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Cancer is a major threat to human health, with high mortality and a low cure rate,
continuously challenging public health worldwide. Extensive clinical application of
traditional Chinese medicine (TCM) for patients with poor outcomes of
radiotherapy and chemotherapy provides a new direction in anticancer
therapy. Anticancer mechanisms of the active ingredients in TCM have also
been extensively studied in the medical field. As a type of TCM against cancer,
Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in
clinical application. The main active ingredients of Rhizoma Paridis (e.g., total
saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have
shown strong antitumor activities in various cancers, such as breast cancer,
lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric
cancer. Rhizoma Paridis also has low concentrations of certain other active
ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin
H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied
the anticancer mechanism of Rhizoma Paridis and its active ingredients. This
review article describes research progress regarding the molecular mechanism
and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that
various active ingredients in Rhizoma Paridis may be potentially therapeutic
against cancer.
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Research background

With the growth of aging populations globally, the incidence of cancer is also increasing,
which seriously affects the quality of life and life expectancy of cancer patients and has
become one of the main causes of death in countries worldwide (Torre et al., 2016).
Carcinogenesis is a complex process involving multiple causes including cellular damage,
inflammation, proliferation, and genomic instability, leading to alterations in several
oncogenic pathways that induce cancer (Liao et al., 2019). To date, many procedures are
available to treat cancer that some called “local treatments” such as surgery and radiation
therapy which are used for specific tumors or areas. And some are “systemic treatments” that
affect the entire body, including chemotherapy, immunotherapy, or targeted therapy. In
some case, complementary and alternative therapies are also applied in cancer treatment
(Chang et al., 2017). However, these approaches are not very effective because of metastasis

OPEN ACCESS

EDITED BY

Junmin Zhang,
Lanzhou University, China

REVIEWED BY

Chao Zhang,
China Pharmaceutical University, China
Iti Gupta,
Indian Institute of Technology
Gandhinagar, India

*CORRESPONDENCE

Qiusheng Zheng,
zqsyt@sohu.com

Defang Li,
lidefang@163.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 11 November 2022
ACCEPTED 10 February 2023
PUBLISHED 21 February 2023

CITATION

Li J, Jia J, Zhu W, Chen J, Zheng Q and
Li D (2023), Therapeutic effects on cancer
of the active ingredients in
rhizoma paridis.
Front. Pharmacol. 14:1095786.
doi: 10.3389/fphar.2023.1095786

COPYRIGHT

© 2023 Li, Jia, Zhu, Chen, Zheng and Li.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 21 February 2023
DOI 10.3389/fphar.2023.1095786

https://www.frontiersin.org/articles/10.3389/fphar.2023.1095786/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1095786/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1095786/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1095786&domain=pdf&date_stamp=2023-02-21
mailto:zqsyt@sohu.com
mailto:zqsyt@sohu.com
mailto:lidefang@163.com
mailto:lidefang@163.com
https://doi.org/10.3389/fphar.2023.1095786
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1095786


and recurrence even after surgery and many side effects in patients
after radiotherapy and chemotherapy (Long et al., 2015). Hence, it is
crucial to develop new and effective anticancer drugs to inhibit
tumor growth and improve the quality of life and survival of cancer
patients. More and more traditional Chinese medicines (TCMs),
such as Rhizoma Paridis, toad venom, Prunella vulgaris, and
Solanum nigrum, have been used in anticancer therapy in TCM,
which has gradually become an indispensable tool against cancer
(Xiang et al., 2019; Zhang et al., 2020; Li et al., 2021; He et al., 2021).

Rhizoma Paridis is the dried root and rhizome of Paris polyphlla, a
perennial herbaceous plant of the Liliaceae (Chinese Pharmacopeia), or
Melanthiaceae (The World Flora Online) mainly distributed
throughout southwest China. Rhizoma Paridis is listed in the
Pharmacopoeia of the People’s Republic of China as the main TCM
for heat-clearing and detoxifying (Commission, 2015). According to
TCM theory, Rhizoma Paridis has the above functions as well as those
of alleviating inflammation (swelling) and relieving pain; it has been
extensively used to treat pharyngitis, venomous snake bites, pain, and
convulsions (Ding et al., 2021). Rhizoma Paridis is also the main
ingredient in many renowned traditional Chinese patent medicines
(TCPMs), such as Yunnan Baiyao and Gongxuening capsules
(Cunningham et al., 2018). In addition, Rhizoma Paridis has strong
antitumor effects and has been widely used in TCM prescriptions for
cancer treatments in recent years.

With the development of chemical extraction technology, the
active ingredients of Rhizoma Paridis have gradually been identified.
The chemical components of Rhizoma Paridis mainly include
steroidal saponins, C21 steroids, flavonoids, polysaccharides, and
amino acids (Su et al., 2022). As the main active ingredients,
steroidal saponins have been shown to have good pharmacological
activity (Qin et al., 2016). Specifically, polyphyllin I, polyphyllin II,
polyphyllin VI, and polyphyllin VII have been extensively reported as
the main active ingredients against cancer (Wu et al., 2012). In
addition, the anti-tumor effects of some low-abundance active
ingredients in Rhizoma Paridis have been reported in previous
studies, such as Paris polyphylla-22 (PP-22, promotes autophagy
and apoptosis in nasopharyngeal carcinoma cells) (Tan et al.,
2019), polyphyllin E (inhibits proliferation, migration and invasion
in ovarian cancer cells) (Liu. et al., 2022), Paris saponinH (induces cell
apoptosis, suppresses EMT and invasion in liver cancer cells) (Chen
et al., 2019), formosanin C (inhibits pulmonary metastasis on mouse
lung adenocarcinoma) (Man et al., 2011b), and gracillin (induces
apoptosis and inhibits migration in BGC823 cells) (Liu et al., 2021). In
additional, previous studies have demonstrated anticancer activities of
polyphyllin in Rhizoma Paridis in a variety of cancers, including lung
cancer (Shuli et al., 2011), gastric cancer (Sun et al., 2007), colon
cancer (Teng et al., 2015), prostate cancer (Zhang et al., 2018), and
melanoma (Man et al., 2011a). Although increasingly more scientists
and experts in the medical field have researched the active ingredients
in Rhizoma Paridis, due to its complex combination of active
ingredients and anticancer mechanisms (Zhang et al., 2010),
further research is needed to reveal the mechanism of some active
ingredients in Rhizoma Paridis.

