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Background: Cuproptosis is a novel type of regulated cell death and is reported to
promote tumor occurrence and progression. However, whether a cuproptosis-
related signature has an impact on hepatocellular carcinoma (HCC) is still unclear.

Materials and methods: We analyzed the transcriptome data of HCC from The
Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC)
database, and searched for tumor types with different cuproptosis patterns through
consistent clustering of cuproptosis genes. We then constructed a Cuproptosis-
Related Genes (CRGs)-based risk signature through LASSO COX regression, and
further analyzed its impact on the prognosis, clinical characteristics, immune cell
infiltration, and drug sensitivity of HCC.

Results: We identified the expression changes of 10 cuproptosis-related genes in
HCC, and all the patients can be divided into two subtypes with different prognosis by
applying the consensus clustering algorithm. We then constructed a cuproptosis-
related risk signature and identified five CRGs, which were highly correlated with
prognosis and representative of this gene set, namely G6PD, PRR11, KIF20A, EZH2,
and CDCA8. Patients in the low CRGs signature group had a favorable prognosis. We
further validated the CRGs signature in ICGC cohorts and got consistent results.
Besides, we also discovered that the CRGs signature was significantly associated with
a variety of clinical characteristics, different immune landscapes and drug sensitivity.
Moreover, we explored that the high CRGs signature group was more sensitive to
immunotherapy.

Conclusion:Our integrative analysis demonstrated the potential molecular signature
and clinical applications of CRGs in HCC. The model based on CRGs can precisely
predict the survival outcomes of HCC, and help better guide risk stratification and
treatment strategy for HCC patients.

KEYWORDS

hepatocellular carcinoma, cuproptosis-related genes, tumor microenvironment, drug
sensitivity, prognosis model

OPEN ACCESS

EDITED BY

Hai-long Piao,
Dalian Institute of Chemical Physics (CAS),
China

REVIEWED BY

Qisheng Su,
Guangxi Medical University, China
Ning Li,
Wuhan University, China

*CORRESPONDENCE

Yangying Zhou,
zhouyy423@163.com

Hong Zhu,
zhuhong0719@126.com

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 03 November 2022
ACCEPTED 31 January 2023
PUBLISHED 09 February 2023

CITATION

He F, Zeng P, Ma S, Yang X, Liu H, Liu Q,
Zhou Y and Zhu H (2023), Identification
and validation of a novel cuproptosis-
related genes signature associated with
prognosis, clinical implications and
immunotherapy of
hepatocellular carcinoma.
Front. Pharmacol. 14:1088993.
doi: 10.3389/fphar.2023.1088993

COPYRIGHT

© 2023 He, Zeng, Ma, Yang, Liu, Liu, Zhou
and Zhu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 09 February 2023
DOI 10.3389/fphar.2023.1088993

https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1088993&domain=pdf&date_stamp=2023-02-09
mailto:zhouyy423@163.com
mailto:zhouyy423@163.com
mailto:zhuhong0719@126.com
mailto:zhuhong0719@126.com
https://doi.org/10.3389/fphar.2023.1088993
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1088993


1 Introduction

Hepatocellular Carcinoma (HCC) is one of the most common
malignant tumors, and ranks the sixth most common and third
mortality in all tumors worldwide by the World Health
Organization (WHO) (Siegel et al., 2022)- (Ferlay et al., 2021).
Although early-stage HCC can be cured by surgical treatment,
enormous challenges remain in the treatment of advanced HCC,
resulting in unfavorable prognosis, significant financial cost and
high disease burden (Bandmann et al., 2015). Given the high
morbidity and mortality of HCC, there is an urgent need to
develop more effective prognostic models, and explore reliable
prognostic factors, which is crucial for optimal individualized
management and treatment.

Copper is an essential cofactor for all organisms, but copper is
toxic if concentrations exceed a threshold maintained by
evolutionarily conserved homeostatic mechanisms. However, how
excess copper induces cell death is not known. The Broad institute
currently uncovers a novel cell death mechanism, cuproptosis
(Tsvetkov et al., 2022), which is distinct from the known apoptosis,
necrosis, autophagy and iron death.

Cuproptosis is a form of copper-dependent and mitochondrial
respiration-dependent, regulated cell death. Cuproptosis occurs by
direct binding of copper to lipoylated components of the tricarboxylic
acid (TCA) cycle (Beaino et al., 2014)- (Hatori et al., 2016), resulting in
aberrant aggregation of lipoylated proteins and loss of ferroptosis
proteins, leading to cell death by proteotoxic stress. Copper ions are
involved in cell death as are iron ions, while the study from the Broad
Institute demonstrates strategies to combat disease by pharmacologically
inhibiting mitochondrial respiration (Tsvetkov et al., 2022). In addition,
cancer cells are actively respiring and contain large amounts of lipoylated
mitochondrial proteins. Copper ionophores could be used to destroy
cancer cells, which opens up a new therapeutic direction for cancer.
However, the metabolism of copper in liver diseases and the occurrence
and development of HCC is still poorly understood. In the research stage.
The evidence by Siddiqui et al., demonstrated that copper oxide
nanoparticles have dose-dependent cytotoxicity and apoptotic effects
on HepG2 cells (Siddiqui et al., 2013). Besides, copper contents were
closely associated with liver cirrhosis and HCC, and serum levels of
copper, like ceruloplasmin, may be used as a marker for the detection of
HCC (Zhang et al., 1994). Recently, as reported, cuproptosis-related
signature and the lncRNA profile linked with cuproptosis may bring new
insights into the molecular pathways of the formation and progression of
cancers, which were helpful to predict the prognosis and guiding
treatment of cancer patients (Zhen et al., 2022)- (Zhang et al., 2022).

Emerging evidence also suggests crosstalk between curoprotosis
and the tumor immunemicroenvironment (TME) (Lv et al., 2022)- (Li
et al., 2022a). The tumor microenvironment plays a crucial role in
cancer development and clinical outcomes (Wu and Dai, 2017). The
TME includes cancer cells, immune cells, endothelial cells,
inflammatory cells and fibroblasts, as well as extracellular
components (growth factors, hormones, cytokines, etc.). Within the
TME, interactions between cancer cells and immune cells regulate all
links of tumor development, and tumor-infiltrating immune cells
(TIICs) can also influence cancer progression (Lee and Cheah,
2019)- (Zhou et al., 2022a). Despite recent advances in
immunotherapy for HCC, the prognosis of HCC remains
heterogeneous, which suggests that the close connection between
curoprotosis and the tumor immune microenvironment may play a

crucial role in the development and progression of HCC. However, the
role of cuprotosis-mediated gene patterns in HCC is unclear.

In this study, we comprehensively investigate the molecular
alterations and clinical relevance of cuproptosis-related genes
(CRGs) in HCC. We then constructed a cuproptosis-related risk
signature and identified five CRGs for predicting survival outcomes
and characterizing the immune landscape of HCC. Additionally,
combined with clinicopathological features and treatment efficacy,
the CRGs signature demonstrated great potential for precision and
personalized therapy of HCC.

