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Objectives: This study involved a multi-omics analysis of glioblastoma (GBM)
samples to elaborate the potential mechanism of drug treatment.

Methods: The GBM cells treated with or without orexin A were acquired from
sequencing analysis. Differentially expressed genes/proteins/metabolites (DEGs/
DEPs/ DEMs) were screened. Next, combination analyses were conducted to
investigate the common pathways and correlations between the two groups.
Lastly, transcriptome-proteome-metabolome association analysis was carried out
to determine the common pathways, and the genes in these pathwayswere analyzed
through Kaplan-Meier (K-M) survival analysis in public databases. Cell and animal
experiments were performed to investigate the anti-glioma activity of orexin A.

Results: A total of 1,527 DEGs, 52 DEPs, and 153 DEMs were found. Moreover, the
combination analyses revealed that 6, 4, and 1 common pathways were present in
the transcriptome-proteome, proteome-metabolome, and transcriptome-
metabolome, respectively. Certain correlations were observed between the two
data sets. Finally, 11 common pathways were discovered in association analysis, and
138 common genes were screened out in these common pathways. Six genes
showed significant differences in terms of survival in both TCGA and CGGA. In
addition, orexin A inhibited the proliferation, migration, and invasion of glioma in vitro
and in vivo.

Conclusion: Eleven common KEGG pathways with six common genes were found
among different omics participations, revealing the underlying mechanisms in
different omics and providing theoretical basis and reference for multi-omics
research on drug treatment.
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1 Introduction

Glioblastoma (GBM) is the most common malignant central nervous system (CNS) tumor
in adults, and this tumor is very aggressive (Batash et al., 2017; Louis et al., 2021). Even after
surgery, radiotherapy, and chemotherapy, the median overall survival (OS) of patients with
GBM is approximately 15 months (Johnson et al., 2018; Witthayanuwat et al., 2018). Tumors
may continue to grow (progress) and accompany by recurrence after treatment (Weller et al.,
2017; Bates et al., 2018; Tan et al., 2018). Although some advances have been realized in the

OPEN ACCESS

EDITED BY

Tsung-I Hsu,
Taipei Medical University, Taiwan

REVIEWED BY

Chih-Yang Wang,
Taipei Medical University, Taiwan
Shao-Ming Wang,
China Medical University, Taiwan

*CORRESPONDENCE

Jian Liu,
liujiangz5055@163.com

Jiqin Zhang,
zhangjiqin@gz5055.com

Ying Tan,
tanying@gz5055.com

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 14 November 2022
ACCEPTED 10 January 2023
PUBLISHED 20 January 2023

CITATION

Yang S, Huan R, Yue J, Guo J, Deng M,
Wang L, Peng S, Lin X, Liu L, Wang J, Han G,
Zha Y, Liu J, Zhang J and Tan Y (2023),
Multiomics integration reveals the effect of
Orexin A on glioblastoma.
Front. Pharmacol. 14:1096159.
doi: 10.3389/fphar.2023.1096159

COPYRIGHT

© 2023 Yang, Huan, Yue, Guo, Deng,
Wang, Peng, Lin, Liu, Wang, Han, Zha, Liu,
Zhang and Tan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 20 January 2023
DOI 10.3389/fphar.2023.1096159

https://www.frontiersin.org/articles/10.3389/fphar.2023.1096159/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1096159/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1096159&domain=pdf&date_stamp=2023-01-20
mailto:liujiangz5055@163.com
mailto:liujiangz5055@163.com
mailto:zhangjiqin@gz5055.com
mailto:zhangjiqin@gz5055.com
mailto:tanying@gz5055.com
mailto:tanying@gz5055.com
https://doi.org/10.3389/fphar.2023.1096159
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1096159


treatment of GBM, such as the application of temozolomide and
bevacizumab, patients with GBM still encounter poor treatment effect
and drug resistance. (Tan et al., 2017; Jiapaer et al., 2018;
Kickingereder et al., 2020; Reardon et al., 2020; Nayak et al., 2021;
Tesileanu et al., 2022; Zeng et al., 2022). Tumor therapeutic field (TTF)
therapy has also been approved by the FDA for recurrent (2011) and
newly diagnosed (2015) GBM, but the lack of generalizability of data
from previous studies has prevented TTF from being widely used.
(Regev et al., 2021). Therefore, no effective treatment is currently
available for GBM, which remains one of the most difficult and
complex cancers to treat. Therefore, understanding the complex
mechanism of GBM and exploring new therapeutic strategies are
urgently required.