In this article, we reviewed the research results regarding active
ingredients in Rhizoma Paridis in regulating tumor cells, and we
explore and discuss the mechanisms of the main active ingredients
in Rhizoma Paridis in regulating different cancers, different
signaling pathways, and different molecular targets.

Methods and strategies

We searched the published literature the databases Web of Science,
PubMed, ChinaNational Knowledge Infrastructure, andWanfangData
up to July 2022 for original research articles related to the antitumor
effects of active ingredients in Rhizoma Paridis against cancer and
Rhizoma Paridis combination therapy. Key words: cancer, Chinese
medicine, Rhizoma Paridis, Rhizoma Paridis saponins, polyphyllin I,
polyphyllin II, polyphyllin VI, polyphyllin VII.

Application of Rhizoma Paridis and research
on its active ingredients

Since ancient China, Rhizoma Paridis has generally used in the
dosage of 9 g to treat inflammation, infection, sore throat, and bleeding.
Pharmacological studies have shown that Rhizoma Paridis has
significant antitumor, hemostatic, antiinfection, and antioxidant
activities (Zhao et al., 2009; Liu et al., 2012b). Rhizoma Paridis is
the main ingredient in well-known TCPMs including Yunnan Baiyao,
Gongxuening capsule, and Baibaodan that are mainly used for
promoting blood circulation, removing blood stasis, heat-clearing,
detoxifying, and regulating menstruation, according to TCM theory
(Liu et al., 2009; Yao et al., 2021). Moreover, as a traditional anticancer
TCM, the active ingredients of Rhizoma Paridis have been widely
studied as potential new anticancer drugs. Studies have shown that the
root extract of Rhizoma Paridis has obvious inhibitory effects on lung
cancer, gastric cancer, colon cancer, and breast cancer (You et al., 2021).
Other studies have also shown that the fruit and aerial parts of Rhizoma
Paridis have the effects of inhibiting the migration of cancer cells (Qin
et al., 2018; Lin et al., 2021).

Research on Rhizoma Paridis extraction and identification has
confirmed that the active ingredients in Rhizoma Paridis include
steroidal saponins, cholesterol, C21 steroids, phytosterols, insect
allergens, triterpenoids, flavonoids, and other chemical compounds
(Wei et al., 2014). Steroidal saponins, also known as Rhizoma Paridis
saponins (RPS), are themain biologically active chemical components of
Rhizoma Paridis and are divided into four types (Kang et al., 2012):
spirostanol; isosprirostanol; furostanol; and pseudospirostand and
mainly include polyphyllin I, polyphyllin II, polyphyllin VI,
formosanin C, polyphyllin VII, gracillin, and other saponin active
ingredients (Figure 1). Numerous studies have shown that saponins
have antitumor activities in a variety of tumor cells. Among them, five
steroidal saponins including total saponins, polyphyllin I, polyphyllin II,
polyphyllin VI, and polyphyllin VII have aroused themost attention and
have been studied the most. The antitumor activities of these five
steroidal saponins have also been verified in a variety of cancers.

Antitumor effects of RPS

RPS is a general term for steroidal saponins in Rhizoma Paridis, with
strong activity against hepatocellular carcinoma (HCC), lung cancer,
colon cancer, and glioma (Man et al., 2009; He et al., 2014; Qiu et al.,
2016; Yao et al., 2018; Lin et al., 2019). RPS has been widely reported as a
potential anticancer drug with the main mechanism of inhibiting cell
proliferation, inducing apoptosis, autophagy, and cell cycle arrest, as well
as enhancing the sensitivity of chemotherapeutic drugs (figure 2).
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Anti-HCC activities of RPS

Protein analysis using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry in RPS-treated
hepatoma HepG2 cells revealed that the levels of deoxyuridine
triphosphatase, heterogeneous nuclear ribonucleoprotein K, and
guanosine monophosphate synthetase were significantly high

whereas levels deoxyribonuclease gamma, nucleoside diphosphate
kinase A, and centrin-2 were significantly low in the cells. These
protein molecules have been confirmed to be closely related to
tumorigenesis and tumor progression (Cheng et al., 2008). A recent
study showed that RPS treatment in H22 mice bearing HCC not
only inhibited but also slowed tumor growth in the mice. RPS also
inhibited the metabolism of glycine and serine, reversed aerobic

FIGURE 1
Isospirostanol type parent nucleus (A,B), Rhizoma Paridis saponins (C), polyphyllin I (D), polyphyllin II (E), polyphyllin VI (F), polyphyllin VII (G),
polyphyllin E (H), Gracillin (I), Formosanin C (J), and polyphyllin H (K). “R1” indicates that different functional groups represent different types of saponins
with different molecular structures.
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glycolysis, and suppressed adipogenesis, thereby inhibiting the
metabolism of tumor cells and effectively suppressing the growth
of hepatoma in tumor-bearing mice (Qiu et al., 2016). Another
experimental study in H22 tumor-bearing mice also confirmed that
RPS significantly reduced levels of glucose, glycine, and alanine and
inhibited the fatty acid oxidation pathway and gluconeogenesis
pathway that are involved in the body’s energy supply, thereby
exerting an anticancer effect (Man et al., 2014b). RPS may also
overcome sorafenib resistance in mice hepatocellular carcinoma
H22-bearing through the mitochondrial damage pathway and
inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) pathway-based lipid
synthesis (Yao et al., 2018). In short, RPS is a potential future
therapeutic agent against HCC.