2 Materials and methods

2.1 Data download and preprocessing

Based on R package The Cancer Genome Atlas (TCGA) biolinks
v1.16.0, the expression profile data (FPKM), genomic data (SNV and
CNV) and clinical data of HCC were downloaded. Survival data were
used from 2018 collated data (Liu et al., 2018). The TCGA HCC
dataset (https://cancergenome.nih.gov/, version 27.0-fix, released on
9 November 2020) as training cohort, which included 269 HCC tumor
samples and 50 tumor-adjacent normal tissues. In the meantime, the
Liver Cancer-RIKEN-JP (LIRI-JP) of HCC transcriptome data
(FPKM) and clinical survival data in the (International Cancer
Genome Consortium) ICGC database (https://dcc.icgc.org/projects/
LIRI-JP, version Release_28, processed on 27 March 2019) was used
for the validation cohort, which contained 232 HCC cases. Above data,
genes were removed when multiple ENSEMBL Identity Documents
(ID) were encountered corresponding to the same SYMBOL. The
batch effect between different datasets was corrected using the “sva”
package of R software by adopting the “combat” algorithm. In
addition, we filtered the genes that were expressed in less than 50%
of the samples.

2.2 Difference analysis

Gene expression differences were calculated using
DESeq2 through count expression profiles, and genes with an
absolute value of Log2 Foldchange >1 and adjusted p values less
than 0.05 were selected as differential genes. Multiple testing
correction is based on the FDR method. Differential gene volcano
plots were drawn by ggplot2 (3.3.6) and ggrepel (0.9.1) R packages,
and significant cuproptosis-related genes were marked. The
expression heatmap of Cuproptosis-related genes in HCC and
normal tissues were plotted by the R package pheatmap (1.0.12).

2.3 Comparison of cuproptosis-related genes
under different clinical

Based on the FPKM expression dataset of TCGAHCC and clinical
feature data, we stratified the samples by TCGA molecular
classification, alpha-fetoprotein value, bilirubin albumin maximum,
fibrosis, grade, stage, age, gender, BMI, etc. We then calculated the
expression differences of cuproptosis-related genes between groups by
theWilcoxon rank sum test. Boxplots were drawn using ggpubr (0.4.0)
heatmaps were drawn using pheatmap (1.0.2).
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2.4 Construction of protein interaction
network

A PPI network was constructed based on ten cuproptosis-related
genes using STRING (http://www.string-db.org/) (Szklarczyk et al.,
2021), and Gene Ontology (GO) functional enrichment analysis was
performed.

2.5 Gene correlation analysis

We extracted the expression values of cuproptosis genes or
cuproptosis genes to immune checkpoints from the TCGA HCC
FPKM data. We performed logarithmic transformation on the gene
expression values, and calculated the correlation between the
expression of the two genes by Pearson correlation analysis.

2.6 Identification of cuproptosis-associated
tumor subtypes

Based on the TCGA dataset, we identified different subtypes based
on the expression profile data of 10 cuproptosis-related genes,
applying non-negative matrix decomposition and unsupervised
consensus clustering analysis. We used the consensus cluster plus
(4.5.1.902) and Non-negative matrix factorization (NMF) (0.24.0)
packages to operate, and the consensus clustering used three
clustering distances: Spearman, Pearson, as well as Euclidean. The
clustering method was K-means clustering with l000 replicates to
guarantee the stability of the classification. We selected consensus
clustering (Euclidean distance) to determine the tumor cuproptosis
subtype based on the idea that the survival p-value was minimally
separated.

2.7 Functional enrichment analysis

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed based on
significantly differentially expressed genes and the R package
cluster profiler (4.2.2), and results with FDR corrected p-values
less than 0.05 were selected and the top few pathways were
displayed using bubble plots (Li et al., 2022b). Construction of
the cuproptosis-associated signature based on the two identified
subtypes of cuproptosis tumors. In the transcriptome data of TCGA
HCC, all gene expression values were divided into two groups
according to the median value. Univariate Cox regression analysis
was performed using the R package survival (3.3–1). Genes with a
p-value less than 0.05 were filtered out, and cuproptosis-associated
genes were further constructed by the R package glmnet (4.1–4)
Lasso Cox regression to remove redundant genes, according to the
following formula signature.

2.8 Survival analysis

In the TCGA database and ICGC validation dataset, median
grouping was performed based on the calculated cuproptosis score,
and the impact on prognosis was assessed by constructing Kaplan-

Meier curves using the survival (3.3–1) R package and the log-rank
test. ROC curve was plotted using the R package timer0c (0.4), and
Cox regression (R package survival 3.3–1)) was performed to
calculate hazard ratios (HR) for scoring groups and clinical
characteristics.

2.9 Genemutation and copy number variation
analysis

The single nucleotide variation and copy number variation data of
HCC The genes with mutation frequencies greater than 5% in the high
and low copper death signature groups were then displayed using
oncoPrint through the R package ComplexHeatmap (version 2.10.0),
and the chi-square test was used to determine whether there was a
significant difference between the two groups. The GenVisR (1.26.0)
package defines low copy number variation with copy number < 1, and
copy number > 3 as high fold variation, showing the copy number
variation of the high and low groups.

2.10 Immune cell infiltration calculation

Using the R package IBOR (0.99.9) based on ESTIMATE (Aran
et al., 2015), Microenvironment Cell Populations-counter (MCP-
counter) (Giraldo et al., 2016), XCELL (Aran et al., 2017) and
CIBERSORT (Newman et al., 2015)immune cell infiltration
algorithms, the score of each immune cell in the HCC sample was
calculated. The Wilcoxon rank test was used to compare the different
levels of cuproptosis signature between the two groups with immune
cell infiltration.

2.11 Drug sensitivity prediction

Based on Genomics of Drug Sensitivity in Cancer (GDSC) (Yang
et al., 2013), Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,
2012) and Cancer Therapeutics Response Portal (CTRP) (Basu et al.,
2013) drug databases, we extracted cancer cell line expression data,
calculated the cuproptosis fraction of each cell line, and grouped them
based on the median gene expression. We then combined the genes
expression with the Area Under the Curve (AUC) and Half maximal
inhibitory concentration (IC50) data of multiple drugs in cell lines,
and use Spearman’s correlation to calculate the correlation with
cuproptosis score, and further used the Wi1coxon test to compare
the difference of AUC/IC50 between high and low cuproptosis groups
in significantly related drugs.

2.12 Impact of immunotherapy response

Based on TCGA’s HCC transcriptional data, we used the Tumor
Immune Dysfunction and Exclusion (TIDE) tool (http://tide.
dfci.harvard. edu/) (Jiang et al., 2018) to predict the immunotherapy
response of the samples and compared the difference in scores between
the responder and non-responder groups. The Wilcoxon rank test was
used for a statistical test and the difference in the proportion of response
and non-response between the two groups with high and low
cuproptosis scores was compared.

Frontiers in Pharmacology frontiersin.org03

He et al. 10.3389/fphar.2023.1088993

http://www.string-db.org/
https://portals.broadinstitute.org/ctrp/
http://tide
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1088993


3 Results

3.1 The landscape of cuproptosis-related
genes in HCC

Based on the TCGA transcriptome dataset, we performed
differential gene analysis between HCC tumor and adjacent normal
tissues, and explored 6,031 differential genes, of which 1,503 were
downregulated and 4,528 were upregulated Figure 1A). We then
plotted the heatmap by using the R to scale the FPKM of gene
expression (Z-score). Among these differential genes, we discovered
that CDKN2A and GLS were significantly upregulated in HCC among
all the cuproptosis-related genes, and these two genes might contribute
to the development of HCC (Figure 1B).

By analyzing the expression correlations of the 10 cuproptosis
genes, we found that LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,
MTF1, GLS, and CDKN2A showed positive correlations with other
genes, while FDX1 was negatively correlated with the expression of
other genes (Fig 1D). The protein-protein interaction (PPI) network of
GO enrichment analysis revealed that the CRGs participated in
compound biosynthesis and energy metabolism (Figure 1C).

