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Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules
that uses the proteasome ubiquitin system to target proteins of interest and
promote their degradation with remarkable selectivity. Importantly, unlike
conventional small molecule inhibitors, PROTACs have proven highly effective
in targeting undruggable proteins and those bearing mutations. Because of these
considerations, PROTACs have increasingly become an emerging technology for
the development of novel targeted anticancer therapeutics. Interestingly, many
PROTACs have demonstrated a great potency and specificity in degrading several
oncogenic drivers. Many of these, following extensive preclinical evaluation, have
reached advanced stages of clinical testing in various cancers including
hematologic malignancies. In this review, we provide a comprehensive
summary of the recent advances in the development of PROTACs as
therapeutic strategies in diverse hematological malignancies. A particular
attention has been given to clinically relevant PROTACs and those targeting
oncogenic mutants that drive resistance to therapies. We also discus
limitations, and various considerations to optimize the design for effective
PROTACs.
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1 Introduction

Hematological malignancies are a highly heterogeneous group of blood cancers caused
by abnormal differentiation of hematopoietic stem cells. Despite the remarkable advances in
targeted therapy in hematological malignancies, chemotherapy is still the most common
strategy. However, a major concern of chemotherapy is the side effects and long-term
sequelae. Targeted therapies have been primarily employing either monoclonal antibodies or
small molecules inhibitors. However, each of these approaches has advantages and
disadvantages (Lee et al., 2018; Wilkes, 2018). Monoclonal antibodies are known for
their high selectivity, high binding affinity, prolonged pharmacokinetic profile, and
efficacy in blocking extracellular protein-protein interactions (Lu et al., 2020).
Nevertheless, they are large units, which restrict them from crossing cell membrane and,
consequently, their use is largely limited to cell surface targets. In addition, oral
bioavailability of monoclonal antibodies is quite limited due to their poor ability to cross
the intestinal epithelium and their susceptibility to the proteolytic degradation by digestive
enzymes (Singh et al., 2008). On the other hand, small molecule inhibitors can be easily
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administered orally and are able to target intracellular proteins due
to their cellular permeability. However, small molecules inhibitors
recognize specific pockets or active sites within the protein targets
which are lacking in the majority of human proteins particularly
transcription factors, non-enzymatic proteins, and scaffold proteins
(Toure and Crews, 2016; An and Fu, 2018).

While a number of new small molecule inhibitors and
monoclonal antibodies have shown great activities in various
hematological malignancies (Podhorecka et al., 2014; Hou et al.,
2021; Sochacka-Cwikla et al., 2021), targeted protein degradation
using Proteolysis Targeting Chimeras (PROTACs) has emerged as a
promising approach in these as also in other types of malignancies
(He et al., 2020a). This strategy exploits the ubiquitin-proteasome
system (UPS) to target various proteins of interest for degradation.
Notably, several PROTAC compounds have entered clinical
evaluations in various tumors including hematological
malignancies. While the BTK degrader NX-2127 has recently
entered phase 1a/b clinical trial in patients with relapsed and
refractory B-cell malignancies (NCT04830137), ARV-471 and
ARV-110 have shown promising results in phase1/2 clinical trial
in locally advanced or metastatic ER+/HER2− breast cancer
(NCT04072952) or metastatic castration-resistant prostate cancer
(NCT03888612) respectively. In this review, we discuss the recent
advances, limitations, and future directions of PROTACs in
hematological malignancies.

1.1 A glance at the ubiquitin proteasome
system

The ubiquitin-proteasome system (UPS) is the main proteolytic
system in eukaryotes that controls proteins degradation and
regulates different cellular processes such as stress responses,
DNA repair, cell proliferation, apoptosis, etc. This has made the
UPS a powerful and essential machine in maintaining protein
quality control and homeostasis (Park et al., 2020a).