Anti-lung cancer activities of RPS

For a long time, RPS has been studied for its therapeutic effect on
lung cancer. Overexpression of matrix metalloproteinases (MMPs)
occurs in a variety of malignant tumors and promotes tumor
development by promoting cancer cell growth and migration as
well as tumor invasion, metastasis, and angiogenesis (Hidalgo and
Eckhardt, 2001). RPS inhibits the expression and secretion of
MMP2 and MMP9 in A549 lung cancer cells to further inhibit
the proliferation, migration, and differentiation of A549 cells (He
et al., 2014). Another study has shown that RPS significantly
downregulates the expression of P53, B-cell lymphoma 2 (BCL2),
and cyclin-dependent kinase 2 (CDK2) and significantly upregulates
the expression of P21 and BCL2-associated X (Bax) in A549 cells,
thereby inducing cell cycle arrest at the G1 phase. P53 is an

important tumor suppressor regulating cell growth and apoptosis
in the process of carcinogenesis. RPS directly or indirectly affects the
expression of target-regulated p53, thereby changing the expression
of downregulated genes including P21, Bax, BCL2, and CDK2 and
resulting in inhibition of cell proliferation, cell cycle arrest, and
apoptosis (Zhang et al., 2015). In addition, RPS reduces the level of
inflammatory cytokines, tumor necrosis factor-alpha (TNF-α),
interleukin (IL)-8 and IL-10 in the serum of C57BL/6 mice
through immunomodulation and induces nuclear changes in
A549 cells, such as DNA condensation and chromatin
fragmentation, thereby inducing apoptosis in the cells. The
inhibitory effect of RPS in lung cancer may be achieved by
reducing the inflammatory response and inducing tumor cell
apoptosis (Li et al., 2013). RPS also has an inhibitory effect in
diethyl nitrosamine (DEN)-induced lung adenoma to significantly
reduce energy metabolism and glycine, serine, and threonine
metabolism, thereby blocking tumor growth. In addition, RPS
significantly reduces the expression of inflammatory cytokines,
such as TNF-α, IL-6, cyclooxygenase-2 (COX-2), and
prostaglandin E2 in lung cancer tissues, reduces the infiltration of
inflammatory cells and liver toxicity caused by DEN (Man et al.,
2015; Man et al., 2017). In brief, RPS has potential as a future
therapeutic agent that can effectively suppress lung tumors.

Anti-intestinal cancer activities of RPS

Angiogenesis, the development of new blood vessels from pre-
existing blood vessels, is an important factor in tumorigenesis and
tumor progression (Potente et al., 2011). Tumor progression relies
on angiogenesis for nutrient supply and metastasis. RPS has been

FIGURE 2
The primary mechanism for the anti-tumor effects of RPS.
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shown to have selective cytotoxic effects on colon cancer cells
(i.e., Lovo cells) and to exhibit significant antiangiogenic effects.
RPS inhibits the proliferation, differentiation, and migration of Lovo
cells by suppressing angiogenesis; it also induces apoptosis and cell
cycle arrest in Lovo cells (Qian et al., 2012). Another study showed
that RPS induces death of the colorectal adenocarcinoma cell line
DLD-1 by upregulating autophagy markers without triggering
apoptosis dependent on p53 and caspase-3, i.e., RPS inhibits
cellular DNA production by inducing autophagy. Combined
application of RPS doxorubicin to treat colorectal cancer cells
showed a stronger anticancer effect than RPS monotherapy (Lin
et al., 2019).

Anti-glioma activities of RPS

Studies have shown that RPS also has a good anticancer effect on
glioblastoma, one of the most aggressive type of cancers and among
the hardest to treat. Its frequent recurrence limits the therapeutic
effects of drugs against glioblastoma, mainly related to the drug
resistance of glioblastoma cells (Mrugala, 2013). Drug resistance in
glioblastoma treatment is also exhibited with temozolomide (TMZ),
a clinical chemotherapeutic drug with broad-spectrum antitumor
activity, and DNA-repair enzyme O6-methylguanine-DNA
methyltransferase (MGMT) plays a key role in TMZ resistance
(Lai et al., 2018). A previous study showed that RPS regulates the
expression of MGMT by downregulating the expression of PI3K/
AKT and its downstream protein nuclear factor κappa-light-chain-
enhancer of activated B cells (NF-κB) p65, thereby inhibiting TMZ
resistance and inducing mitochondrial apoptosis of U87R cells;
results of Cell Counting Kit-8 colorimetric assay and flow
cytometry indicated that RPS significantly inhibited the
proliferation of glioblastoma cells and TMZ-resistant
glioblastoma U87R cells (Zhang et al., 2020).

Other antitumor activities of RPS

Studies have shown that COX-2 dysfunction is related to
digestive system cancer, and its expression level is correlated with
the aggressiveness of tumor progression (Misra and Sharma,
2014). A previous study confirmed that RPS significantly
reduced the expression of COX-2 and cyclin D1 in rat
esophageal tissue and esophageal cancer cells, thereby
inducing apoptosis of esophageal cancer cells and cell cycle
G2/M arrest. RPS also significantly reduced the release of
prostaglandin E2, a downstream molecule of COX-2 in a dose-
dependent manner. These results suggest that RPS inhibits the
development of esophageal cancer by promoting apoptosis and
cell cycle arrest and inhibiting the COX-2 pathway (Yan et al.,
2015). RPS exerts antitumor effects in osteosarcoma by inhibiting
tumor cell proliferation, metastasis, and vasculogenic mimicry
(Yao et al., 2022). In addition, in an experimental study involving
a mouse model of cancer pain, it was found that RPS can increase
5-HT and β-EP in the brain by inhibiting inflammatory pain
caused by oxidative damage, suggesting that RPS has a good
therapeutic effect on cancer pain and provides a new tool in the
treatment of cancer (Wang G. et al., 2018).

Antitumor effects of polyphyllin I

Polyphyllin I is one of the main active ingredients of steroidal
saponins in Rhizoma Paridis and is also known as polyphyllin -D (Li
et al., 2001; Lee et al., 2005; Tian et al., 2020). It has relatively strong
antitumor effects on a variety of tumors, such as HCC (Cheung et al.,
2005), lung cancer (Siu et al., 2008), prostate cancer (Xiang et al.,
2018), breast cancer (Li et al., 2017), andmalignant glioma (Liu et al.,
2017). Polyphyllin I exerts anticancer effects including induction of
apoptosis, autophagy and cycle arrest, and inhibition of cell
migration and invasion (Figure 3).