We then compared the expression differences of CRGs among
diverse clinical characteristics. We observed that different CRGs were
differentially expressed in distinct signatures, such as GLS showing
distinct expression differences in different age, Body Mass Index
(BMI) subgroups, as well as different tumor stages (Figures 2A,
C–E) Besides, DLD was significantly expressed at different α-
fetoprotein levels (Figure 2B).

3.2 Identification and characterization of
cuproptosis-related molecular subtypes
in HCC

Firstly, we applied a consensus clustering algorithm to categorize
the HCC patients based on the expression of 10 CRGs. The
consistency coefficient was evaluated to determine the optimal
clustering number (k value), and the results demonstrated that k =
2 was the best choice for dividing the cohort into two subgroups
(Figures 3A, B). Based on the principal component analysis (PCA), the
HCC patients were well separated into two categories (Figure 3C). We
then discovered that FDX1, LIPT1, MTF1, GLS, and CDKN2A was

FIGURE 1
Differential expression of cuproptosis-related genes in hepatocellular carcinoma (HCC) and normal tissues. (A) Volcano plot of differential expression
(blue represents downregulation in HCC, red represents upregulation in HCC, gray represents insignificant, and cuproptosis-related genes are marked in the
figure). (B) The expression of 10 cuproptosis-related genes in HCC and normal tissues. (C) Partial results of protein-protein interactions (PPI) networkmap and
gene ontology (GO) enrichment of 10 cuproptosis-related genes. (D) Heatmap of expression correlation of 10 cuproptosis-related genes in TCGA.
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significantly differentially expressed between the two groups
(Figures 3D, E).

Furthermore, we analyzed the immune cell infiltration scores by
using CIBERSORT, GSVA-cellreport, ESTIMATE, and MCP-counter
algorithms. We found that Cluster-2 scored higher for stromal cells,
while no significant differences were observed for immune scores and
tumor purity (Figures 4A, B). We also discovered significant
differences between Cluster-1 and Cluster-2 for distinct immune
cell infiltration, such as T cells, B cells and macrophages
(Figures 4C, D).

3.3 Construction and validation of
cuproptosis-related genes signature

Based on the identified two subtypes of CRGs in HCC, we
analyzed the differentially expressed genes (1,984 genes
downregulated and 547 genes upregulated) between the two
subtypes. We further performed GO and KEGG enrichment
analysis for the differential genes, which were mainly enriched in
pathways involved in cell proliferation (organelle fusion, nuclear
division, etc.) and cell communication (neuroactive ligand, receptor
interaction, etc.) (Figures 5A, B). Then, we performed LASSO and
multivariate COX analysis on the two subtypes of differential genes,
and obtained a five-gene signature model (G6PD, PRR11, KIF20A,
EZH2, and CDCA85) (Figures 5C–E). The Kaplan-Meier analysis

revealed that the CRGs signature was associated with patients’
prognosis, and the patients in the high-risk group had an inferior
overall survival (OS, p < 0.0001, Figure 6A). We further performed the
time-dependent receiver operating characteristic (ROC) curve with
the area under the curve (AUC). The AUC values of 6 months, 1-, 3-,
and 5-year survival rates of prognostic subgroups were 0.718, 0.756,
0.714, and 0.707, respectively (Figure 6B). Meanwhile, we further
validated the prognostic performance of the CRGs model in the LIRI-
JP dataset. Similarly, we gained parallel results in the validation set,
indicating an excellent predictive prognostic accuracy of the CRGs
model for HCC patients. The AUC values of 6 months, 1-, 3-, and 5-
year survival rates of prognostic subgroups were 0.778, 0.813, 0.749,
and 0.797, respectively (Figures 6D, E). In addition, multivariate Cox
regression showcased that the CRGs signature was an independent
risk factor for HCC in both cohorts (p < 0.0001, Figures 6C, F).

3.4 Analysis of CRGs signature with clinical
characteristics

To explore the CRGs risk model with clinical characteristics, we
found that the CRGs signature was associated with multiple clinical
features, including alpha-fetoprotein, histological grade, tumor stage,
as well as TCGAmolecular subtypes, etc. (Figures 7A–N). In the LIRI-
JP dataset, we verified that the CRGs signature significantly correlated
to the tumor stage (Figure 7O).

FIGURE 2
Differential expression of cuproptosis-related genes in different clinical feature groups. (A) Expression of 10 cuproptosis-related genes in different alpha-
fetoprotein groups (<100 mg/dL, 100–400 mg/dL, >400 mg/dL); (B) DLD expression differences in different alpha-fetoprotein groups; (C–E) The difference
of GLS expression in different age, BMI and different tumor stage groups (ns: p >0.05; *: p <0.05; **: p <0.01; ***: p <0.001).
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3.5 Characterization of molecular landscape,
immunotherapeutic and druggable responses
of cuproptosis-related genes signature

We analyzed the CRGs’ genetic features based on the single
nucleotide variants (SNV) and copy number variation (CNV) of
HCC. We performed a chi-test in high and low CRGs groups with
mutation frequency > 5%, and we observed no statistical significance
between the two groups (Supplementary Figure S1A). We further
characterized the high and low CRGs groups for copy number
deletions and amplifications on chromosomes and also found no

significant differences between the two groups (Supplementary Figure
S1B). The GSVA enrichment analysis revealed that they differed
significantly in the high and low CRGs groups, and the low CRGs
group had more enriched pathways (Supplementary Figure S2).

Next, we explored the relationship between CRGs signature with
drug sensitivity. We extracted cell line expression data based on
GDSC, CCLE as well as CTRP databases, and combined them with
the AUC/IC50 data for analysis. In the GDSC database, we discovered
that the AUC was negatively correlated with CRGs signature for
multiple drugs, such as 5-Fluorouracil, GDC0449 et al. (Figure 8A),
and the AUC was significantly different between high and low CRGs

FIGURE 3
The cuproptosis-related genes divide hepatocellular carcinoma into two subtypes. (A) The sample squareness of the consistent clustering (number of
classifications = 2); (B) The cumulative distribution map of the consistent clustering; (C) The principal component analysis graph of the two hepatocellular
carcinoma subtypes; (D) The cuproptosis-related genes in the two categories Expression heatmap of hepatocellular carcinoma; (E) Boxplot of cuproptosis-
related genes expression difference between two types of hepatocellular carcinoma (ns: p >0.05; *: p <0.05; **: p <0.01; ***: p <0.001; ****: p <0.0001).
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groups (Figure 8B). We only discovered one drug AZD0530 with an
IC50 positively correlated with CRGs signature in the CCLE database,
and its IC50 was significantly different between high and low CRGs
groups (Figures 8G, H). We also revealed that multiple drugs were
associated with CRGs signatures in the CTRP database
(Figures 8C–F).

In addition, we assessed the CRGs signature with the tumor
microenvironment (TME). We evaluated the TME score, which
included the stromal score, ESTIMATE score, and immune score
between the two subtypes. We observed that there was no significant
difference between the two groups in immune and ESTIMATE scores,
while we discovered a higher stromal score in the low CRGs group
(Figures 9A–C). The correlation analysis also revealed that the stromal
score exhibited a significant negative correlation with the CRGs
signature (Figures 9D–F). Moreover, multiple immune cell
differences were differentially expressed between the two subtypes,
such as T regulatory cells, macrophages, monocytes, etc. (Figure 9G).
We then utilized TIDE for the immunotherapy response prediction,
and we explored that the responders had higher CRGs scores and the
high CRGs group also presented higher proportions of responding
patients (Figures 10A, B). Furthermore, we found that there were
significant correlations between immune checkpoints and CRGs

(Figure 10C), and multiple immune checkpoints were differentially
expressed between the two CRGs subgroups, such as CTLA4, LAG3,
PDCD1 (PD-1), and CD274 (PD-L1) (Figure 10D), suggesting a
potential role of the cuproptosis-related subtypes in immunotherapy.