The first step of a protein degradation by UPS is its modification
with ubiquitin tag, a signal for recognition and degradation by the
proteasome 26S subunit (Park et al., 2020b). The ubiquitination
process involves the covalent attachment of ubiquitin to lysine
residues on the substrate protein via a three steps enzymatic
cascade reaction involving the E1, E2, and E3 enzymes. First,
ubiquitin is activated by the E1 ubiquitin-activating enzyme (E1)
following a covalent linkage between the carboxyl-terminus of
ubiquitin and a cysteine residue on the E1 enzyme forming a
thioester bond (E1-ubq). Then ubiquitin is transferred to an
E2 conjugating enzyme (E2-ubq), and lastly, E3 ligases transfer
ubiquitin from the E2 to the substrate. There are three families of
structurally and functionally distinct E3 ubiquitin ligases: 1) The
Really Interesting New Gene (RING), which constitutes the largest
family of E3 ligases. These E3 ligases are multi-subunit complexes
that use specific Cullins as central molecular scaffolds to recruit the
targeted substrates and bring them in a close proximity to the
ubiquitin-charged E2 (E2-ubq) enzymes. In this case, the
ubiquitin is directly transferred from E2-ubq to the substrate
without the necessity to form a thioester bond with ubiquitin
(Mani and Gelmann, 2005). 2) the Homologous to E6-AP
Caboxy Terminus (HECT) family: HECT E3 ligases undergo a

catalytic cysteine-dependent trans-thiolation reaction with E2-ubq
forming an intermediate covalent E3-ubq bond prior to ubiquitin
transfer to the substrate (Huibregtse et al., 1995; Scheffner et al.,
1995). 3) The RING-Between-RING (RBR) family: These ligases
have two canonical RING domains RING1 and RING2 linking an
in-between RING (IBR) domain (Wenzel et al., 2011). They need at
least four cycles of tagging the substrate to form a polyubiquitin
chain allowing its recognition and degradation by the 26S
proteasome system (Hershko et al., 1983; Voges et al., 1999;
Ciechanover, 2005; Schulman and Harper, 2009).

Protein ubiquitination is a very dynamic and highly reversible
process. It is often counteracted by deubiquitinating enzymes
(DUBs), which remove the ubiquitin chain from the targeted
substrate preventing its degradation (Komander et al., 2009).

1.2 PROTACs technology

Proteolysis targeting chimeras (PROTACs) is a strategy that
induces the degradation of target proteins using the ubiquitin-
proteasome system as illustrated in Figure 1. PROTACs are
heterobifunctional small molecules containing three chemical
elements: A ligand that binds the protein of interest, a second
ligand that recruits an E3 ubiquitin ligase, and a linker that
conjugates these two ligands (Gao et al., 2020). Contrary to small
molecule inhibitors, PROTACs technology eliminates the targeted
protein through degradation instead of its inhibition (Ciulli and
Trainor, 2021). Once the complex (target substrate-PROTAC-
E3 ligase) is formed, the E3 ligase employs an E2 ubiquitin-
conjugating enzyme to transfer ubiquitin to the substrate. The
poly-ubiquitinated substrate will be recognized and degraded by
the proteasome system (Paiva and Crews, 2019).

Despite the abundance of E3 ligases (more than 600) expressed
in human cells, only few of them have been used in PROTAC
technology to degrade target proteins (Fisher and Phillips, 2018).
The field has tremendously evolved since the use of the first
PROTAC by Sakamoto et al., in 2001 where a poorly permeable
phospho-peptide moiety was employed to hijack Skp1-Cullin-F box
complex (SCFß-TRCP) to degrade methionine aminopeptidase-2
(MetAp-2) (Sakamoto et al., 2001). In 2003, the same group have
developed PROTACs that can target the estrogen receptor-alpha
(ER-α) or androgen receptor (AR). These first developed PROTACs
were peptide-based with a high molecular weight and very limited
cell permeability (Sakamoto et al., 2003). From that point onwards, a
number of substrate receptors of E3 ligases were discovered
including inhibitors of apoptosis proteins (IAPs), Cereblon
(CRBN), and Von Hippel-Lindau (VHL) among others. Many of
these have been explored to generate permeable and biologically
active PROTACs capable of degrading selected proteins in target
cells. The CRBN and VHL have been the most successfully utilized
E3 ligase substrate receptors in PROTAC system in hematological
malignancies (Ito et al., 2010; Itoh et al., 2010; Buckley et al., 2012a).