Anti-HCC activities of polyphyllin I

One study showed that after treating HepG2 cells with
polyphyllin I, protein levels of p21 and cyclin E were significantly
increased whereas the expression of CDK2 and cyclin A2 was
significantly decreased, thereby arresting the cell cycle in the G2/
M phase and inhibiting tumor cells. In addition, polyphyllin I
induced the generation of reactive oxygen species (ROS) and
depolarization of MMPs in HepG2 cells, thereby increasing the
release of mitochondrial cytochrome c, the Bax/BCL2 ratio, and the
activation of caspase-3, caspase-8, and caspase-9, leading to
apoptosis of the tumor cells (Zeng et al., 2020). Another study
suggested that polyphyllin I inhibited both the formation of
angiogenic mimicry by blocking the PI3K-Akt-Twist1-VE-
cadherin pathway and transcriptional activation of the
Twist1 promoter and interfered with the binding of Twist1 to the
VE-cadherin promoter to block the formation of vasculogenic
mimicry, thereby inhibiting the metastasis of various cancer cells,
including HCC (Xiao et al., 2018). In addition, an animal study
confirmed the therapeutic effect of polyphyllin I against HCC and
showed that polyphyllin I inhibited HCC by activating caspase-
dependent and caspase-independent apoptosis pathways and
inhibiting the PI3K/Akt signaling pathway, thereby suppressing
tumor growth in a xenograft mouse model injected with
HepG2 cells (Chen et al., 2014). The results of the above studies
suggest that polyphyllin I has strong potential as an HCC treatment.

Anti-lung cancer activities of polyphyllin I

Lung cancer, especially non-small cell lung cancer (NSCLC), is
considered to be the leading cause of death worldwide and the most
prevalent cancer (Siegel et al., 2020). The therapeutic effect of
polyphyllin I on lung cancer has been verified in numerous
studies. HOX transcript antisense RNA (HOTAIR) is considered
to be a potential biomarker for patients with NSCLC that is
associated with tumor metastasis and poor prognosis and is
highly expressed in NSCLC (Yang et al., 2018). Polyphyllin I
reduces the expression of HOTAIR, increases the protein level of
the transcription factor c-Jun, and also induces the protein
expression and promoter activity of cyclin-dependent kinase
inhibitor p21, thereby inhibiting human lung cancer cell growth,
migration, and differentiation (Zhao et al., 2019). Another study
showed that polyphyllin I increased phosphorylation of stress-
induced stimulation of stress-activated protein kinase (SAPK)/
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c-Jun N-terminal kinase (JNK) and decreased the expression of
P65 and DNMT1 protein. Reduction of P65 and DNMT1 protein
expression resulted in decreased expression of enhancer of Zeste
2 polycomb repressive complex 2 subunit gene (EZH2). As genes
that are highly expressed in various cancers, regulating the
expression of DNMT1 and EZH2 may become novel targets in
anticancer therapy (Lin and Wang, 2014). The results of the above
studies have clarified that polyphyllin I inhibits the proliferation and
differentiation of lung cancer cells by activating SAPK/JNK,
reducing the expression of p65 and DNMT1, and inhibiting the
expression of EZH2 (Yu et al., 2016).

Numerous studies have shown that adenosine monophosphate-
activated protein kinase (AMPK) is a key energy-sensitive kinase
that is widely involved in autophagy (Shi et al., 2012). Polyphyllin I
directly binds to allosteric drugs and metabolite sites of AMPK,
induces autophagy through AMPK/mTOR signaling, and inhibits
the growth of NSCLC cells (Wu et al., 2020). Moreover, after
polyphyllin I treatment, the expression of BCL2 in NSCLC cells
is reduced, and the expression of Bax and caspase 3 is increased,
thereby inducing apoptosis of lung cancer cells (Jiang et al., 2014).
Overcoming drug resistance in lung cancer cells is an important
research topic. Polyphyllin I reverses resistance of NSCLC cells to
osimertinib by regulating the PI3K/Akt signaling pathway (Lai et al.,
2021) and overcomes epithelial mesenchymal transition (EMT)-
associated resistance to erlotinib in lung cancer cells by inhibiting
the IL-6/STAT3 pathway (Lou et al., 2017). Polyphyllin I also
induces apoptosis of gefitinib-resistant NSCLC cells by regulating
the MALAT1/STAT3 signaling pathway (Yang Q. et al., 2018) and
enhances chemosensitivity of cisplatin-resistant NSCLC cells by
inhibiting the cellular inhibitor of the protein phosphatase 2 A
(CIP2A)/Akt/mTOR signaling axis (Feng F. et al., 2019; Feng F. F.
et al., 2019). Interestingly, polyphyllin I combined with
hyperthermia arrests the cell cycle in the G2/M phase and

promotes apoptosis by regulating the expression of BCL2, Bax,
and Caspase-3, ultimately inhibiting the proliferation of NSCLC
cells (Zhao et al., 2015). In short, polyphyllin I is expected to be
useful in anti-lung cancer therapy.

Other antitumor activities of polyphyllin I

Many studies have shown the anti-gastric cancer effects of
polyphyllin I. For example, application of inhibitors targeting the
Janus kinase 2/signal transducer and activator of transcription 3
(JAK/STAT3) pathway (e.g., AG490) may have a strong effect in
anti-gastric cancer therapy (Bogani et al., 2013). Studies have
confirmed that polyphyllin I mainly inhibits the phosphorylation
of STAT3 in a way that inhibits the expression of apoptosis-related
protein, such as BCL2, and induces apoptosis of gastric cancer cells
(Han et al., 2020). Another experimental study confirmed that
polyphyllin I promotes the transformation of mesenchymal cells
to epithelial cells, thereby partially inhibiting the migration and
invasion of gastric cancer cells. In addition, polyphyllin I
downregulates expression of the cellular inhibitor of the CIP2A
gene and induces degradation of CIP2A protein, downregulation of
Akt phosphorylation, and apoptosis of gastric cancer cells. Knocking
out of CIP2A shows the same effect as polyphyllin I, which also
indirectly supports the above findings (Zhang Y. et al., 2018).
According to another experimental study, polyphyllin I acts as an
inhibitor of pyruvate dehydrogenase kinase 1/Akt/mTOR signaling
by promoting the conversion of microtubule-associated protein 1A/
1B-light chain 3 (LC3)-I to LC3-II and downregulating cyclin B1 to
induce autophagy and cell cycle arrest in gastric cancer HGC-27 cells
(He et al., 2019). This also provides an important basis for the anti-
gastric cancer effect of polyphyllin I. Moreover, studies have shown
that polyphyllin I inhibits prostate cancer invasion and induces

FIGURE 3
The primary mechanism for the anti-tumor effects of Polyphyllin I.
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apoptosis of prostate cancer cells through the CIP2A/protein
phosphatase 2A (polyphyllin 2A)/extracellular signal-regulated
kinase (ERK) signaling pathway (Liu X. et al., 2018); it also has a
certain inhibitory effect on ovarian cancer cells in mice (Gu et al.,
2016).