Orexin is involved in the interaction between cancer and
neurodegenerative diseases such as narcolepsy. (Liu et al., 2015; Boss
and Roch, 2017;Wan et al., 2017; Tan et al., 2020). Orexin A and B (OXA
and OXB), also known as hypocretin 1 and 2, respectively, are peptides
expressed by hypothalamic neurons and are first identified in 1988.
(Sakurai et al., 1998). Orexin binds to two G-protein-coupled
receptors, namely, orexin receptors 1 and 2 (OR1 and OR2) (Sakurai
et al., 1999), which are widely expressed in the CNS (de Lecea et al., 1998),
and is consistent with widespread expression of orexin neurons. (Tsujino
and Sakurai, 2009). Orexin signaling is multifaceted and complex, with
similar mechanisms for OR1 and OR2. A recent in vivo study reported
that OXA may increase mitophagy and disrupt mitochondrial structure.
(Zhu et al., 2021). In addition, OXA may affect the interaction between
brain and gastrointestinal tract by acting on intestinal microorganisms,
thereby affecting brain function (Foster et al., 2016). In recent years, a
series of studies has focused on modulating orexin-related signaling,
which may play a surprising therapeutic role in the treatment of certain
types of cancer (Graybill and Weissig, 2017; Mogavero et al., 2021). OXA
stimulates neovascularization, a key step in chronic inflammation and
tumor growth (Kim et al., 2015). OR1 signaling has a pro-apoptotic role
signaling in neuroblastoma cell lines (Rouet-Benzineb et al., 2004). These
results were later confirmed in other tumor cells both in vivo and in vitro
(Voisin et al., 2011; Wen et al., 2016). In this process, OXA directly
activates caspase-3 to promote tumor cell apoptosis in vivo, or this process
is possibly mediated by two immunoreceptor tyrosine-based inhibitory
motifs in OR1 and OR2, which participate in phosphotyrosine
phosphatase SHP2 and induce mitochondrial apoptosis (Mogavero
et al., 2021). Studies on the potential modulation of the orexin system
in cancer are still pioneering. Although promising results have been
obtained, further human data are needed. Therefore, a multi-omics
analysis was conducted based on transcriptome, proteome, and
metabolome.

In recent years, molecular biology technology has been developed
rapidly. Meta-analysis of single-omics datasets is very valuable for
biological and medical research (Ni et al., 2014; Hanna et al., 2017;
Goveia et al., 2020; Rijkschroeff et al., 2020; Hoogstrate et al., 2022). With
the continuous development of deep sequencing and other high-
throughput methods, the gradual reduction of cost and the increasing
maturity of technology, a large number of omics data can be obtained,
thus allowing the measurement of multi-omics data. Multi-omics analysis
can reduce the effect of biological and experimental bias in the data, and
different omics can reveal different cellular aspects, such as the effects
manifested at the genomic and proteomic levels (Subramanian et al., 2020;
Zhou et al., 2021). Multi-omics analysis is a comprehensive assessment of
multiple sets of characteristics. Specifically, transcriptomics is the study of
expressed RNAs; it usually focuses on protein-coding RNA (mRNA) and

includes non-coding RNA that coordinate and regulate gene expression,
which provides attention to the underlyingmechanisms involved in genes
and biological processes (de Jong and Bosco, 2021). Proteomics is the
study of expressed proteins and is used to describe protein abundance,
properties, post-translational modifications, and protein interactions
(Aslam et al., 2017). Metabolomics focuses on the analysis of small
molecules (i.e., metabolites), including carbohydrates, fatty acids,
amino acids, and other compounds (Patti et al., 2012).
Transcriptomics, proteomics, and metabolomics are complementary
and synergetic for the effective understanding of molecular
interactions and disease mechanisms.

In the present study, orexin-induced changes in GBM cells were
analyzed at the transcriptomic, proteomic, and metabolomics levels by
using a multi-omics approach. We measured multiple omics data,
such as transcriptomics, proteomics, and metabolomics, of GBM cells
cultured with and without Orexin A, and identified differentially
expressed molecules that were significantly altered in each omics
layer in orexin-added GBM cells relative to those without OXA,
and linked these layers to differential regulation. The correlation of
differential molecules was analyzed. Simultaneously, the KEGG
pathways enriched by the combination of pairwise omics and the
three omics were analyzed, and the differentially expressed molecules
and differential regulators in KEGG pathways were extracted. Finally,
data from TCGA and CGGA public databases were combined to
screen out the molecules with prognostic effect. The underlying
mechanism of OXA action in GBM cells was explored.