1.2.1 Cereblon (CRBN)
CRBN has successfully been used in the development of

PROTAC compounds targeting many proteins in different
diseases including various cancers (Bricelj et al., 2021). It is a
442-amino acid protein that acts as a substrate receptor within
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the Cullin-4-RING E3 ubiquitin ligase (CRL4) complex (Ito et al.,
2010). In addition to the molecular scaffold CUL4, this complex also
includes the adaptor protein DDB1 (damages DNA-binding protein
1), and the ROC1 protein which recruits the ubiquitin-loaded
E2 enzymes (Higa and Zhang, 2007; Jackson and Xiong, 2009;
Ito and Handa, 2020) (Figure 2). It is important to note that
major advances in this field have been catalyzed by the
discoveries from the work of Benjamin Ebert’s group that the
direct molecular target of thalidomide and other derived
immunomodulatory drugs (IMiDs) such as lenalidomide and
pomalidomide is CRBN E3 ligase (Kronke et al., 2014a; Kronke
et al., 2014b; Kronke et al., 2015; Sievers et al., 2018). These studies
revealed, for the first time, that binding of IMiDs to CRBN leads to
increased recruitment of the zinc finger transcription factors Ikaros
(IKZF1) and Aiolos (IKZF3) to the E3 complex leading to their
subsequent ubiquitination and proteasomal degradation (Kronke
et al., 2014b; Chamberlain et al., 2014; Zhu et al., 2014; Kronke et al.,
2015). This mechanism is believed to play a major role in the clinical
activities of the immunomodulatory drugs (Kronke et al., 2014b;
Chamberlain et al., 2014; Kronke et al., 2015).

1.2.2 Von Hippel-Lindau (VHL)
Unlike CRBN which is a part of the Cullin-4-RING E3 ubiquitin

ligase, VHL plays a central role in Cullin2 RING E3 ubiquitin ligase
complex (CRL2VHL), a multiprotein complex containing the
molecular scaffold CUL2, elongin B, elongin C, and Rbx-1, also
known as ROC1 (Figure 2). VHL is the subunit that binds
specifically to the target proteins (Czyzyk-Krzeska and Meller,

2004) and promote their proteasomal degradation. Among many
of the substrates targeted by VHL E3 ligase, the hypoxia-inducible
factor (HIF)-1α is the best characterized. VHL has been successfully
utilized in PROTAC systems to target and degrade many proteins
(Sun et al., 2019a). The initially developed VHL-based PROTACs
utilized 5 to 7 amino acids long peptides derived from HIF-1α
protein (Lee et al., 2007; Schneekloth et al., 2008) as molecular
scaffold for the E3 ligase (VHL) instead of small-molecules and they
are, therefore, referred to as “bioPROTACs”. The discovery of small-
molecule mimetics of the HIF-1α peptide has led to a significant
improvement in PROTACs design (Buckley et al., 2012a; Buckley
et al., 2012b). One of the first PROTACs using small molecules as
VHL-recruiting scaffold was designed to target the bromodomain
proteins (BRDs) (Zengerle et al., 2015). In these studies, the
bromodomain inhibitor JQ1 was used as BRD4-recruiting
scaffold.

IAPs and mouse double minute 2 (MDM2) E3 ligases which are
highly expressed in hematological malignancies, have also been of
particular interest for the design of PROTACs in this disease and
were extensively reviewed elsewhere (Xi et al., 2019; He et al., 2020a).

2 Development of PROTACs in
hematological malignancies

Over the last two decades, a rapidly growing number of
PROTACs have been developed in various hematological
malignancies (Table 1).

FIGURE 1
Illustration of PROTAC technology. PROTACs utilizes the ubiquitin-proteasomal pathways for targeted protein degradation through linking an E3
ligase to the protein of interest leading to its polyuiquitination and proteasomal degradation.
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2.1 Chronic myeloid leukemia

While several BCR-ABL inhibitors (e.g., imatinib, dasatinib,
bosutinib, nilotinib, asciminib) are highly effective in chronic
myeloid leukemia (CML) (Wei et al., 2010; Keskin et al., 2016),
many patients develop drug resistance due to mutations in the
BCR-ABL gene (Hantschel et al., 2012). Efforts aiming at
overcoming drug resistance in CML, have led to the
development of diverse BCR-ABL PROTACs, some of which
have shown great activity and selectivity towards various forms
of BCR-ABL including mutants that confer resistance to the BCR-
ABL inhibitors. It is important note that these studies have
revealed that the capability of a PROTAC to induce the
degradation of a given target does not only depend on its
capacity to bind to the target, but it is determined by the
cooperation of a collection of factors including the inhibitor
warhead, the E3 ligase substrate receptor, the nature and the
length of the linker, and the point of attachment of the linker
on the PROTAC units.