Antitumor effects of polyphyllin II

Polyphyllin II is one of the main active ingredients of steroidal
saponins in Rhizoma Paridis and has strong antitumor activities.
The main mechanisms by which polyphyllin II exerts antitumor
effects include induction of apoptosis, autophagy, and cell cycle
arrest and inhibition of metastasis (Figure 4). However, few studies
report the effects of polyphyllin II and are mainly all on ovarian
cancer. Angiogenesis refers to the growth of new blood vessels from
pre-existing vascular endothelial cells. Pathological angiogenesis is
best known for its role in gynecological tumor growth andmetastasis
(Gómez-Raposo et al., 2009). Polyphyllin II inhibits vascular
endothelial growth factor (VEGF)-induced phosphorylation of
various intracellular proangiogenic kinases, such as extracellular
signal-related kinases, AKT kinases, focal adhesion kinases, and Src
family kinases, by blocking the activation of VEGF receptor 2 in
endothelial cells, thereby inhibiting angiogenesis in the ovarian
cancer mouse model and achieving an inhibitory effect on the
growth of ovarian cancers. These results suggest that polyphyllin
II treatment inhibits almost all essential elements of angiogenesis
(i.e., VEGF-induced endothelial cell proliferation, migration, and
angiogenesis), with good potential therapeutic importance (Xiao
et al., 2014). There is also evidence that polyphyllin II inhibits
ovarian cancer cell angiogenesis by regulating NF-κB signaling,
thereby inhibiting ovarian cancer cell growth (Yang et al., 2015).
Polyphyllin II also increases the expression of pro-apoptotic
elements, Bax, cytoplasmic cytochrome c, activated caspase-3,
and activated caspase-9 in polyphyllin II-treated SKOV3 cells

and reduces the phosphorylation of ERK1/2 and the expression
of antiapoptotic BCL2, resulting in cell cycle arrest and apoptosis in
ovarian cancer cells (Xiao et al., 2012).

Polyphyllin II also has a good therapeutic effect on HCC by
inducing cell cycle arrest and apoptosis through the mitochondrial
pathway (Long et al., 2015; Wang et al., 2019b). Experimental data
have shown that polyphyllin II also inhibits invasion and metastasis
in human bladder cancer by regulating the expression of EMT-
related factors and MMPs. Snail family transcriptional repressor 2
(SNAI2) and Twist1 are major transcription factors regulating EMT
that may promote tumor metastasis by enhancing cell invasion
(Kudo-Saito et al., 2009). A study showed that the expression of
SNAI2, Twist1, MMP-2, and MMP-9 in bladder cancer cells was
significantly decreased, and cell scratch experiments showed
significant inhibition of the migration and invasion of bladder
cancer cells after polyphyllin II treatment (Niu et al., 2020).
Polyphyllin II also induces autophagy through the Akt/mTOR
signaling pathway, thereby promoting apoptosis of breast cancer
cells (Xie et al., 2017). In addition, polyphyllin II treatment enhances
the sensitivity of lung cancer cells to cisplatin, which provides
important data support for polyphyllin II as a chemosensitizer
(Man et al., 2020).

Antitumor effects of polyphyllin VI

Polyphyllin VI is a saponin active ingredient extracted from the
root of Rhizoma Paridis and its main anticancer mechanisms
include induction of apoptosis, autophagy, and cell cycle arrest
(Figure 5). A previous study suggested that polyphyllin VI
inhibited glioma growth by increasing the accumulation of ROS
in glioma cells and activating the ROS-regulated JNK and
P38 pathway, thereby inducing apoptosis and autophagy in cells;
applications of the ROS inhibitor N-acetylcysteine significantly
attenuated polyphyllin VI-mediated apoptosis and autophagy.

FIGURE 4
The primary mechanism for the anti-tumor effects of Polyphyllin II.
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These results confirmed that the antitumor activity of polyphyllin VI
in glioma cells was via the accumulation of ROS and activation of the
JNK and P38 pathway (Liu et al., 2020). Polyphyllin VI also
effectively inhibited the proliferation of osteosarcoma cells by
regulating ROS/JNK activities, blocking the human osteosarcoma
cell cycle in the G2/M phase, and inducing apoptosis and autophagy
(Yuan et al., 2019). In addition, polyphyllin VI exhibited a strong
anti-metastatic effect in a breast cancer 4T1 mouse model by
significantly inhibiting cancer cell migration and invasion (Wang
P. et al., 2019). Polyphyllin VI also significantly inhibited the
proliferation of A549 and NCI-H1299 lung cancer cells by
inducing cell cycle arrest in the G2/M phase and apoptosis (Lin
et al., 2015).

Unlike other compounds, polyphyllin VI has significant
hepatotoxicity. Evaluation of drug hepatotoxicity in HepaRG liver
stem cells showed that polyphyllin VI promoted ROS production to
induce the release of cytochrome c from mitochondria to the
cytoplasm and to activate Fas, caspase-3, caspase-8, caspase-9,
and poly (ADP-ribose) polymerase proteins, thereby leading to
morphological changes in HepaRG cells and inducing apoptosis.
These results suggest that safety evaluation of polyphyllin VI is
necessary (Liu Y. et al., 2018).

