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Background: Numerous studies have highlighted the crucial role of G protein-
coupled receptors (GPCRs) in tumor microenvironment (TME) remodeling and
their correlation with tumor progression. However, the association between
GPCRs and the TME in glioblastoma (GBM) remains largely unexplored.

Methods: In this study, we investigated the expression profile of GPCRs in GBM
using integrated data from single-cell RNA sequencing and bulk sequencing.
Surgical samples obtained frommeningioma andGBMpatients underwent single-
cell RNA sequencing to examine GPCR levels and cell-cell interactions. Tumor
microenvironment (TME) score is calculated by the infiltrated immune cells with
CIBERSORT.

Results: Our findings revealed a predominantly increased expression of GPCRs in
GBM, and demonstrated that the classification of GPCRs and TME is an
independent risk factor in GBM. Patients with high GPCR expression in the
tumor tissue and low TME score exhibited the worst outcomes, suggesting a
potentially aggressive tumor phenotype. On the other hand, patients with low
GPCR expression in the tumor tissue and high TME score showed significantly
better outcomes, indicating a potentially more favorable tumor
microenvironment. Furthermore, the study found that T cells with high GPCR
levels displayed extensive cell-cell connections with other tumor and immune
cells in the single cell RNA analysis, indicating their potential involvement in
immune escape.

Conclusion: In conclusion, GPCRs in combination with TME classification can
serve as prognostic markers for GBM. GPCRs play an essential role in tumor
progression and the TME in GBM.
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1 Introduction

Glioma, including glioblastoma (GBM), is a highly malignant
cancer of the central nervous system with a low survival rate
(Wijethilake et al., 2021). Standard therapies have limited
effectiveness (Olgun et al., 2021), resulting in a high risk of
recurrence and metastasis (Mohme et al., 2020). Therefore, there
is an urgent need to identify novel therapeutic targets for GBM
treatment.

Orphan G protein-coupled receptors (GPCRs) are a vast
superfamily of cell surface receptors, which have been implicated
in tumor growth and metastasis (Feigin, 2018). However, their role
in glioma has not been adequately assessed (Trzaskowski et al.,
2012). Upon ligand binding, GPCRs undergo conformational
changes (Gookin et al., 2008) and activate downstream signaling
pathways. Abnormal activation of GPCRs can lead to aberrant cell
proliferation and metastasis in cancer (Arang and Gutkind, 2020).

The tumor microenvironment (TME) has emerged as a crucial
player in cancer progression, particularly involving immune cells
(Takasugi et al., 2022; Tamai et al., 2022). Tumor-infiltrating
lymphocytes (TILs), including T cells, are important cytotoxic
fractions within the TME (Sugimura and Chao, 2022).
Understanding the function and mechanisms of T cells in the
TME can provide valuable insights for glioma treatment,
especially immunotherapy (Boissonnas and Combadière, 2022; Li
et al., 2022). Despite numerous clinical trials targeting T cells
(Andersen et al., 2022; Wang et al., 2022), such as chimeric
antigen receptor T-cell immunotherapy (CAR-T) therapy
(Berdeja et al., 2021; Fowler et al., 2022; Hu et al., 2022;
Ottaviano et al., 2022; Qi et al., 2022; Sallman et al., 2023), the
outcomes in GBM immune therapy have been unsatisfactory
(Cloughesy et al., 2019; Song et al., 2020; Hajji et al., 2022). The
limited success of immunotherapy in GBM treatment may be
attributed to the internal heterogeneity of immune cells,
including T cells (Jacob et al., 2020; Wang et al., 2020;
Medikonda et al., 2021).

Previous studies have examined specific G protein-coupled
receptors (GPCRs) in glioma. Notably, the expression of C-C
motif chemokine receptor 5 (CCR5) has been found to increase
in glioma cells and mesenchymal stem cells, correlating with poor
prognosis in patients (Kouno et al., 2004; Wang et al., 2016; Laudati
et al., 2017; Kranjc et al., 2019; Novak et al., 2020). Additionally,
glioblastoma stem cells have been found to express the receptor
C-X-C receptor type 4 (CXCR4), which interacts with the
chemoattractant stromal-derived factor-1α (SDF-1α). Inhibition
of both CXCR4 and SDF-1α can disrupt the niche of cancer stem
cells in glioblastoma (Hira et al., 2017, 2020). However, the role of
GPCRs in TME of glioma remains largely unexplored.