In this regard, Crews group reported in 2016 the first BCR-ABL
degraders (DAS-6-2-2-6) based on bosutinib or dasatinib capable of
degrading c-ABL and BCR-ABL by using either CRBN or VHL
E3 ligase substrate receptors (Lai et al., 2016). These studies revealed
that treatment of the CML cell line K562 with 1 uM dasatinib-based
DAS-VHL PROTAC led to the degradation of more than 65% of
c-ABL protein, but it was ineffective against BCR-ABL. Noteworthy,

DAS-VHL effectively engage its target Bcr-ABL as reflected by
decreased Bcr-ABL downstream signaling, but did not lead to the
degradation of this kinase. Interestingly, when CRBN was used
instead of VHL, identical concentration of DAS-CRBN led to the
degradation of both c-ABL (>85%) and BCR-ABL proteins (more
than 85% and 60% respectively). Few years later, in 2019, new
PROTAC called GMB-475 was developed using the GNF5, a small-
molecule allosteric inhibitor which binds with high affinity to the
myristoyl pocket of ABL kinase. Such compound has the ability to
degrade both wild type BCR-ABL and BCR-ABL bearing certain
mutations at nanomolar concentrations (Burslem et al., 2019).
GMB-475 was particularly effective in degrading BCR-ABL
bearing G250E mutation and exhibited a marked antiproliferative
activity in cells with such mutation. In addition, GMB-475 exhibited
a highly selectivity toxicity toward primary CML CD34+ cells, versus
normal hematopoietic progenitor CD34+ cells.

Another BCR-ABL PROTAC, SIAIS178, in which dasatinib was
linked to a VHL ligand was developed by Zhao and colleagues (Zhao
et al., 2019). In contrast to DAS-VHL PROTAC developed earlier,
SIAIS178 showed efficient degradation of BCR-ABL with a DC50

value of 8.5 nM and an antiproliferative effect with an IC50 of 24 nM
in K562 cells. The differential activity of these dasatinib- and VHL-
based PROTACs is probably due to the linker optimization achieved
in SIAIS178. In vivo studies showed a significant tumor regression
following exposure to SIAIS178 in a K562-derived xenograft tumor
model. It is important to note that, in addition to its activity in wild
type BCR-ABL, SIAIS178 also successfully recognized and degraded
several clinically relevant resistance-conferring BCR-ABLmutations
such as G250E, V299L, F317L, and F317V, but not T315I.
Importantly, Yang et al., reported a series of PROTACs (e.g.,
P19P) capable of degrading dasatinib-resistant T315I and
asciminib-resistant V468F mutations in BCR-ABL (Yang et al., 2020).

In a more recent study, Ma et al. have developed a compound
referred to as PMIBcr/Abl-R6 that has the potential to degrade BCR-
ABL regardless of its mutation status (Ma et al., 2022a). PMIBcr/
Abl-R6 is a dual-targeting PROTAC with a particular design
involving an MDM2/p53 inhibitor peptide sequence and Bcr/
Abl tetramerization domain. PMIBcr/Abl-R6 interacts with Bcr/
Abl oligomerization domain and binds the ubiquitin E3 ligase
MDM2 with high affinity. Consequently, PMIBcr/Abl-R6 has the
potential to degrade all forms of Bcr-Abl (p210, p190, p185) and
Bcr/Abl mutants including the T315I, and to activate p53 (Ma
et al., 2022a). In fact, PMIBcr/Abl-R6 showed a significant efficacy in
various primary samples isolated from patients with CML and
acute lymphoblastic leukemia (ALL), in association with Bcr/Abl
degradation and p53 activation (Ma et al., 2022a). Noteworthy, one
of these ALL patients bears Y253H, E255K/V, and T315I
mutations.

2.2 Acute myeloid leukemias (AML) and
acute lymphoblastic leukemias (ALL)

2.2.1 FLT-3 PROTACs
FLT-3 gene mutations are the most common mutations in acute

myeloid leukemia (AML) (Kiyoi and Naoe, 2002). Midostaurin and
gilteritinib are two FDA approved FLT-3 inhibitors especially for
patients with FLT-3 mutated AML (Antar et al., 2020).

FIGURE 2
PROTAC technology exploits CRL complex. POI degradation via
a CRBN or VHL based E3 ligase, where the POI is brought in close
proximity to an E3 ligase.
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Unfortunately, due to the development of secondary resistance
(McMahon et al., 2019), high doses of the inhibitor should be
administered to achieve an efficient clinical response which
creates off-target toxicities (Grunwald and Levis, 2013). A recent
study by Burslem et al., has described a VHL-recruiting FLT-3
PROTAC employing the FLT-3 inhibitor quizartinib. Such
compound exhibited high efficiency in degrading FLT-3 ITD in
MV4-11 and MOLM-14 AML cells both in vitro and in in vivo
xenograft model (Burslem et al., 2018).

