
packages included medication guides. Furthermore, we found
that there was a robust level of inconsistency in the medication
guides with respect to addressing the six questions recommended
by the FDA.

Overall, this study relied on medication guides to demonstrate
feasibility of neural text generation. However, we believe that this use
case study can be extended to different types of regulatory documents
produced by medical writers. Neural text generation has the potential
to greatly improve efficiency in medical writing and accelerate
regulatory submissions. Potentially, this approach could also be
used to create plain-language summaries and medication guides in
different languages. Furthermore, more modern encoder-decoder
transformers such as GPT-3 (Brown et al., 2020) may improve
the performance of the approach presented here. Hovever, the
strength of the PGN is that it allows both abstractive and
extractive summarization as needed, so further studies comparing
both approaches would be required.

Our study shows several limitations. First, the frequently
inconsistent structure of medication guides hampers automated

approaches. One such inconsistency is the frequency of the six
guiding questions, displayed in Table 1. As shown in that table,
each question appears a different number of times in the dataset. By
having missing data (i.e., questions not asked and answered), the
model has an uneven data distribution of sentences summarizing a
certain section. Hence, sections that have more frequent similar
questions discussed (i.e., contraindication section), are better
summarized sections than those that do not have enough
instances of uniformly framed questions (i.e. pediatric use
section). As the size of datasets increase, this limitation may be
at least partially remediated since question discussions will become
more numerous and more data will lead to better document
generation.

Second, ROUGE scores for summaries generated using the TF-
IDF + Euclidean (“median”) aligned inputs are higher than any
scores resulting from a manual alignment of inputs, and the
generated summaries are similarly higher quality as determined
by human evaluation. Manually aligning the “contributions”
sections of the documents produces the next highest ROUGE
scores, followed by the TF-IDF + Euclidean (“average”) aligned
inputs. However, even with the best-performing median heuristic
alignment, the generated summaries are not consistently
comprehensive and informative. Though the BERT model does
not initially show promising results, future work should include
exploration of other semantic similarity metrics to improve input
pairings, as the best inputs were aligned entirely by their lexical
similarity. Another consideration is that the target summaries from
the medication guide were often very short, ranging from as few as
12 tokens to around 200. The source text samples were
comparatively lengthy, with as many as 2000 tokens, unlike (See
et al., 2017), where the article was truncated to 400 tokens and the
summary to 100 tokens for training. Achieving more consistent
source and target lengths could possibly help the heuristic
alignment and our model’s overall performance.

5 Conclusion

In this study, we generated medication guides by training a PGN
using SPL from the DailyMed database and applying three different
alignment techniques: global, manual, and heuristic. We found that
heuristic alignment outperformed the other two methods, and showed
potential to automatically generate medication guides to reduce the
manual burden in medical writing.
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