This study aims to investigate the function and mechanisms of
T cells in the tumor immune microenvironment (TIME) of GBM,
particularly focusing on the role of GPCRs. The researchers use
single-cell RNA sequencing to elucidate the expression profile and
interactions of GPCRs and immune components in GBMTME. This
research can provide valuable insights into the potential
involvement of GPCRs in GBM progression and immune
responses, ultimately aiding in the development of novel
therapeutic approaches for GBM treatment, including
immunotherapy.

2 Methods

2.1 Data download

The TCGA-GBM dataset was obtained from the UCSC Xena
website (https://xenabrowser.net/datapages/). The Chinese Glioma
Genomic Atlas (CGGA) dataset was acquired from the CGGA
website (http://www.cgga.org.cn/).

2.2 Data preprocessing and GPCR genes
screening

The TCGA-GBM dataset which have 169 GBM patients and five
healthy controls underwent preprocessing using the Affy package in R
for normalization and RMA correction. To address the batch effect
between the TCGA-GBM dataset and CGGA datasets, the Limma and
sva packages were utilized. From the Molecular Signatures Database
(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_
G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY), a total of
870 GPCR-related genes were obtained, and 18 genes associated
with GPCR exhibited correlation or survival status. Differentially
expressed genes (DEGs) were identified based on log2 fold change
(log2FC) > 1 and adjusted p-value <0.05. Ethical approval for the study
was obtained from the local ethical committee at Shanghai Pudong
New area People’s Hospital.

2.3 Construction of the risk model
associated with GPCR

GBM patients with effective survival data ranging from 2 days to
3,881 days were included in the study. Univariate and multiple Cox
models were employed to evaluate the relationship between GPCR
genes and the survival status of GBM patients. The risk score was
calculated using the formula: Risk score = Coefficient of mRNA ×
risk genes. The Least Absolute Shrinkage and Selection Operator
(LASSO) method was applied to determine the precise coefficient of
each gene based on survival status. The R packages “survival” and
“survminer” were utilized to compare the survival status between
high- and low-risk groups. The association between survival status,
GPCR genes, and the TME was assessed using KM plots, which were
further validated with in-house single-cell RNA sequencing data.
The TME score, calculated based on infiltrated immune cells using
CIBERSORT, determined high TME (indicating a hot tumor with
increased infiltrated and functional immune cells) and low TME
(indicating a cold tumor with reduced immune cell infiltration). The
high GPCR and low GPCR groups were classified based on the
LASSO risk score. The exact TME and GPCR scores for each sample
can be found in Supplementary Table S2, S3.

2.4 Gene set enrichment analysis

Both Gene Set Enrichment Analysis (GSEA) and the fast gene set
enrichment analysis (fGSEA) were employed to quantify the score of
specific gene sets in each sample. fGSEA was used to calculate gene
enrichment in GBM patients with different GPCR and TME status.
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2.5 External validation of the models

The CGGA dataset served as an external validation cohort for
the risk model. GPCR scores for each patient were calculated using
the formula from the TCGA model, and patients were subsequently
categorized into high- and low-GPCR groups.

2.6 Weighted Co-Expression network
analysis (WGCNA)

WGCNA analysis is a computational method for identifying co-
expressed genes among different groups and identify marker genes
based on the non-orientation analysis between gene sets and
phenotypes. Here, WGCNA was utilized to identify gene
modules related to different clusters in glioblastoma.

2.7 Single cell sequencing data obtained and
processing

The single-cell data were obtained from our surgical samples:
one is glioblastoma and the other is meningioma (serving as
controls). The meningioma is a benign brain tumor without
aggressive cell proliferation and invasiveness. The ethics was
approved form the local ethical committee (2022-K18) and the
patients’ approval has been obtained before the surgery for the
willing on the surgery and taking part in this research. The consent
form was also obtained from the patients and their relatives.