2.2.2 BCL-xL/BCL-2 PROTACs
Apoptosis is a well-characterized and highly regulated

mechanism of cell death involving both mitochondrial and non-
mitochondrial pathways (Hafezi and Rahmani, 2021). Any
deregulation in this mechanism leads to several diseases
including tumorigenesis (Plati et al., 2011). Mitochondrial
apoptosis is regulated by protein-protein interactions among
BCL-2 family members, which control mitochondrial outer
membrane permeabilization (MOMP). BCL-2 family members

TABLE 1 Representative PROTACs in hematological malignancies.

PROTACs E3 ligases Targets Types of cancer (cells
used)

References

DAS-6-2-2-6-VHL VHL c-Abl CML (K562) (Lai et al., 2016)

DAS-6-2-2-6-
CRBN

CRBN c-Abl Bcr-Abl

GMB-475 VHL Bcr-Abl Bcr-Abl G250E CML (Primary CML CD34+, Ba/
F3-BCR-ABL1)

Burslem et al. (2019)

SAIS178 VHL Bcr-Abl Bcr-Abl G250E, V299L, F317L, and F317V
mutants

CML (K562) Zhao et al. (2019)

PMIBcr/Abl-R6 MDM2 Bcr-Abl and various Bcr-Abl mutants CML; ALL (KU-812, SUP-B15) Ma et al. (2022a)

P19P CRBN Bcr-Abl mutants: V468F, T315I CML (K562) Yang et al. (2020)

FLT-3 PROTAC VHL FLT-3 AML (MV4-11, MOLM-14) Burslem et al. (2018)

DT2216 VHL BCL-xL ALL (MOLT-4, RS4) Khan et al. (2019)

PZ15227 CRBN He et al. (2020b)

753b VHL BCL-xL/Bcl-2 AML (Kasumi-1) Lv et al. (2021)

GT19630 GT19715 CRBN MYC AML (HL-60) Nishida et al. (2022)

PROTAC2 VHL EED, EZH2 and SUZ12 (PCR2 subunits) DLBCL (Karpas422) Hsu et al. (2020)

UNC6852 VHL EED, EZH2, SUZ12 EZH2-Y641 mutant DLBCL Potjewyd et al. (2020)

ARV-825 CRBN BRD2/3/4 T-ALL, BL (6T-CEM; MOLT-4;
Jurkat)

Lu et al. (2015)

MZ1 VHL BRD2/3/4 AML (Kasumi-1, MV4-11, NB4) Ma et al. (2022b)

dBET1 CRBN BRD2/3/4 AML (Kasumi-1, THP-1, MV4-
11, NB4)

Zhang et al. (2022)

NX-2127 CRBN BTK wt BTK C481S mutant IKZF3 MCL, DLBCL Xie et al. (2021)

NX-5948 CRBN BTK wild type BTK-C481S mutant Lymphoma (TMD8) Robbins et al. (2021)

P131 CRBN BTK wt BTK C481S mutant NHL (HBL1, RAMOS, Mino cells) Sun et al. (2018)

L18I CRBN BTK C481S/T/A/G/W DLBCL (HBL1), MCL (Mino;
Z138)

Sun et al. (2018), Sun et al. (2019b),
George et al. (2020)

MT-802 CRBN BTK wt BTK mutants: C481S, E41K, C481R, C481Y,
C481T, and C481F.

CLL, BL, DLBCL. Buhimschi et al. (2018), Lim et al. (2023)

DD-03-171 CRBN BTK, IKFZ1, and IKFZ3 MCL and other B-cell lymphomas Dobrovolsky et al. (2019)

MS4077 CRBN NPM-ALK Lymphoma (SU-DHL-1) Zhang et al. (2018)

MS4078 EML4-ALK NCCLC (NCI-H2228)

TD-004 VHL NPM-ALK Lymphoma (SU-DHL-1) Kang et al. (2018)

EML4-ALK NSCLC (H3122).

Abbreviations: CML, chronic myeloid leukemias; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; DLBCL,

diffuse large B-cell lymphoma; NHL, non-Hodgkin’s lymphoma; BL, Burkitt’s lymphoma; NSCLC, non-small cell lung cancer.
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are divided into two functionally and structurally distinct groups:
Antiapoptotic proteins (BCL-xL, Mcl-1, Bcl-W, and BFL-1/A1) and
pro-apoptotic proteins (BIK, BIM, BID, BAD, BMF, HRK, NOXA,
PUMA, BAX and BAK) (Hafezi and Rahmani, 2021). Various BCL-
XL or BCL-xL/BCL-2 inhibitors were developed (e.g., Navitoclax
also referred to as ABT-263), however, most of them engendered on-
target and dose-dependent platelet toxicities as a consequence of the
essential role that BCL-xL plays in human platelets survival.