4 Discussion

As one of the most severe malignancies in the world, current
treatment strategies for HCC are rather limited (Llovet et al., 2016). In
addition, the high heterogeneity of HCC and complicated risk factors
make predicting prognosis much more difficult. Recent studies have
shown that copper levels are significantly elevated in the serum and
tumor tissue of cancer patients compared to healthy patients
(Blockhuys et al., 2017)- (Ishida et al., 2013). Although
dysregulation of copper homeostasis may trigger cytotoxicity,
alterations in intracellular copper levels may affect cancer
development and progression (Babak and Ahn, 2021). Recently, a
new cell death pathway called cuproptosis has been noted, and it has
been demonstrated that copper directly binds to lipoylated
components of the tricarboxylic acid (TCA) cycle, leading to toxic
protein stress, and ultimately cell death (Tsvetkov et al., 2022). Liver

FIGURE 4
Differences in immune cell infiltration among hepatocellular carcinoma subtypes. (A) ESTIMATE algorithm calculates differences in stromal and immune
scores between subtypes; (B) ESTIMATE algorithm calculates differences in tumor purity scores between subtypes; (C)GSVA-cell report algorithm calculates
differences in immune cell infiltration between subtypes; (D) MCP-counter calculates differences in subtypes differences in immune cell infiltration (ns:
p >0.05; *: p <0.05; **: p <0.01; ***: p <0.001; ****: p <0.0001).
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cirrhosis, one of the crucial causes of HCC, showed copper
accumulation compared to a healthy liver (Poznanski et al., 2021).
Recent evidence demonstrated that increased levels of redox-active
free copper might be associated with acute hepatitis and, ultimately,
HCC (Koizumi et al., 1998). The above evidence indicates that copper
levels play a role in HCC, which suggests that cuproptosis may be
closely related to liver malignancy, so it is vital to explore the
significance of CRGs in the development and prognosis of HCC.

Cuproptosis genes are widely perturbed in HCC. First, based on
TCGA transcriptome datasets, we found that the CRGs of HCC and
normal tissues were differentially expressed, and GLS (glutaminase)
and CDKN2A were found to be significantly upregulated in HCC. GLS
has been reported to be associated with several cancers (Masisi et al.,
2020)- (Matés et al., 2019). CDKN2A is a tumor suppressor gene on
chromosome 9p21.3 that plays a role in tumor proliferation
suppression (Zhao et al., 2016). However, CDKN2A is upregulated
in HCC and strongly associated with inferior prognosis (Luo et al.,
2021). These two cuproptosis genes may play a vital role in the
development of HCC. Next, a PPI network was constructed with
10 cuproptosis genes, and after GO enrichment analysis, the associated
genes were enriched in several pathways, including compound
biosynthesis and energy metabolism, such as pyruvate acetyl CoA
biosynthesis, tricarboxylic acid cycle, mitochondrial acetyl CoA

biosynthesis and organic cyclic compound biosynthesis, etc.,
suggesting that cuproposis activity was associated with multiple
cancer-related pathways. By calculating the expression correlations
of 10 CRGs, we found that LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,
MTF1, GLS, and CDKN2A showed a positive correlation with other
genes in HCC, while FDX1 negatively correlated with multiple genes.
Similar results have been reported in other types of cancer, for
example, CDKN2A is upregulated in endometrial cancer and may
contribute to its pathogenesis (Su et al., 2015). PDHA1, PDHB, DLAT
and DLD act synergistically in the pyruvate dehydrogenase complex
deficiency (Inui et al., 2022). Zhang et al. combined with
bioinformatics tools have analyzed the expression and prognostic
significance of FDX1, a key regulator of copper-induced death in
HCC (Zhang et al., 1994). However, the expression and function of
other CRGs in HCC are poorly understood and need further
exploration.

Subtypes identification of cuproptosis genes was analyzed based
on TCGA HCC transcriptome data. The HCC patients can be
divided into two subtypes, and there were obvious expression
differences between FDX1 and LIPT1 in the two subtypes. It has
been reported that FDX1, a key regulator of cuproptosis, is
downregulated in HCC and its high expression is associated with
inferior prognosis in HCC patients (Zhang et al., 1994). Recent

FIGURE 5
Functional analysis of different subtypes and the construction of cuproptosis-related genes (CRGs) signature in hepatocellular carcinoma. (A) Gene
ontology (GO) enrichment analysis results in the twoCRGs subtypes. (B) Kyoto Encyclopedia of Genes andGenomes (KEGG) enrichment analysis results in the
two CRGs subtypes: (C) Lasso regression coefficients of each variable with L1 norm; (D) Lambda logarithm value in Lasso regression and the relationship with
the error (the dotted line is the range that Lambda can choose); (E) The coefficient values of the Lasso regression screening variables.
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evidence suggests that LIPT1 is involved in the lipoic acid metabolic
pathway (Chen et al., 2018). The lipoic acid moiety can be
transferred from one protein to another, affecting the
tricarboxylic acid cycle. LIPT1 expression is elevated in melanoma
biopsies, and is an independent favorable prognostic indicator in
melanoma patients (Liu et al., 2018). When calculating immune cell
infiltration scores between subtypes, we found that two groups
(including FDX1, LIPT1, DLAT, PDHA1, MTF1, GLS, and
CDKN2A) were significant diversity in different immune cells
(including T cells, B cells, and macrophages), suggesting that is a
possible predictive value for prognosis. LIPT1 expression was
positively correlated with PD-L1 expression and negatively
associated with Treg cell infiltration. Melanoma patients with
high LIPT1 expression had longer overall survival than those with
low LIPT1 expression after receiving immunotherapy, suggesting the
predictive value of LIPT1 for prognosis (Lv et al., 2021).

The differential genes of the two subtypes of cuproptosis in HCC
were identified along with GO and KEGG enrichment analysis,
which revealed enrichment mainly in pathways involved in cell

proliferation and cell communication. Univariate Cox regression
was performed to select genes with significant p-values (p <0.05), and
five genes including G6PD, PRR11, KIF20A, EZH2, and
CDCA8 were chosen to construct a cuproptosis-related signature
after Lasso Cox regression. Glucose-6-phosphate dehydrogenase
(G6PD) catalyzes a processive step in the oxidative pentose
phosphate pathway to generate NADPH and nucleotide
precursors, and G6PD depletion triggers TCA intermediates
depletion. In vivo, G6PD impairment significantly inhibits
KEAP1 mutant tumor growth (Ding et al., 2021). Additional
studies have shown that G6PD promotes tumor growth by
protecting cells from ROS (Hayes et al., 2020). PRR11 is a
proline-rich protein that is encoded by the PRR11 gene. The
PRR11 gene is located in the 17q23 amplified region. Copy
regions of 17q23 are significantly enriched in brain tumors, lung,
breast, and ovarian cancers (Zheng et al., 2017). The PRR11 is
located in the 17q23 amplified region. Copy regions of 17q23 are
significantly enriched in brain tumors, lung, breast, and ovarian
cancers (Chen et al., 2015). It is highly expressed in malignant