The exact procedure for scRNA-seq for brain tissues could be
obtained from the 10X website (https://www.10xgenomics.com/cn/
resources/document-library/4a0968). Fresh brain surgical samples
from two brain tumor patients were collected and single-cell
suspensions were isolated with the assay within 12 h after the
surgery. Single-cell 3′libraries were constructed following the 10X
Chromium protocol, and each single-cell 3’ library was sequenced
using the Illumina Novaseq 6,000. The sequencing depth ranged
from 35,000 to 50,000 mean reads per cell. And the estimated
number of cells are 10,000–13,000. The median genes per cell is
2000–2,500. The database construction, sequencing, and data
analysis were completed by Shanghai Ouyi Biomedical
Technology Co., Ltd. Produced during high-throughput
sequencing. The raw data (in fastq format), was processed using
the CellRanger software from 10x Genomics. According to the data
quality statistics and comparison with the reference genome, the
software can distinguish cells by Recognition sequence. The high-
throughput single cell Transcriptome was quantified by sequence
markers and UMImarkers of different mRNAmolecules in each cell
to obtain quality control statistical information such as high-quality
cell count, gene median, and sequencing saturation. We processed
the unique molecular identifier (UMI) count matrix using the R
package Seurat (version 4.1.1). We first normalized the data with
sctransform (SCT) in order to account for variance in sequencing
depth across data points, detecting high-variance features, and stores
the data in the SCT assay. Next, we carried out data quality control.
We captured cells with less than 10% mitochondrial genes, and a
total number of gene count ranging from 200 to 10,000, expressed in
at least 3 cells were selected. Highly variable genes was set at 2000

(Zhang et al., 2021). The two samples (glioblastoma and
meningioma) were integrated through single-cell transform (SCT)
correction, and the uniform Manifold Approximation and
Projection (uMAP) method was employed for data dimension
reduction. Cellchat R package was applied to explore the cell-cell
interaction between the cell clusters. The strength of cell-cell
interaction is based on the total weight of ligand-receptor
between different cell clusters, which includes the interaction
number and communication probability (Jin et al., 2021). The
monocle method was used for pseudo-time analysis to identify
the stage and gene changes of T cells. GPCR extent was
compared between glioblastoma and meningioma using the
addmodulescore method.

2.8 Pseudo-time analysis

Pseudo-time analysis was performed using the R package
monocle v2.16.0 to obtain genes required for calculating pseudo-
time. Differential gene expression analysis was conducted among
T cells from different pathological stages. After calculating pseudo-
time, differential gene expression analysis was repeated to determine
genes that changed as a function of pseudo-time. The cell state
containing the greatest number of S0-stage cells was considered the
root state. The threshold of the q-value for multiple testing involved
in the selection of differentially expressed genes (DEGs) was set
at 0.01.

2.9 Tumor mutation burden (TMB) and
genes mutations between GPCR low and
GPCR high group

The maftools package (Mayakonda et al., 2018) was utilized for
visualizing somatic mutations and determining the TMB of each
patient. TMB status was compared between patients with high and
low GPCR scores. Survival status, the expression levels of immune
checkpoint molecules, and human leukocyte antigen (HLA)markers
were also compared.

2.10 Statistical analysis

All data analyses were performed in R v4.0.3, and a
p-value <0.05 was considered statistically significant.

3 Results

The schematic flow of the study was shown in Supplementary
Figure S1.

3.1 The prognosis-related GPCR genes
in GBM

Figure 1A shows a heatmap demonstrating the distribution of top
GPCR genes between two groups. Lasso regression analysis was
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conducted and identified ten GPCR genes related to survival status
(Figure 1B). Using the bootstrap method, a GPCR score was
constructed with the following coefficients:

1.076*ADRB3+0.180*GPCR68 + 0.468*TPRA1+0.193*GPCR82
+ 0.111*HTR7+0.583*CRCP+0.402*GPBAR1+(-0.226)
*GLP1R+0.046*F2RL2+0.024*FZD1 (Figure 1C). Multiple cox