To overcome platelets toxicity of these inhibitors, a PROTAC
approach based on VHL or CRBN and ABT-263 have led to the
generation of a number of chemically and biologically active
compounds among which DT2216 and PZ15227 were the most
promising.

DT2216, a VHL-recruiting ABT-263-based PROTAC was
recently developed by Khan and colleagues (Khan et al., 2019)
and has demonstrated greater affinity to BCL-xL, and yet,
showed much lower toxicity to platelets compared to the parent
compound ABT-263. Importantly, the anti-tumor activity of
DT2216 was considerably more potent than that of ABT-263 in
AML cells both in vitro and in in vivo xenograft mouse model. In
addition, DT2216 caused only mild reduction in platelet counts and
no sign of reactive thrombocytopenia was observed in mice exposed
to this agent (Khan et al., 2019). In a subsequent study, the same
group has applied a series of modifications involving different types
of linker and varying the attachment points on ABT-263 and
E3 ligase ligands. These efforts have led to the development of a
dual BCL-2/BCL-XL degrader 753b which exhibits considerable
increase in potency compared to the BCL-XL targeting DT2216.
These studies also provided evidence that the accessibility of lysines
on a target protein is critical in determining the selectivity and
potency of a PROTAC for such protein (Lv et al., 2021).

Interestingly, similar results were obtained using another ABT-
263-based PROTAC PZ15227 which targets BCL-XL to CRBN
E3 ligase for degradation (He et al., 2020b). In vitro studies using
AML cell lines, revealed that in contrast to ABT-263,
PZ15227 exhibits a significant selective toxicity toward malignant
cells versus platelets. This was also recapitulated in in vivo xenograft
mouse model. Importantly, PZ15227 resulted in only a moderate
thrombocytopenia compared to a similar dose of ABT-263.

The low toxicity of PROTAC compounds to platelets would
likely be explained, at least in part, by the low expression levels of the
VHL and CRBN E3 ligases in these cells.

2.2.3 Myc PROTACs
Myc is one of the most frequently dysregulated genes in human

cancer including hematological malignancies. It is overexpressed
through a variety of mechanisms particularly chromosomal
rearrangements. Despite that Myc oncogenic potential has been
clearly demonstrated for decades, targeting such transcriptional
factor has been challenging. It is important to note that
PROTAC approach has not been very successful in directly
targeting Myc so far, and the most effective way to interfere with
Myc activity is to inhibit its transcriptional regulators such as BET
bromodomain protein 4 (BRD4). Importantly, some PROTAC
compounds such as the CRBN-based GT19630 and
GT19715 have shown potent preliminary activity in AML both
in vitro and in vivo mouse model (Nishida et al., 2022). Specifically,
GT19630 and GT19715 effectively degraded c-Myc protein in HL-

60 cells with an IC50 1.4 nM and 1.8 nM respectively. In a xenograft
mouse model with HL-60 cells, very low dose GT19630 (0.3mg/kg/
bid) resulted in a marked c-Myc degradation and tumor growth
inhibition. Of note, GT19715 showed greater activity in venetoclax
resistant MV4-11 cells, which exhibit increased c-Myc level,
compared to venetoclax-sensitive parental cells (Nishida et al.,
2022).

2.2.4 BRD PROTACs
The bromodomain and extraterminal (BET) domain protein

family which includes BRD2, BRD3, BRD4 has been linked to the
development of many tumors including hematological malignancies
(Zuber et al., 2011; Alsarraj and Hunter, 2012; Segura et al., 2013;
Asangani et al., 2014; Valent and Zuber, 2014; Liao et al., 2016; Wu
et al., 2021). These considerations have prompted the search for
small molecule inhibitors against BRD4 and some of these
compounds have been leveraged to generate PROTACs against
this oncogenic factor. Among these, ARV-825 PROTAC in which
the BRD4 inhibitor OTX015 was linked to the E3 ligase CRBN
binding inhibitor pomalidomide. AV-825 was highly effective in
inducing BRD4 proteasomal degradation (Lu et al., 2015). In
addition to BRD4, ARV-825 also induces the degradation of
BRD3 and BRD2 in T-ALL cells. Importantly, ARV-825
suppressed T cell acute lymphoblastic leukemia (T-ALL) cell
proliferation in vitro via cell cycle arrest and apoptosis. Such
effect is more potent than those of BRD4 inhibitors such as JQ1,
dBET1, and OTX015. ARV-825 was also very effective in reducing
tumor growth in xenograft mouse model. Mechanistic studies have
revealed that ARV-825 inhibited cell proliferation through BET and
c-Myc depletion in vitro as well as in vivo (Wu et al., 2021).