FIGURE 6
The prognostic effect of cuproptosis-related genes signatures in hepatocellular carcinoma. (A) Survival analysis of patients in TCGA cohort based on
cuproptosis score; (B) Time-dependent receiver operating characteristic (ROC) curve of cuproptosis score in TCGA dataset; (C) Multivariate Cox analysis
results in TCGA dataset; (D) Survival analysis of patients in LIRI-JP cohort based on cuproptosis score; (E) ROC curve of cuproptosis score in the LIRI-JP
dataset; (F) Multivariate Cox analysis results in LIRI-JP dataset.
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tumors, such as ovarian cancer and osteosarcoma tissues. Its
expression level is associated with tumor size, Enneking stage,
lymph node metastasis, and patient outcome (Li et al., 2021).
Compared with normal hepatocytes, KIF20A expression was
significantly upregulated in HCC HepG2 and Sk-hep1 cells, and
silencing of KIF20A inhibited the proliferation of HCC cells and
enhanced chemosensitivity and sorafenib sensitivity. Functional
studies demonstrated that the knockout of KIF20A inhibited

HCC cell proliferation (Wu et al., 2021). Upregulation of
EZH2 expression in HCC is associated with unfavorable
prognosis. The silence of EZH2 inhibits the HCC cell survival,
migration and invasion, increased E-cadherin expression, and
decreased N-cadherin and vimentin expression (Zhang et al.,
2021). Cell division cycle associated 8 (CDCA8) is an essential
component of the chromosome passenger complex (CPC). During
mitosis, it is involved in the regulation of the dynamic localization of

FIGURE 7
Cuproptosis-related genes signature correlates with clinical features. (A–L) Cuproptosis scores among different clinical features of hepatocellular
carcinoma, including alpha-fetoprotein, total bilirubin, albumin, fibrosis score, histological type, histological grade, tumor stage, sex, BMI, age and molecular
subtypes in TCGA cohort; (M–O) The differences of cuproptosis scores by gender, age, and tumor stage in the LIRI-JP cohort (ns: p >0.05; *: p <0.05; **:
p <0.01; ***: p <0.001; ****: p <0.0001).
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cells, and studies have suggested that CDCA8 can be used as a
biomarker for the early diagnosis and prognosis prediction of HCC
patients. In addition, CDCA8 may be an effective therapeutic target
for HCC (Lv et al., 2021).

In addition, our study revealed diverse cuproptosis genes to be
differentially expressed in distinct clinical features. For example, GLS
was differentially expressed in distinct age stages, BMI groupings as
well as different tumor stages, and DLD was differentially expressed in

FIGURE 8
Drug sensitivity analysis of cuproptosis-related genes (CRGs)signature groups in Genomicsof Drug Sensitivity in Cancer (GDSC), Cancer Cell Line
Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP) databases. (A) Correlations between CRGs score and drug area under the curve (AUC)
in GDSC (p < 0.05 was selected); (B) CRGs signature of each cell line under different drug treatments with significant negative correlation in GDSC database (*
represents p <0.05, ** represents p <0.01, *** represents p <0.001). (C) Correlations between CRGssignature and drug AUC in CTRP database (p < 0.
05 and drug display with negative correlation were selected). (D) Correlations between CRGs signature and drug AUC in CTRP database (select p < 0.05 and
positive correlated drugs); (E) The CRGs signature of each cell line under different drug treatments with significant negative correlations in CTRP database (ns:
p >0.05; *: p <0.05); (F) The differences in theCRGs signature of each cell line under different drug treatments with significant positive correlation in CTRP (ns:
p >0.05; *: p <0.05; **: p <0.01); (G) The correlations between the CRGs signature in CCLE database and the IC50 of drugs (p < 0.05 and positive correlations
were selected); (H) The differences in the CRGs signature of each cell line under different drug treatments with significant positive correlations in CCLE
(*represents p <0.05; *represents p <0.01; **represents p <0.001).
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alpha-fetoprotein levels. There were also significant expression
differences among TCGA molecular classification, bilirubin,
albumin maximum, fibrosis, grade, gender, and other clinical
subgroups along with the 10 cuproptosis genes. It could be found
that cuproptosis genes presented expression differences among
different clinical features, suggesting the involvement of
cuproptosis-related genes in the prognosis and development of
HCC. To further explore the potential mechanism and the role of
CRGs’ prognostic value, we successfully established and validated
CRGs signature, and analyzed the its prognostic values and clinical
implications. Clustering and survival analysis by the median value of
cuproptosis-associated signature revealed that signature was
associated with HCC prognosis (p < 0.0001), and the areas under
ROC curves were 0.718, 0.756, 0.714, 0.707 at 6 months, 1, 3, and
5 years, respectively. Meanwhile, we further validated its predictive
accuracy in the LIRI-JP dataset of ICGC, and gained consistent results,
and the areas under the ROC curves at 6 months, 1, 3, and 5 years were
0.778, 0.813, 0.749, 0.797, respectively. Survival analysis also suggested
that the low CRGs signature was associated with a better prognosis
(p < 0.0001). Besides, multivariate Cox regression showcased that the

CRGs signature was an independent risk factor for HCC in both
cohorts (p < 0.0001). Meanwhile, we revealed that significance was
correlated with multiple clinical features including alpha-fetoprotein,
histological grade, tumor stage as well as TCGAmolecular subtypes in
TCGA. In the LIRI-JP dataset, we verified that significance indeed
showed a significant relationship with tumor stage. Therefore, our
CRGs signature presented an excellent performance in predicting the
prognosis of HCC patients, and provide new insights for the
classification of HCC.

The hallmark enrichment score of tumors was calculated based on
GSVA to evaluate the difference in hallmarks between the two CRGs
groups, and we observed significant enrichments of multiple hallmark
pathways in the low CRGs group compared with the high CRGs
group. In the analysis of the tumor microenvironment, the stroma
score in the high CRGs group was less significant than that in the low
CRGs group, while the immune score and the estimated score were not
statistically significant. Further analysis also revealed that the stromal
score exhibited a significant negative correlation with the CRGs
signature. The immune cell infiltration algorithm analysis also
showcased multiple immune cell differences in the high and low

FIGURE 9
Cuproptosis-related genes (CRGs) signature was correlated with immune score and immune infiltrating cells. (A–C) Differences of matrix score (A),
immune score (B) and ESTIMATE score (C) between the two groups with high and low CRGs signature; (D–F)Correlations of CRGs signature andmatrix score
(D), immune score (E) and ESTIMATE score (F); (G)Differences in immune cell score between two CRGs groups with high and low CRGs signature (calculated
by Cibersort) (ns: p >0.05; ****: p <0.0001).
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CRGs groups. It has been reported that the expression of CDKN2A,
GLS and LIPT1 is positively correlated with the abundance of
CD8+T cells and neutrophils and CDKN2A expression positively
correlated with the degree of tumor infiltration (Luo et al., 2021),
which was in line with our study. It was also reported that in tumor-
infiltrating cells, the levels of eosinophils, macrophages of M0 and
M2 phenotypes, mast cell activation, and NK cell activation were
positively correlated with the risk score in high-and low-risk groups
(Li et al., 2022a). Additionally, we identified distinct immune
checkpoint expression patterns in the two CRGs subgroups, which
improved the effectiveness of immunotherapy in the era of
personalized medicine in HCC.

Moreover, we further explored the drug sensitivity for the
potential therapeutic possibilities of drugs in HCC. Our results
showed that multiple drugs exhibiting a negative correlation
between AUC and signature were found in the GDSC database,
such as: 5-Fluorouracil, GDC044g et al., and the AUC was

significantly different between high and low CRGs groups. Multiple
drugs were also found to be correlated in the CTRP database, and the
AUCs were obviously different between high and low CRGs groups.
AZD0530, a drug with an IC50 positively correlated with CRGs
signature in the CCLE, and its IC50 was significantly different
between high and low CRGs groups.