Antitumor effects of polyphyllin VII

Polyphyllin VII is one of the main monomer components of
polyphyllin steroid saponins and its anticancer mechanisms mainly
include the induction of apoptosis and autophagy (Figure 6). A
previous study showed that polyphyllin VII significantly increased
the phosphorylation of AMPK and BCL2 and inhibited the
phosphorylation of PI3K, AKT, and mTOR in HepG2 cells,
thereby inducing autophagy and apoptosis; SP600125 JNK
inhibitor pretreatment reversed polyphyllin VII-induced
autophagy and apoptosis. These results suggest that polyphyllin
VII may induce autophagic cell death in HepG2 cells by inhibiting
the PI3K/AKT/mTOR and activating the JNK pathways (Zhang
et al., 2016b). Moreover, polyphyllin VII induced apoptosis and
autophagy in human osteosarcoma U2OS cells by regulating the

JNK pathway (Li X. et al., 2021). Another study showed that
polyphyllin VII promoted ROS production in HepG2 cells,
leading to depolarization of mitochondrial membrane potential,
upregulation of the Bax/BCL2 ratio and protein levels in cleaved
forms of caspase-3, caspase-8, and caspase-9, and poly (ADP ribose)
polymerase, which eventually led to apoptosis. Polyphyllin VII also
significantly enhanced the expression of P53 and phosphatase and
tensin homolog (PTEN) and the phosphorylation levels of JNK,
ERK, and P38, suggesting that the MAPK and PTEN/P53 signaling
pathways are also involved in polyphyllin VII-induced apoptosis of
HepG2 cells (Zhang et al., 2016a). Polyphyllin VII also inhibited the
growth of human cervical cancer HeLa cells by inducing apoptosis
(Zhang et al., 2014).

Notably, polyphyllin VII induces mitochondrial dysfunction not
only by promoting reactive oxygen species (ROS) production, but
also increasing mitochondrial fission. Dynein-related protein 1
(Drp1) plays an important role in regulating mitochondrial
function (Karbowski et al., 2002). Polyphyllin VII enhances the
mitochondrial localization of Drp1 by increasing polyphyllin 2A
activity and decreasing AKT activity; LB100, a specific polyphyllin
2A inhibitor, attenuates polyphyllin VII-induced mitochondrial
fission and apoptosis in SKOV3 ovarian cancer cells. These
findings further confirm the role of the polyphyllin 2A/Akt
pathway in the regulation of mitochondrial function by
polyphyllin VII (Zhao et al., 2021). In addition, polyphyllin VII
induces apoptosis in human lung cancer A549 cells by inhibiting the
PI3K/Akt and NF-κB pathways, leading to mitochondrial
dysfunction (He et al., 2020). Polyphyllin VII also enhances the
sensitivity of glioma cells to temozolomide by inhibiting the
decreased expression of MGMT (Pang et al., 2019).

Antitumor effects of other active ingredients
in Rhizoma Paridis

In addition to the main active ingredients in Rhizoma Paridis,
including RPS, polyphyllin I, and polyphyllin II, some less-abundant
active ingredients, such as saponins polyphyllin E, polyphyllin H,
Paris polyphylla-22, gracillin, and formosanin, also have antitumor

FIGURE 5
The primary mechanism for the anti-tumor effects of Polyphyllin VI.
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effects. According to a previous study, polyphyllin E inhibits ovarian
cancer cells by downregulating the AKT/NF-κB pathway, reducing
the expression of MMP2 and MMP9, and inhibiting the
proliferation, migration, and invasion of ovarian cancer cells,
thereby achieving an inhibitory effect in ovarian cancer cells (Liu
Y. et al., 2022). In another study, polyphyllin H inhibited the growth
of hepatoma cells and xenografts by suppressing the Wnt/β-catenin
pathway, while knocking out of the β-catenin gene significantly
inhibited this phenomenon (Chen T. et al., 2019). In addition,
polyphyllin H-treated U251 human glioma cells had upregulated
P21 and P27 expression and downregulated cyclin D expression,
which further induced cell cycle arrest of U251 cells at the G1 phase.
Further experimental data showed that polyphyllin H reduced
U251 cell survival by inhibiting the expression of ARA1 and
ARA3, subsequently suppressing the phosphorylation of Akt and
MAPK, inducing apoptosis and cell cycle arrest, and inhibiting the
proliferation of glioma cells (Bi et al., 2021). Another active
ingredient, polyphyllin-22, is reported to promote autophagy and
apoptosis in CNE-2 nasopharyngeal carcinoma cells by inducing
endoplasmic reticulum stress, downregulating the STAT3 signaling
pathway, and regulating the MAPK pathway (Tan et al., 2019). In
addition, polyphyllin-22 induced cell cycle arrest in S-phase and G2/
M-phase and apoptosis in SCC-15 human tongue squamous cell
carcinoma cells by activating the p38 and caspase-8/caspase-
3 pathways (Ke et al., 2016). Some researchers showed that
formosanin C inhibited metastasis of lung adenocarcinoma in
mice by inhibiting MMPs through wound healing and migration
assays. The anticancer effect of formosanin C is significantly
better than that of cisplatin whereas the side effects of formosanin
C were fewer (Man et al.). Formosanin C also has an inhibitory
effect on HCC cells (Qin et al., 2012; Li et al., 2014). Lastly, a
study showed that as a TIPE2 inducer, gracillin inhibits the
proliferation and migration of BGC823 gastric cancer cells
(Liu et al., 2021).

The other effects of active ingredients in
Rhizoma Paridis

Previous studies investigated that besides anti-tumor effects,
some active ingredients of Rhizoma Paridis have various biological
activities such as anti-inflammation, anti-fibrosis, hemostasis, and
antibiosis. For instance, polyphyllin I, polyphyllin D, and
polyphyllin G were verified have potential anti-inflammatory
effects in various inflammatory animal models (Wang Q. et al.,
2018; Zhang et al., 2019; Zhu et al., 2019). In additional, CCl4-
induced hepatic fibrosis were significantly improved by polyphyllin
D, polyphyllin G, polyphyllin VI, and formosanin C (Man et al.,
2014a; Hong et al., 2016; Han et al., 2019). The mouse tail snipping
model demonstrated that Paris saponin H, polyphyllin I, polyphyllin
II, and polyphyllin VII could serve as favorable hemostatic agents
(Sun et al., 2014; Wen et al., 2019; Qiao et al., 2021). Polyphyllin V
and polyphyllin VII showed powerful antibacterial activity against
propionibacterium acnes (Qin et al., 2012).