A very recent study in AML reported a highly promising
PROTAC compound MZ1, which targets and efficiently degrades
BRD2, BRD3, and BRD4 proteins in various AML cell lines, and
markedly suppress tumor growth in a xenograft mouse model (Ma
et al., 2022b). MZ1 also downregulates cMyc which is positively
regulated by BRD (Ma et al., 2022b). Another recently developed
CRBN-based PROTAC dBET1 has also shown very potent activity
in degrading BRD2, BRD3, and BRD4 proteins in association with a
potent anti-tumor activity in various AML cell lines (Zhang et al.,
2022).

2.3 Lymphoma

2.3.1 PROTACs targeting BTK
BTK plays an essential role in B cell receptor (BCR) mediated

B cells activation and proliferation (Mohamed et al., 2009).
Ibrutinib, a BTK inhibitor, has been approved for the treatment
of mantle cell lymphoma (MCL) and has been clinically evaluated as
monotherapy or in combination in several malignancies including
activated B cell-like (ABC) DLBCL (Pan et al., 2007). Unfortunately,
MCL patients often develop drug resistance to ibrutinib due to
C481S missense BTK mutation (Woyach et al., 2014). Recently two
CRBN-based PROTAC BTK degraders NX-2127 and NX-5948 have
entered clinical evaluations in a phase 1a/b study in patients with
relapsed and refractory B-cell malignancies, whose disease
progressed after at least 2 prior lines of therapy (NCT04830137
and NCT05131022 respectively).
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In 2018, two PROTACs for ibrutinib-resistant BTK degradation
were developed, P131 and L18I (Sun et al., 2018; Sun et al., 2019b).
These studies, showed that these CRBN-based PROTACs were
capable of degrading both the wild-type and ibrutinib-resistant
C481S BTK protein at low concentrations. Interestingly unlike
ibrutinib, BTK PROTACs showed a potent antiproliferative
activities in cell bearing C481S BTK mutant (Sun et al., 2018).
The antiproliferative activity of these compounds in DLBCL and
MCL with wild-type BTK was also superior than that of ibrutinib
(Sun et al., 2018). In addition, L18I, which is a second generation of
BTK PROTAC, was not only highly effective against C481S BTK
protein, but also potently degrades several other clinically relevant
C481 mutations in B-cell tumors with a DC50 < 50 nM. More
importantly, L18I induced rapid regression of C481S BTK HBL-
1-derived xenograft tumors (George et al., 2020).

In another study, Crews’s group developed another highly
effective BTK degrader, MT-802 (DC50: 14.9 nM) (Buhimschi
et al., 2018; Lim et al., 2023). In contrast to ibrutinib, MT-802
was able to reduce the pool of active BTK in primary cells isolated
from chronic lymphocytic leukemia (CLL) patients bearing C481S
mutation (Buhimschi et al., 2018).

A number of other highly active BTK-specific degrader has been
recently developed including DD-04-015, which degrade efficiently
BTK only after 4 h exposure (Huang et al., 2018). Such compound
was further optimized into DD-03-171 which has the ability to
degrade the C481S BTK mutant and showed enhanced anti-
proliferative effects on mantle cell lymphoma cells in vitro
(5.1 nM) and significant efficacy towards patient-derived
xenografts in vivo (Dobrovolsky et al., 2019).

2.3.2 ALK PROTACs
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor

found activated due to different genetic alterations (chromosomal
translocations, substitution mutations and gene amplification) in
many cancers including anaplastic large-cell lymphomas (ALCL)
and diffuse large B-cell lymphomas (Webb et al., 2009). The most
common ALK genetic alteration in lymphomas is NPM–ALK fusion
protein that results from t(2;5) chromosomal rearrangement. Such
aberration leads to ligand-independent constitutive activation of this
tyrosine kinase. ALK is also frequently rearranged (EML4–ALK) in
some solid tumors particularly non-small-cell lung carcinoma
(NSCLC). Various ALK degraders were recently developed
including MS4077, MS4078, TD-004. These PROTACs are
capable of efficiently degrading NPM-ALK in lymphoma as well
as EML4-ALK fusion proteins in NSCLC cells in association with a
marked inhibition of cell growth (Kang et al., 2018; Zhang et al.,
2018).