In immune infiltration analysis, we observed a higher stromal
score in the low CRGs group, the stromal score exhibited a
significant negative correlation with the CRGs signature.
Multiple immune cell differences were differentially expressed
between the two CRGs subtypes, such as T regulatory cells,
macrophages, monocytes, etc. We also discovered there was a
significant association between immune checkpoints and CRGs,
most notably PDCD1 (PD-1), TIGIT, CTLA4, ICOS, BTLA, CD28,
LAG3, and CD27. Previous studies demonstrated that the
combination of immune checkpoint inhibitors (ICIs) and
bevacizumab showed superiority over sorafenib in unresectable

FIGURE 10
The relationship of immunotherapy responses and immune checkpoints in different cuproptosis-related genes (CRGs) signature groups. (A)Differences
in CRGs signature of patients with different treatment outcomes (beneficial or non-beneficial) (B) the proportion of immunotherapy benefit and non-benefit
between the two CRGs groups; (C) Heatmap of correlation analysis between CRGs groups and different immune checkpoints (*represents p <0.05;
*represents p <0.01; **represents p <0.001; ***represents p <0.001); (D) Differences between the immune checkpoints and two CRGs groups (ns:
p >0.05; *: p <0.05; **: p <0.01; ***: p <0.001; ****: p <0.0001).
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HCC (Finn et al., 2020)- (Ren et al., 2021), which was consistent
with the mechanism of immune checkpoints. PDCD1 (PD-1) was
strongly associated with tumor mutation burden (TMB),
microsatellite instability (MSI), and immune cell infiltration,
and it can be used as a prognostic marker in several cancer
types (Miao et al., 2020). LAG3 was the most promising
immune checkpoint after PD-1 and CTLA-4, and higher LAG3
and FGL1 expression promoted tumor growth by suppressing the
immune microenvironment (Shi et al., 2021). CD27 played a
critical role in T cell activation by providing costimulatory
signals (Angelika and Anna, 2020). By grouping immunotherapy
responses according to different CRGs signatures, we found that
the high CRGs group had more sensitive to immunotherapy and
presented higher proportions of responding patients. Besides, we
found that multiple immune checkpoints were differentially
expressed between the two CRGs subgroups, such as CD276,
CD80, CD28, CTLA4, LAG3, PDCD1 (PD-1), and CD274 (PD-
L1), indicating a potential role of the cuproptosis-related subtypes
in immunotherapy. Zhou et al. (2022b) and Fu et al. (2022) also
observed similar results to the current study, suggesting that CRGs
were closely related to immune checkpoints. Bian et al., (Liao et al.,
2022) also reported that in renal cancer, a prognostic risk score
with CRGs expression signature exhibited good performance in
predicting OS and PFS of patients and was significantly correlated
with the level of immune infiltration and PD-L1 expression, which
was in consistent with our results. However, how cuproptosis or
cuproptosis influencing drugs affect the function of anti-tumor
immune cells remains unclear, and needs further exploration.

In the current work, we identified the signature of cuproptosis-
related genes in HCC and developed a CRGs-based prognostic
model, demonstrating a strong ability to predict the prognosis of
HCC and assess treatment efficacy. Undoubtedly, our study still has
certain shortcomings. Firstly, given the prognostic model was
constructed and validated by utilizing data from public
databases, further biological functional experiments were
required to confirm our findings. Secondly, although a
prognostic score focusing on the expression signatures of CRGs
showed a favorable performance in predicting prognosis and
clinical features in HCC, some vital clinical information was not
available for analysis in the datasets, which would have impacted
the prognosis and therapeutic effects of HCC. Finally, due to the
limited sample size, a large-scale cohort study was crucial to
evaluate the value of this model.

5 Conclusion

In summary, our integrative analysis depicted a molecular profile
of CRGs and demonstrated its clinical implications in HCC. By
establishing a CRGs-based prognosis model with the five hallmark
genes (G6PD, PRR11, KIF20A, EZH2, and CDCA8), it brought
prospective targets for determining the therapeutic efficacy of
immunotherapy and targeted therapy, and accurately predicting the
survival of HCC. The model based on CRGs helped better guide risk
stratification and treatment strategy for HCC patients.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

HZ contributed to the conception of the study. FH, QL, HL, and
XY carried out literature retrieval and bioinformatics analysis, and
prepared charts and manuscripts; YZ, SM, and PZ help with data
collection, analysis and interpretation. YZ helped conceive the study
and revised the manuscript. All authors contributed to the article and
approved the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (81803787, 82203353), the Fellowship of
China Postdoctoral Science Foundation (2022M723565), the
Natural Science Foundation of Hunan Province (2022JJ40851), the
Health Commission Foundation of Hunan Province (202202085327),
and the Traditional Chinese Medicine Administration Foundation of
Hunan Province (2021069).

Acknowledgments

We thank the TCGA and ICGC databases for the availability of
the data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/
full#supplementary-material

Frontiers in Pharmacology frontiersin.org14

He et al. 10.3389/fphar.2023.1088993

https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1088993/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1088993


References

Angelika, M., and Anna, S. B. (2020). New emerging targets in cancer immunotherapy:
CD27 (TNFRSF7). ESMO Open 4 (3), e000629. doi:10.1136/esmoopen-2019-000629

Aran, D., Hu, Z., and Atul, J. B. (2017). xCell: digitally portraying the tissue cellular
heterogeneity landscape. landscape 18 (1), 220. doi:10.1186/s13059-017-1349-1

Aran, D., Sirota, M., and Atul, J. (2015). Systematic pan-cancer analysis of tumour
purity. Nat. Commun. 6 (6), 8971. doi:10.1038/ncomms9971

Babak, M. V., and Ahn, D. (2021). Modulation of intracellular copper levels as the
mechanism of action of anticancer copper complexes: Clinical relevance. Biomedicines 9,
852. doi:10.3390/biomedicines9080852

Bandmann, O., Weiss, K. H., and Kaler, S. G. (2015). Wilson’s disease and other
neurological copper disorders. Lancet Neurol. 14 (1), 103–113. doi:10.1016/S1474-
4422(14)70190-5

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., et al.
(2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity. Nature 483 (7391), 603–607. doi:10.1038/nature11003

Basu, A., Nicole, E., BodycombeSchreiber, J. H. S. L., Cheah, J. H., Price, E. V., Liu,
K., et al. (2013). An interactive resource to identify cancer genetic and lineage
dependencies targeted by small molecules. Cell. 154 (5), 1151–1161. doi:10.1016/j.
cell.2013.08.003

Beaino, W., Guo, Y., Chang, A. J., and Anderson, C. J. (2014). Roles of Atox1 and p53 in
the traffi cking of copper-64 to tumor cell nuclei: Implications for cancer therapy. J. Biol.
Inorg. Chem. 19 (3), 427–438. doi:10.1007/s00775-013-1087-0

Blockhuys, S., Celauro, E., Hildesjö, C., Feizi, A., Stål, O., Fierro-González, J. C., et al.
(2017). Defining the human copper proteome and analysis of its expression variation in
cancers. Metallomics 9, 112–123. doi:10.1039/c6mt00202a