FIGURE 1
The screening of G protein-coupled receptors (GPCRs) in glioblastoma (GBM) and their association with survival status (A) The heatmap shows the
expression level of GPCRs between the GBM and control groups (B, C) Lasso regression model identifies the top ten GPCRs associated with the survival
status in GBM (D) The multiple cox analysis determines the risk factors of GPCRs in GBM (E, F) The univariate and multivariate Cox analysis of GPCR and
TME classifier in the survival status of GBM (G) The KM plot depicts the survival probability among different groups from TCGA dataset (H) The KM
plot shows the survival probability among different groups from CGGA dataset.
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analysis indicated that only CRCP was an independent risk factor in
GBM (Figure 1D). However, we found that the GPCR_TME classifier
was also an independent risk factor with a high odds ratio of 1.51, as
illustrated in Figures 1E,F. Therefore, the classifier based on high
GPCR/low GPCR or high TME/low TME can be used to predict the
survival status in GBM, with the worst outcome observed in patients
with high GPCR/low TME and a better survival status in those with
low GPCR/high TME (p < 0.001). This classifier was also validated in
the CGGA dataset, demonstrating that in patients with high GPCR
and shorter survival status, the TME did not differentiate the outcome.
However, in patients with low GPCR status, the TME could further
classify patients based on the survival status (Figures 1G,H).

3.2 Construction of Co-expression network

The co-expression network was identified using WGCNA,
resulting in the identification of twelve modules (Figure 2A). The
correlation between these twelve modules and the two groups was
assessed by measuring the correlation between ME values and
clinical features (Figure 2B). The results indicate that the brown
and green modules positively correlate with the GPCR_high_
TME_low phenotype (r = 0.51, p = 2e-12; r = 0.48, p = 7e-11) and
negatively correlated with the GPCR_low_TME_high phenotype

(r = -0.38, p = 5e-07; r = -0.27, p = 4e-04, Figure 2B). Genes in the
green and brown modules were listed in Supplementary Table S4.
Additionally, fGSEA indicate that the GPCR_high_TME_low
group exhibit a positive correlation with positive regulation of
T cell proliferation, while the GPCR_low_TME_high group show
a negative association with T cell mediated immunity
(Figure 2C). In the GPCR high and TME high group, there is
also an association with the GPCR signaling pathway and a
negative correlation with T cell-mediated immunity.
Therefore, both GPCR and TME status might be involved in
the T cell activity.

The TCGA samples were classified into three clusters: tumor,
immune, and stromal parts (Figure 3A). Further analysis using the
AddModuleScore method revealed significant enrichment of GPCR
genes in immune cells (Figure 3B). This finding was consistent with
the violin graph presented in Figure 3C. As GPCR-related genes
were primarily expressed in immune cells, we investigated cell-cell
interactions at a single-cell level using the CellChat R package. The
analysis revealed strong interactions between several cell types
(Figure 3D). The bubble plot of the network indicated that
T cells with high GPCR levels were connected to tissue stem cells
via PTN/NCL, while this connection was absent in T cells with low
GPCR levels. Additionally, T cells with high GPCR levels were
connected to macrophages via Tnf/Tnfrsf1b, which was not

FIGURE 2
The enrichment pathway analysis among the four clusters in GBM. (A). WGCNA analysis identifies modules related to GBM survival (B) The
correlation between the modules in four groups (C) fGSEA analysis shows different pathway enrichments among the groups.
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observed in T cells with low GPCR levels. These results suggest that
immune cells with high GPCR levels may be involved in immune
escape (Figure 3E). Comparison of GPCR levels between the GBM
group and the meningioma group, based on in-house sc-RNA seq
data, revealed significantly higher GPCR levels in the GBM group
(Figure 3F).

Subsequently, T cells were reclustered, leading to the
identification of 11 T sub-clusters (Figure 3G). Cluster eight and
Cluster 10 exhibited significantly higher GPCR scores (Figure 3H).
Pseudo-time analysis demonstrated that T cells had three stages, and
there was a transition of T cell clusters from low GPCR to high
GPCR levels (Figure 3I).