Outlook for future research

The number of cancer patients increases every year as
chemotherapy and radiotherapy fail to address the root cause of
cancers. Prolonged administration and increased doses of
chemotherapeutic drugs also increase the drug resistance of tumor
cells and the possibility of serious side effects in the human body,
resulting in treatment failure (Cao et al., 2017). For example, patients are
often intolerant to cisplatin-based therapeutic regimens, resulting in
poor therapeutic outcomes and the associated adverse reactions, such as
hair loss, nausea, and vomiting (Dasari and Tchounwou, 2014). Even
after surgical treatments, the chance ofmetastasis and cancer recurrence
is very high (Niibe and Hayakawa, 2010). Under these circumstances,
TCM, which has been used for thousands of years, is gradually

FIGURE 6
The primary mechanism for the anti-tumor effects of Polyphyllin VII.
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TABLE 1 The antitumor activities and mechanisms of Rhizoma Paridis saponins.

Compounds Subjects
(cells/animals)

Concentration Safe dose
for

animals

Research
mechanisms

Main
mechanisms

Tumor type References

Rhizoma Paridis
saponins

T739 mice,
H22 mice, C57BL/
6 mice, U87 cells,
A549 cells, Lovo
cells, DLD-1 cells,
EC9706 cells, and
143B cells

0.1–120 µM 0–200 mg/kg MMP-2, MMP-9
synthetic signaling
pathway, Glycolysis
and lipogenesis
pathway, Fatty acid
oxidation sugar
isomerization
pathway, ROS/PI3K/
Akt pathway, PI3K/
Akt/mTOR pathway,
p53 signaling
pathway, Caspase
pathway,
Cyclooxygenases-2
Pathway,
Vasculogenic
Mimicry signaling
pathway,
Mitochondrial
pathway

Apoptosis, cell
necrosis, inhibition
of proliferation and
migration, cell cycle
arrest, inhibition of
angiogenesis,
inhibition of
metastasis and
invasion, induction
of autophagy,
inhibition of lipid
synthesis

Lung cancer,
Pulmonary
adenoma,
Hepatocellular
carcinoma,
Glioblastoma,
Colorectal cancer,
Esophageal cancer
and Osteosarcoma

Cheng et al.
(2008), Man et al.
(2009), Qian et al.
(2012), Li et al.
(2013), Man et al.
(2014b), He et al.
(2014), Man et al.
(2015), Yan et al.
(2015), Zhang
et al. (2015), Qiu
et al. (2016), Man
et al. (2017),
Wang et al.
(2018a), Yao et al.
(2018), Lin et al.
(2019), Zhang
et al. (2020), and
Yao et al. (2022)

Polyphyllin I MCF-7 cells,
HepG2 cells,
PC3 cells, MDA-
MB-231 cells,
U251 cells,
A549 cells,
PC9 cells,
HCC827 cells,
SGC7901 cells,
PC3 cells, HGC-
27cells, and
Ovarian cancer
metastasis mice

0.1–20 μM 0–5 mg/kg Mitochondrial
pathway,
Endoplasmic
reticulum stress,
Suppression of
MUC1 gene
expression,
Mitochondrial
autophagic pathway,
JNK signaling
pathway, Fas- and
mitochondria-
mediated pathways,
Twist1/VE-cadherin
pathway, AMPK/
mTOR signaling
pathway, Caspase
pathway, c-Jun And
HOTAIR signaling
pathway, SAPK/JNK
signaling pathway,
PI3K/Akt signaling
pathway, IL-6/
STAT3 signaling
pathway, MALAT1/
STAT3 signaling
pathway, CIP2A/
AKT/mTOR
signaling pathway,
CIP2A/PP2A/ERK
signaling pathway,
PDK1/Akt/mTOR
signaling pathway,
CIP2A/PP2A/AKT
signaling pathway

Apoptosis, cell
necrosis, inhibition
of proliferation and
migration, cell cycle
arrest, inhibition of
angiogenesis,
inhibition of
metastasis and
invasion, induction
of autophagy,
enhancement of cell
sensitivity

Breast cancer,
Hepatocellular
carcinoma,
NSCLC, Prostate
cancer,
Glioblastoma,
Gastric cancer, and
Ovarian cancer

Cheung et al.
(2005), Siu et al.
(2008), Chen et al.
(2014), Jiang et al.
(2014), Lin and
Wang (2014),
Zhao et al. (2015),
Gu et al. (2016),
Yu et al. (2016), Li
et al. (2017), Liu
et al. (2017), Lou
et al. (2017), Liu
et al. (2018a),
Yang et al.
(2018a), Zhang
et al. (2018b),
Xiang et al.
(2018), Xiao et al.
(2018), Feng et al.
(2019a), Feng
et al. (2019b), He
et al. (2019), Zhao
et al. (2019), Han
et al. (2020), Wu
et al. (2020), Zeng
et al. (2020), and
Lai et al. (2021)

Polyphyllin II SKOV3 cells, HL-
7702 cells,
HepG2 cells,
T24 cells, MCF-7
cells, and NCI-
H520 cells

0.1–20 μM 0–25 mg/kg Regulation of
angiogenic factors,
ERK signaling
pathway and
Mitochondrial
pathway, NF-κB
signaling pathway,
Caspase pathway,
JNK signaling
pathway, MMP-2,
MMP-9 synthetic
signaling pathway,
Akt/mTOR signaling
pathway

Apoptosis, cell
necrosis, inhibition
of proliferation and
migration, cell cycle
arrest, inhibition of
angiogenesis,
inhibition of
metastasis and
invasion,
enhancement of cell
sensitivity

Ovarian cancer,
Hepatocellular
carcinoma,
Bladder cancer,
Breast cancer, and
NSCLC

Xiao et al. (2012),
Xiao et al. (2014),
Long et al. (2015),
Yang et al. (2015),
Xie et al. (2017),
Wang et al.
(2019b), Man
et al. (2020), Niu
et al. (2020)

(Continued on following page)
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becoming recognized by oncologists and cancer patients as an option.
As an anticancer TCM, Rhizoma Paridis has shown good results in
clinical applications for many years. This is of great importance for the
scientific and rational application of Rhizoma Paridis and the unique
antitumor effects of TCM. Nevertheless, no anticancer drugs use
Rhizoma Paridis as the main therapeutic agent in clinical practice.
Hence, there is an urgent need to clarify the underlying therapeutic
mechanism of the active ingredients in Rhizoma Paridis to lay the
foundation for future clinical applications.