2 Results

2.1 Identification of DEGs, DEPs, and DEMs

The differential expression analysis results illustrated that
1,527 DEGs were found between case and control samples,
including 574 upregulated and 953 downregulated genes (Figures
1A, B). Moreover, 52 DEPs were screened out from the proteomic
data, including 23 upregulated and 29 downregulated proteins
(Figures 1C, D). In addition, in the positive mode of the
metabolome data, 69 upregulated and 47 downregulated DEMs
were identified from 481 metabolites (Figures 1E, F), and the
results of 196 metabolites in negative mode showed 8 upregulated
and 29 downregulated DEMs (Figures 1G, H). In total, 153 DEMs were
identified (116 DEMs in positive mode, 37 in negative mode).

2.2 Functional enrichment analyses of DEGs,
DEPs, and DEMs

A total of 11 pathways and 806 GO terms were enriched by DEGs,
including negative regulation of viral process, regulation of viral
process, viral process, and response to virus in biological process
(BP), midbody, microtubule, and collagen−containing extracellular
matrix in cellular component (CC), tubulin binding, microtubule
binding, and double−stranded RNA binding in molecular function
(MF), and the Human T Cell leukemia virus 1 infection, Epstein-Barr
virus infection, and cellular senescence in KEGG pathway. The
diagrams show the top 10 enriched terms (Supplementary Tables
S1A,B; Figures 2A, B). Moreover, the DEPs enriched five KEGG
pathways and 136 REACTOME pathways, including the
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RIG−I−like receptor signaling pathway, influenza A, hepatitis C,
measles, coronavirus disease—COVID−19 in KEGG and interferon
signaling, interferon alpha/beta signaling, antiviral mechanism by
IFN−stimulated genes, and ISG15 antiviral mechanism in
REACTOME (Supplementary Tables S1C,D; Figures 2C, D). The
top 10 REACTOME pathways were visualized into a network
diagram (Figure 2E). Fourteen pathways were enriched by DEMs,
such as glycine, serine, and threonine metabolism, aminoacyl-tRNA
biosynthesis, and phenylalanine metabolism (Supplementary Table
S1E, Figure 2F). In addition, in the protein-protein interaction (PPI)
network of DEPs discovered that among 52 DEPs, seven discrete
proteins were found, and the interaction network of the 45 remaining
proteins was obtained, in which 45 nodes and 242 edges were
observed. Therefore, these 45 intersection targets had strong
interactions (Figure 2G). Notably, no common enriched KEGG
pathway was observed among DEGs, DEPs, and DEMs. Therefore,
the combined KEGG analysis cannot be performed.

2.3 Correlations between transcriptome-
proteome, transcriptome-metabolome, and
proteome-metabolome

Six common pathways were identified in the transcriptome-
proteome group, including proteoglycans in cancer, Kaposi

sarcoma-associated herpesvirus infection, chemical
carcinogenesis—reactive oxygen species (ROS), coronavirus disease
(COVID-19), mitophagy—animal, and p53 signaling pathway
(Supplementary Table S2A, Supplementary Figure S1).
Additionally, four common pathways were selected between
transcriptome and metabolome data, such as pyrimidine
metabolism, FoxO signaling pathway, PI3K-Akt signaling pathway,
and chemical carcinogenesis - receptor activation (Supplementary
Table S2B, Supplementary Figure S2). Only one common pathway
was found between proteome and metabolome data, including
glyoxylate and dicarboxylate metabolism (Supplementary Table
S2C; Supplementary Figure S3).

In terms of the correlation analysis, considering the large amount
of transcriptome-proteome data, after statistics, 100 correlation pairs
were selected from 630 relationship pairs whose correlation was equal
to 1 or −1 to construct the network that included 84 nodes (29 proteins
and 58 transcriptomes, including three edges, were both proteins and
transcriptomes) and 100 edges (Figure 3A). These results were
visualized into a heatmap (Figure 3B). The nine-quadrant of the
transcriptome-proteome group showed that the genes were highly
enriched in the eighth quadrant, followed by the fifth and second
quadrants (Figure 3C). Therefore, the majority of proteins showed
higher abundances than the relevant RNA in quadrant 8, followed by a
relatively large proportion of RNAs and proteins that were commonly
expressed with no difference in the fifth quadrant, and a similar