2.3.3 PRC2 PROTACs
Polycomb repressive complex 2 (PRC2) has been widely linked

to hematologic malignancies (Martin-Perez et al., 2010; Takamatsu-
Ichihara and Kitabayashi, 2016; Iwama, 2017). PRC2 protein is
composed of EZH2 (enhancer of zeste homolog 2), EED, SUZ12,
RBAP46/48 and AEBP2 subunits (Herviou et al., 2016). The EZH2 is
the catalytic subunit of PRC2. It catalyzes histone H3 methylation, a
process in which both EED and SUZ12 subunits are required (Cao
et al., 2002). Importantly, Loss-of function mutations in EZH2 and
SUZ12 genes, which encode for central PCR2 components of

PRC2 are frequently observed in patients with T-ALL
(Ntziachristos et al., 2012; Simon et al., 2012; Zhang et al., 2012).
Although effective EZH2 inhibitors exists, preclinical results show
drug resistance due to the secondary mutations in both wild type
and mutant EZH2 alleles (Gibaja et al., 2016). Two different
PROTACs were generated using VHL ligand using different EED
inhibitors and different linkers. PROTAC2 developed by Bloecher’s
group in 2020, lead to a selective degradation of EED, EZH2 and
SUZ12 reducing the proliferation of EZH-dependent tumor cells
Karpas422 (Hsu et al., 2020). UNC6852, another EZH2 degrader
that was developed by James group has shown similar results against
the wild type EZH2, and interestingly also against the Y641Nmutant
EZH2 (Potjewyd et al., 2020).

3 Improving PROTACs potency and
specificity

Although cell permeability and target selectivity are major
limitations of PROTAC system in therapeutics development, such
approach has been highly effective in targeting and degrading many
targets in various diseases including cancer. It is important to note
that: 1) PROTACs are not equally effective in all tissues. For example,
in a study by Zorba et al., a CRBN-based PROTAC compound
(compound 10) effectively degrades BTK in mice spleen but not in
the lungs despite similar compound delivery to both organs (Zorba
et al., 2018). This could reflect tissue-specific differences in the
expression of E3 ligases or other components of the ubiquitin
system. 2) An important consideration when developing a
PROTAC is the degree of expression of a particular E3 ubiquitin
ligase, not only in the target cells but also in normal cells. It is
conceivable that a high expression of an E3 ubiquitin ligase in aberrant
cells makes it a good candidate to use in a PROTAC system. However,
if normal cells also express high level of such factor the resulting
PROTAC may lead to increased toxicity. 3) Another important
consideration came from studies by Lv et al., using computational
modelling which revealed that the PROTAC complex has highly
selective ubiquitination activity toward lysine residues located on a
defined position on the target protein (Lv et al., 2021). As both the
selectivity and potency of a PROTAC is determined by the selectivity
and potency of ubiquitination machinery, it is highly important to
keep these considerations in mind when designing PROTACs.

Another important consideration when it comes to PROTAC
design is the choice of the warhead which is critical for the potency
and selectivity of PROTACs. This has been highlighted by the work
from Lai and colleagues (Lai et al., 2016) in which they showed that
dasatinib-basedVHL-recruiting PROTACs degrades c-Abl but not Bcr-
Abl, in contrast, dasatinib-based CRBN-recruiting PROTACs have the
ability to target and degrade both c-Abl and Bcr-Abl. However, when
the Bcr-Abl inhibitor bosutinib was used as a warhead instead of
dasatinib in VHL-recruiting PROTACs, the activity of such PROTAC
was lost against both c-Abl and Bcr-Abl (Lai et al., 2016).

4 Conclusion and future perspectives

Given the impressive preclinical activities, the wealth of
PROTAC compounds diversity, and the numerous clinical trials
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testing them, such promising technology is poised to become a new
therapeutic approach. However, to date most PROTACs are based
on either CRBN or VHL. To enhance our ability to effectively and
selectively degrade a wide range of protein targets, it would be
critical to explore other E3 ubiquitin ligases and better understand
the mechanisms of PROTAC off targets. While the PROTAC
approach has particularly been focusing on cancer, such
approach should also be explored in other diseases.

Overall, further improvement of the specificity and efficacy
of these class of compounds will likely be the key for accelerating
the development of this strategy in various types of cancer
including hematological malignancies and potentially other
diseases.
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