Considering the differences in GPCR scores between tumor
and immune cells, we further compared the tumor mutation
burden (TMB) level between different groups. Although not
statistically significant, the TMB level was higher in the GPCR_
low + TME_high group compared to the GPCR_high + TME_low
group (Figure 4A). Consequently, the classifier based on GPCR
level and TME level was unable to differentiate the survival status
among these groups, although a trend was observed between the
GPCR_low + TME_high group and the GPCR_high + TME_low

group (Figure 4B). We then analyzed gene mutations between the
two groups. In the GPCR_high + TME_low group (Figure 4C), the
mutation level was lower compared to the GPCR_low + TME_high
group (Figure 4D). The mutation percentage of each gene is also
listed in Figures 4C,D. In the GPCR_low + TME_high group, the
top five mutated genes were TP53 (39%), PTEN (34%), TTN
(26%), EGFR (24%), and NF1 (21%), while in the GPCR_high
+ TME_low group, the top five mutated genes were EGFR (34%),
TP53 (34%), TTN (29%), MUC16 (22%), and PTEN (22%).
Moreover, expression of most immune checkpoints and HLA
molecules was significantly higher in the GPCR_high + TME_
low group, including BTLA, CD209, CD274, CD80, CD86, CTLA4,
and PDCD1. Regarding the expression of HLA molecules, their
levels were significantly higher in the GPCR_high + TME_low
group.

4 Discussion

Previous studies have highlighted the critical roles of the TME in
cancer (Sharma et al., 2019; Deng et al., 2020; Miyazaki et al., 2020;

FIGURE 3
The GPCR scores betweenGBM andmeningioma in our in-house single-cell RNA sequencing data (A) The specific cell clusters are shownwith their
markers (B) The GPCR scores among the tumor, immune and stromal parts assessed by addmodulescore (C) The comparison of GPCR score among the
three groups withwilcox test (D) The number of interactions and interactionweights between several cell types (E) The bubble plot shows the relationship
between cell types and ligand-receptor (F) The comparison of GPCR score between glioma and meningioma (G) The sub-cluster of T cells in the
GBM (H) The GPCR score in different T cell sub-clusters (I) The pseudo-time analysis of the T cell sub-cluster.
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Qu et al., 2021), particularly in the heterogeneity and biological
features of different TMEs. However, the precise mechanism by
which GPCRs affect the TME remains a significant area of
investigation. In this study, we investigated the expression profile
of GPCRs in glioblastoma using both tumor bulk and single-cell
RNA sequencing to evaluate their abundance and their association
with TME, aiming to determine if they were a prognostic classifier
for GBM.

Previous studies have also highlighted GPCRs as influential
components of immune cells in various cancers (Zhang et al.,
2010). GPCRs exert their function through ligand binding and
direct cell-cell interactions (Yang et al., 2020). Notably, a series of
adhesion GPCRs exhibit high expression levels in GBM tissues
(Stephan et al., 2021), which aligns with our study (Figure 1A).

GPCR160 is upregulated in U251 and H4 glioma cell lines, and its
downregulation with siRNA has led to inhibited glioma cell
proliferation, reduced migration, induced apoptosis, and
decreased EMT biomarkers (Abbas et al., 2022). Similarly,
miRNA-449a-mediated inhibition of GPCR158 suppressed
glioma proliferation, particularly in high-grade glioma, while
knockdown of GPCR158 increased the proliferation,
migration, and sphere formation in GBM cell lines (Li et al.,
2018).

Although there are currently no approved therapies targeting
GPCRs in GBM, their unique characteristics, including high
expression levels in GBM tissues and their ability to pass through
the blood-brain barrier, make them promising targets for
pharmaceutical intervention. Through multiple cox analysis, we

FIGURE 4
The classifier with GPCR and TMB in predicting survival probability in GBM (A) The TMB levels between theGPCR_low+TME_high andGPCR_high+
TME_low groups (B) The survival probability among the four groups (C–D) The heatmap depicts themutated genes between the GPCR_low + TME_high
and GPCR_high + TME_low groups. The percentage of gene mutation is listed (E) The expression levels of immune check points are compared among
the groups (F) The expression levels of HLA molecules are compared among the groups.
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identified CRCP as an independent risk factor in GBM and a
potential novel target for treating glioblastoma.