FIGURE 1
Differential expression analysis between case and control samples. (A) Volcano plots of differentially expressed genes (DEGs) between case and control
samples with |log2fold change (FC)| > 0.5 and p-value < 0.05. (B) Heat map plots of the top 100 DEGs. (C) Volcano plots of differentially expressed proteins
(DEPs) with |log2FC| > 0.5, p-value< 0.05, and VIP>1. (D) Heat map plots of the top 100 DEPs. (E–F) Volcano plot and heatmap of differentially expressed
metabolites (DEMs) with |log2FC| > 0.5, p-value< 0.05, and VIP>1 in positive mode. (G–H) Volcano plot and heatmap of DEMs with |log2FC| > 0.5,
p-value< 0.05 in negative mode. In the volcano plots, the red points represent upregulated genes, proteins, and metabolites, while the blue points represent
downregulated genes, proteins, and metabolites. In heat map plots, the red point represents upregulated molecules, while the blue point represents
downregulated molecules.
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proportion of RNAs showed higher abundances than the related
proteins in quadrant 2.

In the transcriptome-metabolome combination analysis,
100 correlation pairs were selected from 143 relationship pairs
whose correlation is equal to 1 or −1 to construct the network that
includes 102 nodes (9 metabolites and 93 transcriptomes) and
100 edges, and the correlation heatmap was plotted (Figures 3D,
E). In addition, the nine-quadrant demonstrated that most genes were
enriched in the first and seventh quadrants, indicating that the
expression abundances of most metabolites were higher than those
of the genes (quadrant 1), and the second largest proportion of gene
expressed consistently with the metabolic (quadrant 7; Figure 3F).

From the perspective of proteome-metabolome association
analysis, a proteome-metabolome network that includes 122 nodes
(70 metabolites and 52 proteins) and 100 edges and the correlation
heatmap were plotted (Figures 3G, H). Furthermore, the nine-
quadrant of proteome-metabolome group showed genes that were
highly enriched in the eighth quadrant, followed by the second
quadrant (Figure 3I). Therefore, the majority of proteins showed
higher abundances than the metabolites in quadrant 8, and a
relatively large proportion of metabolites showed higher
abundances than the related proteins in quadrant 2.

2.4 Six Genes found in common pathways
were relevant to GBM prognosis

The KEGG enrichment analysis result of transcriptome-
proteome-metabolome combination revealed that 11 common
pathways were significantly enriched by DEGs, DEPs, and
DEMs, including pyrimidine metabolism, FoxO signaling
pathway, proteoglycans in cancer, PI3K-Akt signaling pathway,
chemical carcinogenesis-ROS, Kaposi sarcoma-associated
herpesvirus infection, COVID-19, mitophagy-animal,
p53 signaling pathway, chemical carcinogenesis-receptor
activation, and ferroptosis (Supplementary Table S3A,
Supplementary Figure S4), and 138 genes were found
(Supplementary Table S3B). The K-M analysis showed that the
survival probabilities of 10 out of 138 genes (CCL2, UPP1, F2R,
ITGA5, sulforaphane [SFN], IRS1, CXCL8, MAP1LC3A, MET, and
ISG15) were significantly different between the two expression
groups in TCGA-GBM (Supplementary Table S3C, Figure 4).
Furthermore, 6 out of 10 genes (ITGA5, MET, F2R, CCL2, SFN,
and UPP1) in the low-expression group had significantly higher
survival probabilities than the high-expression group in CGGA
(Supplementary Table S3D, Figure 5).

FIGURE 2
Functional enrichment analyses and construction of the protein-protein interaction (PPI) network. (A) Bar chart of the top 10most enriched GO terms of
the DEGs. (B) Bubble chart of the 10 most activated KEGG pathways of the DEGs. (C) Bubble chart of the five most activated KEGG pathways of the DEPs. (D)
Bubble chart of the 10most enriched REACTOME annotations of the DEPs. (E) Interaction network of the top10 REACTOMEpathways andDEPs. Yellow nodes
indicate the REACTOME pathways, gray nodes indicate the DEPs, and the lines indicate the interaction of proteins and the pathways. (F) Top 25 most
activated pathways of the DEMs in MetaboAnalyst website. (G) PPI network of DEPs. The nodes represent the proteins, the lines represent the interaction
relationship, and the line thickness was positively correlated with the combined score.
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2.5 OXA inhibited the proliferation, migration,
and invasion of glioma