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711,
243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, Y., Cha, Z. S., Fang, W. Z., Qian, B. H., Yu, W. L., Li, W. F., et al. (2015). The
prognostic potential and oncogenic effects of PRR11 expression in hilar
cholangiocarcinoma. Oncotarget 6, 20419–20433. doi:10.18632/oncotarget.3983

Ding, H., Chen, Z., Papagiannakopoulos, T., Huang, S. M., Wu, W. L., LeBoeuf, S. E.,
et al. (2021). Activation oftheNRF2 antioxidant program sensitizes tumors to G6PD
inhibition. Sci. Adv. 7, eabk1023–14. doi:10.1126/sciadv.abk1023

Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., and Jemal, A. (2021).
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249.
doi:10.3322/caac.21660

Finn, R. S., Qin, S., Ikeda, M., Galle, P. R., Ducreux, M., Kim, T. Y., et al. (2020).
Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.N. Engl. J. Med.
382 (20), 1894–1905. doi:10.1056/NEJMoa1915745

Fu, J., Wang, S., Li, Z., Qin, W., Tong, Q., Liu, C., et al. (2022). Comprehensive
multiomics analysis of cuproptosis-related gene characteristics in hepatocellular
carcinoma. Front. Genet. 13, 942387. doi:10.3389/fgene.2022.942387

Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., and Petitprez, F. (2016). Estimating
the population abundance of tissue-infiltrating immune and stromal cell populations using
gene expression. Genome Biol. 17 (1), 218. doi:10.1186/s13059-016-1070-5

Hatori, Y., Yan, Y., Schmidt, K., Furukawa, E., Hasan, N. M., Yang, N., et al. (2016).
Neuronal differentiation is associated with a redox-regulated increase of copper flow to the
secretory pathway. Nat. Commun. 7, 10640. doi:10.1038/ncomms10640

Hayes, J. D., Dinkova-Kostova, A. T., and Tew, K. D. (2020). Oxidative stress in cancer.
Cancer Cell. 38, 167c–197c. doi:10.1016/j.ccell.2020.06.001

Inui, T., Wada, Y., Shibuya, M., Arai-Ichinoi, N., Okubo, Y., Endo, W., et al. (2022).
Intravenous ketogenic diet therapy for neonatal-onset pyruvate dehydrogenase complex
deficiency. Brain Dev. 44 (3), 244–248. doi:10.1016/j.braindev.2021.11.005

Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J., and Hanahan, D. (2013).
Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc.
Natl. Acad. Sci. U. S. A. 110, 19507–19512. doi:10.1073/pnas.1318431110

Jiang, P., Gu, S., Deng, P., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550–1558. doi:10.1038/s41591-018-0136-1

Koizumi, M., Fujii, J., Suzuki, K., Inoue, T., Inoue, T., Gutteridge, J. M., et al. (1998). A
marked increase in free copper levels in the plasma and liver of LEC rats: An animal model
for wilson disease and liver cancer. Free Radic. Res. 28 (5), 441–450. doi:10.3109/
10715769809066881

Lee, S. S., and Cheah, Y. K. (2019). The interplay between MicroRNAs and
cellular components of tumour microenvironment (TME) on non-Small-Cell lung
cancer (NSCLC) progression. J. Immunol. Res. 2019, 3046379. doi:10.1155/2019/
3046379

Li, K., Yu, H., Zhao, C., and Li, J. (2021). Down-regulation of PRR11 affects the
proliferation, migration and invasion of osteosarcoma by inhibiting the Wnt/β-catenin
pathway. J. Cancer 12 (22), 6656–6664. doi:10.7150/jca.62491

Li, X., Kang, K., Peng, Y., Shen, L., Shen, L., and Zhou, Y. (2022). Comprehensive
analysis of the expression profile and clinical implications of regulator of chromosome
condensation 2 in pan-cancers. Aging (Albany NY) 14 (22), 9221–9242. doi:10.18632/
aging.204403

Li, Y., Li, H., Zhang, Q., andWei, S. (2022). The prognostic value and immune landscape
of a cuproptosis-related lncRNA signature in head and neck squamous cell carcinoma.
Front. Genet. 13 (13), 942785. doi:10.3389/fgene.2022.942785

Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., et al. (2022). CD8(+) T cells
and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 40 (4),
365–378.e6. doi:10.1016/j.ccell.2022.02.003

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A. D.,
et al. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-
quality survival outcome analytics. Cell. 173 (2), 400–416. doi:10.1016/j.cell.2018.
02.052

Llovet, J. M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M., et al.
(2016). Hepatocellular carcinoma.Nat. Rev. Dis. Prim. 2, 16018. doi:10.1038/nrdp.2016.18

Luo, J. P., Wang, J., and Huang, J. H. (2021). CDKN2A is a prognostic biomarker and
correlated with immune infiltrates in Hepatocellular Carcinoma. Biosci. Rep. 41 (10),
BSR20211103. doi:10.1042/BSR20211103

Lv, H., Liu, X., Zeng, X., Liu, Y., Zhang, C., Zhang, Q., et al. (2021). Cell division cycle
associated 8: A novel diagnostic and prognostic biomarker for hepatocellular carcinoma.
J. Cell. Mol. Med. 25 (24), 11097–11112. doi:10.1111/jcmm.17032

Lv, H., Liu, X., Zeng, X., Liu, Y., Zhang, C., Zhang, Q., et al. (2022). Comprehensive
analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma.
Front. Pharmacol. 13 (13), 930041. doi:10.3389/fphar.2022.930041

Masisi, B. K., El Ansari, R., Alfarsi, L., Rakha, E. A., Green, A. R., and Craze, M. L. (2020).
The role of glutaminase in cancer. Histopathology 76 (4), 498–508. doi:10.1111/his.14014

Matés, J. M., Campos-Sandoval, J. A., Santos-Jiménez, J. L., and Márquez, J. (2019).
Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett. 467, 29–39.
doi:10.1016/j.canlet.2019.09.011

Miao, Y., Wang, J., Li, Q., Quan, W., Wang, Y., Li, C., et al. (2020). Prognostic value and
immunological role of PDCD1 gene in pan-cancer. Source Int. Immuno- Pharmacol. 89,
107080. doi:10.1016/j.intimp.2020.107080

Newman, A. M., Liu, C. L., Green, M. R., Alizadeh, A. A., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 (5),
453–457. doi:10.1038/nmeth.3337

Poznanski, J., Soldacki, D., Czarkowska-Paczek, B., Bonna, A., Kornasiewicz, O.,
Krawczyk, M., et al. (2021). Cirrhotic liver of liver transplant recipients accumulate
silver and Co-accumulate copper. Int. J. Mol. Sci. 22 (4), 1782. doi:10.3390/
ijms22041782

Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021). Sintilimab plus a
bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular
carcinoma (ORIENT-32): A randomised, open-label, phase 2-3study. Lancet Oncol. 22
(7), 977–990. doi:10.1016/S1470-2045(21)00252-7

Shi, A. P., Tang, X. Y., Xiong, Y. L., Zheng, K. F., Liu, Y. J., Shi, X. G., et al. (2021).
Immune checkpoint LAG3 and its ligand FGL1 in cancer. Front. Immunol. 12, 785091.
doi:10.3389/fimmu.2021.785091

Siddiqui, M. A., Alhadlaq, H. A., Ahmad, J., Al-Khedhairy, A. A., Musarrat, J., and
Ahamed, M. (2013). Copper oxide nanoparticles induced mitochondria mediated
apoptosis in human hepatocarcinoma cells. PloS One 8 (8), e69534. doi:10.1371/
journal.pone.0069534

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics, 2022.
Cancer J. Clin. 72 (1), 7–33. doi:10.3322/caac.21708