Employing GSEA, we observed that high GPCR levels were
associated with coagulation and complement system pathways,
while low GPCR levels were negatively correlated with oxidative
phosphorylation. Moreover, the TME high group showed a negative
correlation with the complement and coagulation cascades, while
the TME low group displayed a negative association with the
p53 signaling pathway (Supp Fig 2). Abnormal coagulation is a
pathology recently found in different cancers (Maruyama et al.,
2022), which is related to the tumor thrombosis (Dirix et al., 2022;
Sun et al., 2022). Our study may propose a new function of GPCR in
the pathology of abnormal coagulation, which deserves further
experiments.

Examining T cells based on their GPCR levels, we found that
only those with high GPCR levels exhibited significant cell-cell
interactions with tissue stem cells via PTN/NCL, while this
connection was absent in T cells with low GPCR levels.
Additionally, T cells with high GPCR levels demonstrated a
connection with macrophages through Tnf/Tnfrsf1b, which was
not observed in T cells with low GPCR levels. Studies in mice have
suggested that Tnfrsf1b plays a role in protecting neurons from
apoptosis by stimulating antioxidative pathways and inhibiting
inflammatory pathways (Iosif et al., 2008). TNFα, a pro-
inflammatory cytokine highly expressed in GBM, can bind to
two receptors: TNFRSF1A and TNFRSF1B. Depletion of Tnfrsf1a
can lead to neuroblast and subventricular zone cell proliferation
(Iosif et al., 2008). Using cellchat analysis, we found that
macrophages secreted TNF to T cells, which then bound to TNF
receptors. This is the first time that GPCR has been linked to TNF in
glioma. As CRCP encodes the protein which is a component of
calcitonin gene-related peptide (CGRP) receptor and CGRP has
been reported in neuroendocrine tumors, however, CRCP itself has
not been mentioned by previous studies (Song et al., 2012; Kuo et al.,
2022). Additionally, TNFα is thought to be a triggering factor in
thrombus formation via activation of the complement system (Page
et al., 2018). It might be proposed that increased TNFα in
macrophage contributes to the thrombus in glioma (Czap et al.,
2019; Kaptein et al., 2022). However, the intricate relationship
between GPCR, TNF, and coagulation in glioma requires further
investigation in future studies.

We also employed Proteomaps to examine protein functions
within each cluster and observed that GPCR genes were prominently
enriched among the up-regulated genes in the GPCR low group,
regardless of immune therapy response. However, these GPCR
genes were absent among the down-regulated genes in both the
GPCR high and no response groups. This implies that targeting
GPCR could serve as a potential strategy for GBM (Supp Fig 3).

Recent studies have associated GPCRs, particularly the
prostanoid receptor family, including EP receptor 1, EP2, EP3,
and EP4, with cancer immune evasion, where PGE2, the most
prevalent prostaglandin in cancers (Wu et al., 2019).
PGE2 secreted from cancer cells is associated with increased
FOXP3 expression in Treg cells (Baratelli et al., 2005), a key
component of the immune-suppressive environment. Apart from
Tregs, PGE2 has been observed to recruit additional MDSCs
(Obermajer and Kalinski, 2012) and deactivate CD8 T cells (Song

et al., 2012). Hence, these GPCRs (EP receptors) present ideal targets
for tumor immune therapy.

The study has some limitations that warrant attention. Firstly,
the bulk-seq data (TCGA-GBM and CGGA) were obtained from
public databases with a limited sample size. Although our in-house
scRNA-seq data originated from surgical samples, only two brain
tissues were included. Further research with larger sample sizes
from multiple centers is crucial to validate our current results.
Secondly, for comparison with the glioblastoma sample, we used
meningioma as the control. Since it was unfeasible to acquire
completely normal brain tissue for this study, meningioma, mostly
a benign tumor with fewer invasive and invaded cells, was utilized.
Lastly, the functions and potential molecular mechanisms of
GPCR genes are highly intricate, necessitating additional
experimental verification and the development of
pharmaceutical drugs using cell and animal models.

5 Conclusion

To conclude, our study combines the analysis of publicly
available bulk RNA-seq data with in-house scRNA-seq data to
uncover GPCR-related genes and their contributions to the
immune and survival phenotypes of GBM. These findings have
the potential to yield valuable biomarkers and therapeutic targets
for GBM.
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