To study the anti-glioma activity of OXA in vitro, we performed
CCK8 and colony formation assays to investigate cell proliferation. As
shown in Figure 6A, the OD value of U87MG and U251 glioma cells
was lower in OXA group compared with the vehicle control (0.1%
DMSO) group. Meanwhile, the percentages of colony-forming
U87MG and U251 glioma cells were reduced after treatment with
OXA (Figures 6B, C). Therefore, OXA remarkably impaired the
proliferation. Subsequently, the results of transwell assay showed
fewer invasive and migrated glioma cells after OXA exposure
(Figures 6D–F) The resulting data explained that OXA impaired
the migration/invasion of GBM in vitro. Moreover, nude mice were
subcutaneously xeno-transplanted with U87 or U251 glioma cells in
vivo. Figures 6G–I show that tumors in nude mice exposure to OXA
exhibited significantly lower weight and smaller volume,
demonstrating that OXA could effectively inhibit glioma cell
growth in vivo.

3 Discussion

GBM treatment remains extremely challenging, and its prognosis
remains unsatisfactory despite surgery, radiotherapy, chemotherapy,
and some innovative therapies. Additionally, limited improvement has
been realized in the treatment of GBM. OXA inhibits the growth of rat
C6 glioma cells through a caspase-dependent mechanism (Biegańska
et al., 2012). Programmed cell death has been induced by sustained
orexin receptor stimulation in other malignancies (Smart et al., 1999;
Ammoun et al., 2006). Similarly, both OXR subtypes can activate cell
death as observed in recombinant CHO-S cells (Nicole et al., 2015),
acinar cell adenoma (Kaczmarek et al., 2017), colon cancers, and
neuroblastoma (Rouet-Benzineb et al., 2004). However, the specific
mechanism of orexin’s action has not been fully understood. Detailed
exploration of the mechanism of OXA acting on glioblastoma cells
could facilitate the understanding of the disease and promote the
discovery of therapeutic targets. The transcriptomic, proteomic, and
metabolomics data of GBM in the orexin-treated and control groups
have been measured, and significant differentially expressed molecules

FIGURE 3
Correlation analysis of transcriptome-proteome, transcriptome-metabolome data, and proteome-metabolome data. (A) Interaction network of the
DEGs and DEPs with p-value <0.05, |cor| > 0.8. Red ellipses represent DEGs, pink triangles represent DEPs, red lines represent positive correlations, and blue
lines represent negative correlations. (B) Pearson correlation heatmap in transcriptome-proteome analysis. * p < 0.05, ** p < 0.01; Red indicates positive
correlation, and blue indicates negative correlation. (C) Nine-quadrant diagram for the transcriptome-proteome correlations. The horizontal axis
represents the log2 ratio of protein, and the vertical axis represents the log2 ratio of gene. (D) Interaction network of the DEGs and DEMs with p-value <0.05, |
cor| > 0.8. Red ellipses represent DEGs, green diamonds represent DEMs, red lines represent positive correlations, and blue lines represent negative
correlations. (E) Pearson correlation heatmap in transcriptome-metabolome analysis. (F) Nine-quadrant diagram for the transcriptome-proteome
correlations. The horizontal axis represents the log2 ratio of gene, and the vertical axis represents the log2 ratio of metabolin. (G) Interaction network of the
DEPs and DEMs with p-value <0.05, |cor| > 0.8. (H) Pearson correlation heatmap in transcriptome-proteome analysis. (I) Nine-quadrant diagram for the
transcriptome-proteome correlations. The horizontal axis represents the log2 ratio of protein, and the vertical axis represents the log2 ratio of metabolin.
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FIGURE 4
Kaplan–Meier survival analysis between high- and low-expression groups of the 10 genes extracted from the common enriched pathways with
significant survival differences in the TCGA dataset. (A) CCL2. (B) CXCL8. (C) F2R. (D) IRS1. (E) ISG15. (F) ITGA5. (G) MAP1LC3A. (H) MET. (I) SFN. (J) UPP1.

FIGURE 5
Kaplan–Meier survival analysis between the high- and low-expression groups of the six genes with significant survival differences in the CGGA dataset.
(A) CCL2. (B) F2R. (C) ITGA5. (D) MET. (E) SFN. (F) UPP1.
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have been identified at each omics level caused by Orexin A, which
could well identify whether GBM cells were treated with OXA or not.
Further analysis of the correlations of DEGs, DEPs, and DEMs
revealed significant correlations among them. Subsequently, the
biomolecules and functional pathways, in which OXA might play a
role in GBM, have been analyzed.