Studies have shown that some active ingredients of Rhizoma Paridis
exhibit cytotoxicity, such as hepatoxicity. In particular, the saponin
component polyphyllin I has relatively strong cytotoxicity. Previous
research on the order of cytotoxicity among four saponins in HL-7702
cells showed that polyphyllin I and polyphyllin VII had similar
cytotoxicity, followed by polyphyllin II and polyphyllin VI. These
four saponins induce apoptosis in liver cells by activating ROS stress
and death receptor pathways (Wang et al., 2019c). Animal studies have
shown that Rhizoma Paridis causes side effects, such as nausea,
vomiting, diarrhea (Liu et al., 2012a), and even hemolysis (Liu
J. et al., 2022). Other studies have shown that the water extract of
turmeric enhanced the antitumor effects of trichosanthesin and
significantly reduced gastric irritation of trichosanthesin, thereby
reducing its toxicity (Man et al., 2013; Liu et al., 2014; Man et al.,
2016). To comprehensively assess the toxicity of polyphyllin II in the
intestinal tract, pharmacologists used the Swiss-rolling technique of
intestinal tissue preparation for immunohistochemistry to observe
histopathological changes in the entire intestinal tract. The results
showed that polyphyllin II had no obvious toxicity at a dose of
20 mg/kg in vivo (Chen M. et al., 2019). Intravesical instillation has
also been proposed to avoid gastrointestinal toxicity and intravenous
incompatibility (Guo et al., 2018). Thus, future research and

development of the TCM Rhizoma Paridis should not only focus on
enhancing its antitumor activities and clarifying its antitumor
mechanism but also on reducing its toxicity and side effects. More
clinical studies of the therapeutic safety of Rhizoma Paridis should be
carried out to ensure the safety and efficacy of this TCMmedicine and
its active ingredients in anticancer therapy.

Conclusion

Many chemotherapeutic drugs cause serious adverse reactions in
clinical application, resulting in poor patient outcomes (Islam et al.,
2019). There is an urgent need to develop new therapeutic drugs against
cancers with high efficacy and less toxicity. Recent evidence has shown
that the combination of chemotherapy drugs and TCM has better
therapeutic efficacy and reduces the side effects of chemotherapy
(Zhang and Xiao, 2021). Under these conditions, anticancer
components extracted from natural medicines may become the most
promising anticancer drugs. As a representative antitumor drug in
TCM, Rhizoma Paridis has a wide range of clinical applications. In this
review article, we discussed the antitumor effects and molecular
mechanisms of the main active ingredients in Rhizoma Paridis.
According to previous literature, the inhibitory effects of these active
ingredients on tumor cells are achieved through various ways, such as
apoptosis, autophagy, cell cycle arrest, inhibiting metastasis, and
reversing drug resistance (Table 1). These findings suggest that
active ingredients, such as Rhizoma Paridis saponins, may be
potential drugs for the clinical treatment of cancer in the future.
However, further experimental studies are needed to elucidate the
exact molecular mechanisms prior to its clinical application. In
addition, the complex composition of compounds extracted from

TABLE 1 (Continued) The antitumor activities and mechanisms of Rhizoma Paridis saponins.

Compounds Subjects
(cells/animals)

Concentration Safe dose
for

animals

Research
mechanisms

Main
mechanisms

Tumor type References

Polyphyllin VI U87 cells,
U2OScells,
4T1 cells,
A549 cells and
HepaRG cells

0.1–30 μM 0–5 mg/kg JNK and
P38 signaling
pathway, ROS/JNK
signaling pathway,
Targeted regulation
of Rell2,
p53 signaling
pathway, Fas
-pathway and
mitochondrial
pathway

Apoptosis, cell
necrosis, inhibition
of proliferation and
migration, cell cycle
arrest, inhibition of
metastasis and
invasion

Glioma,
Osteosarcoma,
Breast cancer,
Hepatocellular
carcinoma. and
Lung cancer

Lin et al. (2015),
Liu et al. (2018b),
Wang et al.
(2019a), Yuan
et al. (2019), Liu
et al. (2020)

Polyphyllin VII HepG2 cells, U2OS
cells, SKOV3 cells,
A549 cells, Hela
cells, and
U251 cells

0.01–100 µM 0–5 mg/kg PI3K/AKT/mTOR
signaling pathway,
JNK signaling
pathway, MAPK
pathway and
P53 signaling
pathway, PP2A/
AKT/DRP1 signaling
pathway, PI3K/Akt
and NF-κB signaling
pathway, Caspase
pathway, AKT
signaling pathway

Apoptosis, cell
necrosis, inhibition
of proliferation and
migration,
inhibition of
metastasis and
invasion, induction
of autophagy,
enhancement of cell
sensitivity

Hepatocellular
carcinoma,
Osteosarcoma,
Ovarian cancer,
Lung cancer,
Cervical cancer,
and Glioma

Zhang et al.
(2014), Zhang
et al. (2016a),
Zhang et al.
(2016b), Pang
et al. (2019), He
et al. (2020), Li
et al. (2021b),
Zhao et al. (2021)
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Rhizoma Paridis and the toxicity of Rhizoma Paridis itself also limit its
clinical application. Hence, in-depth research is required to apply the
active ingredients extracted from Rhizoma Paridis to clinical settings.
This article aims to provide theoretical support and medication
guidance for the clinical application of Rhizoma Paridis by
summarizing the therapeutic efficacies of the active ingredients of
Rhizoma Paridis in anticancer therapy.
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