Su, L., Wang, H., Miao, J., and Liang, Y. (2015). Clinicopathological significance and
potential drug target of cdkn2a/p16 in endometrial carcinoma. Sci. Rep. 5, 13238. doi:10.
1038/srep13238

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., et al. (2021).
The STRING database in 2021: Customizable protein-protein networks, and functional
characterization of user-uploaded gene/measurement sets. Nucleic. Acids. Res. 49 (D1),
D605–D612. doi:10.1093/nar/gkaa1074

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al.
(2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375
(6586), 1254–1261. doi:10.1126/science.abf0529

Wu, C., Qi, X., Qiu, Z., and Deng, G. (2021). Low expression of KIF20A suppresses cell
proliferation, promotes chemosensitivity and is associated with better prognosis in HCC.
Aging (Albany NY) 13 (18), 22148–22163. doi:10.18632/aging.203494

Wu, T., and Dai, Y. (2017). Tumor microenvironment and therapeutic response. Cancer
Lett. 387, 61–68. doi:10.1016/j.canlet.2016.01.043

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2013). Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic
biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961. doi:10.1093/
nar/gks1111

Frontiers in Pharmacology frontiersin.org15

He et al. 10.3389/fphar.2023.1088993

https://doi.org/10.1136/esmoopen-2019-000629
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/ncomms9971
https://doi.org/10.3390/biomedicines9080852
https://doi.org/10.1016/S1474-4422(14)70190-5
https://doi.org/10.1016/S1474-4422(14)70190-5
https://doi.org/10.1038/nature11003
https://doi.org/10.1016/j.cell.2013.08.003
https://doi.org/10.1016/j.cell.2013.08.003
https://doi.org/10.1007/s00775-013-1087-0
https://doi.org/10.1039/c6mt00202a
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.18632/oncotarget.3983
https://doi.org/10.1126/sciadv.abk1023
https://doi.org/10.3322/caac.21660
https://doi.org/10.1056/NEJMoa1915745
https://doi.org/10.3389/fgene.2022.942387
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/ncomms10640
https://doi.org/10.1016/j.ccell.2020.06.001
https://doi.org/10.1016/j.braindev.2021.11.005
https://doi.org/10.1073/pnas.1318431110
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.3109/10715769809066881
https://doi.org/10.3109/10715769809066881
https://doi.org/10.1155/2019/3046379
https://doi.org/10.1155/2019/3046379
https://doi.org/10.7150/jca.62491
https://doi.org/10.18632/aging.204403
https://doi.org/10.18632/aging.204403
https://doi.org/10.3389/fgene.2022.942785
https://doi.org/10.1016/j.ccell.2022.02.003
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1042/BSR20211103
https://doi.org/10.1111/jcmm.17032
https://doi.org/10.3389/fphar.2022.930041
https://doi.org/10.1111/his.14014
https://doi.org/10.1016/j.canlet.2019.09.011
https://doi.org/10.1016/j.intimp.2020.107080
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3390/ijms22041782
https://doi.org/10.3390/ijms22041782
https://doi.org/10.1016/S1470-2045(21)00252-7
https://doi.org/10.3389/fimmu.2021.785091
https://doi.org/10.1371/journal.pone.0069534
https://doi.org/10.1371/journal.pone.0069534
https://doi.org/10.3322/caac.21708
https://doi.org/10.1038/srep13238
https://doi.org/10.1038/srep13238
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1126/science.abf0529
https://doi.org/10.18632/aging.203494
https://doi.org/10.1016/j.canlet.2016.01.043
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1088993


Zhang, G., Sun, J., and Zhang, X. (2022). A novel Cuproptosis-related LncRNA signature
to predict prognosis in Hepatocellular Carcinoma. Sci. Rep. 12, 11325. doi:10.1038/s41598-
022-15251-1

Zhang, K., Fang, T., Shao, Y., and Wu 3, Y. (2021). TGF-β-MTA1-SMAD7-
SMAD3-SOX4-EZH2 signaling Axis promotes viability, migration, invasion and
EMT of hepatocellular carcinoma cells. Manag. Res. 13, 7087–7099. doi:10.2147/
cmar.s297765

Zhang, Y. J., Zhao, D. H., and Huang, C. X. (1994). The changes in copper contents and
its clinical significance in patients with liver cirrhosis and hepatocarcinoma. Zhonghua Nei
Ke Za Zhi 33 (2), 113–116.

Zhao, R., Choi, B. Y., Lee, M. H., Bode, A. M., and Dong, Z. (2016). Implications of
genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine 8,
30–39. doi:10.1016/j.ebiom.2016.04.017

Zhen, Z., Zhang, Z., Liu, Y., Zhang, X., and Song, Z. (2022). Cuproptosis-related risk
score predicts prognosis and characterizes the tumor microenvironment in hepatocellular
carcinoma. Front. Immunol. 13 (13), 925618–925715. doi:10.3389/fimmu.2022.925618

Zheng, W., Zhu, G. W., Huang, Y. J., Hua, J., Yang, S. G., and Zhuang, J. F. (2017).
PRR11 promotes growth and progress of colorectal cancer via epithelial-mesenchymal
transition. Int. J. Clin. Exp. Med. 10, 13109–13122.

Zhou, Y., Li, X., Guo, L., Tao, Y., Zhou, L., and Tang, J. (2022). Identification and
validation of a tyrosine metabolism-related prognostic prediction model and
characterization of the tumor microenvironment infiltration in hepatocellular
carcinoma. Front. Immunol. 13, 994259. doi:10.3389/fimmu.2022.994259

Zhou, Z., Zhou, Y., Liu, D., Yang,Q., Tang,M., and Liu,W. (2022). Prognostic and immune
correlation evaluation of a novel cuproptosis-related genes signature in hepatocellular
carcinoma. Front. Pharmacol. 13, 1074123. doi:10.3389/fphar.2022.1074123

Frontiers in Pharmacology frontiersin.org16

He et al. 10.3389/fphar.2023.1088993

https://doi.org/10.1038/s41598-022-15251-1
https://doi.org/10.1038/s41598-022-15251-1
https://doi.org/10.2147/cmar.s297765
https://doi.org/10.2147/cmar.s297765
https://doi.org/10.1016/j.ebiom.2016.04.017
https://doi.org/10.3389/fimmu.2022.925618
https://doi.org/10.3389/fimmu.2022.994259
https://doi.org/10.3389/fphar.2022.1074123
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1088993

	Identification and validation of a novel cuproptosis-related genes signature associated with prognosis, clinical implicatio ...
	1 Introduction
	2 Materials and methods
	2.1 Data download and preprocessing
	2.2 Difference analysis
	2.3 Comparison of cuproptosis-related genes under different clinical
	2.4 Construction of protein interaction network
	2.5 Gene correlation analysis
	2.6 Identification of cuproptosis-associated tumor subtypes
	2.7 Functional enrichment analysis
	2.8 Survival analysis
	2.9 Gene mutation and copy number variation analysis
	2.10 Immune cell infiltration calculation
	2.11 Drug sensitivity prediction
	2.12 Impact of immunotherapy response

	3 Results
	3.1 The landscape of cuproptosis-related genes in HCC
	3.2 Identification and characterization of cuproptosis-related molecular subtypes in HCC
	3.3 Construction and validation of cuproptosis-related genes signature
	3.4 Analysis of CRGs signature with clinical characteristics
	3.5 Characterization of molecular landscape, immunotherapeutic and druggable responses of cuproptosis-related genes signature

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