In our combined transcriptomic-proteome analysis, proteoglycans
(PGs) in cancer, chemical carcinogenesis—ROS, and pathways such as
mitophagy-animal and p53 signaling pathway were enriched. PGs play
important roles in cancer initiation and progression by regulating
cellular metabolism, influencing immune surveillance, acting as
sensors of mechanical properties, and participating in resistance to
various forms of therapy (Wade et al., 2013; Mouw et al., 2014; Baghy
et al., 2016). Aberrant ROS plays contradictory roles at different stages
of cancer formation, especially in the regulation of cell growth and
death, and further understanding of the complex mechanisms of ROS
in tumorigenesis is crucial for conquering cancer (Valavanidis et al.,
2013; Wang Y. et al., 2021). Huang T. et al. (2021) found that the
inhibition of mitophagy partially reversed cannabidiol-induced
glioma cell death, suggesting the positive role of mitophagy against
tumors. However, FOXO3A-induced mitophagy protects glioma from
temozolomide induced cytotoxicity, suggesting that mitophagy could
be considered as a double-edge sword for glioma (He et al., 2021; Hu

et al., 2021). OXA reduces mitochondrial biogenesis, enhances
mitophagy, and damages mitochondrial structure in AD patients
(Zhu et al., 2021). OXA may play the same role in tumor and non-
tumor diseases. Therefore, it may promote anti-tumor effect by
enhancing mitophagy. The P53 tumor suppressor is a key genetic
event associated with disease development and progression, and this
factor is mutated or absent in 35% of GBM (Ham et al., 2019).
P53 signaling pathway plays an important role in the development
of glioma. Therefore, OXA might target p53-related pathways to exert
its inhibitory effect on cancer. In addition, the majority of proteins
showed higher abundances than the relevant RNA in quadrant 8,
suggesting post-transcriptional, translational regulation, or
accumulation of proteins. Combined transcriptomic-proteome
analysis revealed the relationship between transcriptomics and
metabolomes, and the FoxO signaling and PI3K-Akt signaling
pathway were enriched. Previous mechanistic studies have found
that the downregulation of FoxO/Smad signaling promotes cancer
cell proliferation in glioblastoma (Wang et al., 2018). The activation of
PI3K/Akt/mTOR pathway enhances the proliferation, migration, and
invasion of glioma cells, resulting in the occurrence of drug resistance,
thereby inhibiting the therapeutic effect of TMZ (Wu et al., 2016; Xu
et al., 2018; Zhao et al., 2021). As a result, targeting these pathways by
developing corresponding activators or inhibitors may inhibit tumor

FIGURE 6
Orexin A (OXA) inhibited the proliferation, migration, and invasion of glioma. (A) Effects of OXA treatment on cell proliferation by CCK-8 in U87 and U251
cells. (B) Effects and (C) statistics of OXA treatment on cell proliferation by colony formation assays in U87 and U251 cells. Effects of OXA treatment on cell
migratory (D) and invasive (E) capacities by transwell assays in U87 and U251 cells, and the statistical information (F) of the invasive and migrated glioma cells
with or withoutOXA exposure. (G)Observation of the features of tumor weight and volume in subcutaneous xenograftmousemodels. (H) Tumorweight
and (I) volume of xenografts derived from U87 and U251 cells. * p < 0.05, ** p < 0.01, *** p < 0.001.
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development and improve patient treatment outcomes. Combined
proteomic and metabolome analysis revealed the relationship between
the proteome and metabolome, showing only the enrichment of
glyoxylate and dicarboxylate metabolic pathways. Glyoxylate and
dicarboxylate metabolism plays an important role in prostate
cancer (Chen et al., 2021a), but its role in GBM remains to be
further investigated. The significant correlation between the
differentially expressed molecules in the transcriptomic-proteome-
metabolome confirmed the complex regulatory mechanism of OXA
acting on GBM. Consequently, further exploration of this regulatory
network will help us understand disease processes and identify
therapeutic targets.

In the combined transcriptome-proteome-metabolome analysis,
11 common pathways were identified. In addition to PGs described
above in cancer, chemical carcinoma-ROS and mitophagy-animal,

P53 signaling pathway, also identified pyrimidine metabolism (PyM).
A continuous supply of dNTPs is essential for cancer cell survival.
Therefore, the permanent activation of the PyM gene is essential for
tumor growth (Siddiqui and Ceppi, 2020). OXA may be associated
with inhibiting GBM by downregulating the pyrimidine metabolism
pathway. In addition, in the FoxO signaling and PI3K-AKT signaling
pathway, more DEGs and DEPs are enriched. OXA increases AKT/
PDK-1 phosphorylation through phosphatidylinositol 3-kinase and
FOXO-1-dependent pathways (Göncz et al., 2008). Ju et al. (2014)
revealed that OXA may affect apoptosis in rat hepatocytes by
regulating Foxo1 and mTORC1 through the OX1R/PI3K/AKT
signaling pathway. Moreover, ferroptosis has attracted our interest,
and drugs that target different molecules involved in ferroptosis and
stimulating the ferroptosis process are potential adjuvant anticancer
treatment options (Liang et al., 2019; Wang et al., 2019; Xu et al., 2019;

FIGURE 7
Quality analysis of proteomic and metabolome data. (A) Principal component analysis (PCA) score diagram for the differential expression analysis of
proteomic data between case and control samples. (B) Orthogonal partial least-squares-discriminant analysis (OPLS-DA) score diagram for the differential
expression analysis of proteomic data between case and control samples. (C) PCA score diagram for the differential expression analysis of metabolome data
between case and control samples. (D) OPLS-DA score diagram for the differential expression analysis of metabolome data between case and control
samples.
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Chen et al., 2020). In GBM, ferroptosis stimulation can inhibit tumor
growth, improve patient survival, and enhance the efficacy of
chemoradiotherapy (Yee et al., 2020; Yang et al., 2021). Therefore,
OXA targets molecules in the ferroptosis process and activates the
ferroptosis pathway to exert anti-tumor effects. These findings need to
be further confirmed.

For a good understanding of the mechanism of OXA action, the
genes in 11 pathways were extracted, and 138 genes were selected.
Survival analysis of TCGA-GBM data was carried out, and 10 genes
(CCL2, UPP1, F2R, ITGA5, SFN, IRS1, CXCL8, MAP1LC3A, MET,
and ISG15) out of 138 genes had significant survival differences
between high- and low-expression groups. The results were further
verified in CGGA data, and the results show that six genes (ITGA5,
MET, F2R, CCL2, SFN, and UPP1) had significant survival differences
between the high- and low-expression groups. The mechanism of
action of these genes has been explored. Chen et al. (2021b) reported
that ITGA5 accumulation can activate FAK signaling pathway to
promote cell growth. Therefore, NEAT1/Mir-128-3p/ITGA5 axis is
involved in the occurrence and progression of gliomas. Shi et al. (2021)
suggested that ITGA5 expression is upregulated in glioma cells
resistant to TMZ, and the overexpression of ITGA5 could increase
the resistance of cells to TMZ by promoting the formation of vascular
mimicry. OXA downregulated ITGA transcription, thus serving as a
pathway for OXA inhibition of glioma. Invasion-related protein
ITGA5 in previous studies may be an effective anti-invasion target,
which is correlated with advanced tumor grade, recurrence, and
overall survival of GBM. [PMID:25853691 and PMID:34873473]
(Mallawaaratchy et al., 2015; Wei et al., 2021) Moreover, Wang Q.
W et al. (2021) suggested that the MET-STAT4-PD-L1 axis may act
with tumor-associated macrophages to enhance immune escape in
gliomas and cause poor prognosis in patients with GBM. And Huang
et al. (Huang R. et al., 2021) verified that PTPRZ1-MET (ZM) fusion
was a key genetic change that drives the progression of low-grade
glioma and helped ZM-carrying glioma patients benefit from MET
inhibitors. In addition, the inhibition of receptor tyrosine kinases,
including MET and/or its ligand hepatocyte growth factor (HGF), is a
promising therapeutic strategy against tumor (Suzuki et al., 2010; Ge
et al., 2013; Song et al., 2020). Auvergne et al. (Auvergne et al., 2016)
strongly demonstrated the importance of the F2R gene encoding
PAR1 for the self-renewal and tumorigenicity of glioma A2B5-
defined tumor-initiating progenitor cells. CCL2 and its related
receptor (CCR2) promote the migration of brain tumors and
monocytes across the vascular endothelium (Vakilian et al., 2017;
Cho et al., 2019). Besides, Aretz et al. (Aretz et al., 2022) demonstrated
that the cross-talk between CCL2 and β-catenin could affect the
dryness and immune escape mechanism of GBM by regulating the
activity of immune cells and glioblastoma stem cells. In animal models,
mNOX-E36 blocked angiogenesis and macrophage recruitment, and
tumor volume and blood volume were reduced. SFN, which is
converted from glucosinolates in broccoli/broccoli buds, prevents
chemically induced cancers and inhibits tumor growth in rats
(Soundararajan and Kim, 2018; Kaiser et al., 2021; Yan et al.,
2021). In tumors, SFN may act by regulating multiple survival
signaling pathways by inhibiting carcinogen metabolism, inducing
oxidative stress, regulating metabolism, inhibiting cell cycle, and
inducing apoptosis (Juengel et al., 2017; Lei et al., 2019; Li et al.,
2020; Li et al., 2021). Zhou et al. (Zhou et al., 2020) also revealed the
subcellular mechanism by which SFN-CYS (SFN analogue) inhibits
human GBM invasion by regulating proteome expression.

Methylation of UPP1 was confirmed as a prognostic factor for
GBM multiforme in two bioinformatics analyses (Weng and
Salazar, 2021; Yu et al., 2021). UPP1 is a potential biomarker of
thyroid cancer, and the possible mechanism of regulating epithelial-
mesenchymal transition (EMT) plays the role of oncogene (Guan
et al., 2019). MethSurv database (Modhukur et al., 2018), a web tool
that is used to perform multivariable survival analysis by using DNA
methylation data, has been used to perform survival analysis for a CpG
located in or around the proximity of a UPP1 in GBM. Results showed
multiple methylation modification sites associated with GBM
prognosis. Detailed results are shown in Supplementary Figure S5.
However, the mechanism of action of these six molecules with OXA is
still unclear and requires further investigation.

Our study comprehensively investigated the changes in the
transcriptomics, proteomics, and metabolomics levels of GBM cells
after OXA treatment, explored the consistency between omics, and
screened some possible key pathways, including the FoxO signaling
pathway, PI3K-AKT signaling pathway, and ferroptosis. OXA may
affect the biological functions of GBM cells by regulating these
pathways, and the multi-omics integration tool enhances our
ability to focus on specific pathways with potential biological
significance in GBM after OXA drug treatment, which will be
verified in later studies. In addition, among the 138 genes in
11 pathways screened by multi-omics, six genes (ITGA5, MET,
F2R, CCL2, SFN, and UPP1) had independent prognostic roles in
both TCGA and CGGA cohorts. Previous in vitro and in vivo studies
have found that ITGA5, MET, F2R, CCL2, and SFN are involved in the
regulation of the occurrence, development, invasion, metastasis, and
drug resistance of GBM. These processes may be related to GBM
inhibition by OXA. Many of these processes still lack validation of
biomolecular mechanisms, and the data generated by a large number
of omics studies are still underutilized. In addition, the effect of OXA
on glioma was determined by performing in vitro and in vivo
experiments. CCK8 and colony formation assays indicated that
OXA could inhibit the cell proliferation of glioma cells. Transwell
assay results show that OXA impaired the migration/invasion of GBM
in vitro. Our constructed subcutaneous xenograft mouse models also
indicated that OXA could effectively inhibit glioma cell growth.

We acknowledge some limitations of this study. Despite our focus
on biologically plausible mechanisms, validation is still lacking, thus
requiring further investigation. Additionally, the broad applicability of
our conclusions needs to be confirmed. The rigor and credibility of the
study results can be improved by integrating multiple data types and
mainly reporting the pathways that were jointly found by combining
different data types, which were found to be related to the prognostic
genes. In conclusion, multi-omics methods were used to effectively
understand the interaction mechanism and combined effects of drugs
and disease processes.

4 Materials and methods

4.1 Cell culture

Human GBM cell lines U251 and U87 were obtained from the
Chinese Academy of Sciences Cell Bank (Shanghai, China). The cell
lines were cultured in DMEM supplemented with 10% fetal bovine
serum (FBS, Gibco, United States) and 1% penicillin/streptomycin
(Beyotime, China) at 37°C in 5% CO2.
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4.2 Sequencing analysis

The U251 glioma cells were cultured in complete medium with
OXA (0.1 μmol/L) for 24 h. Then, total RNA was extracted from
two biological repeats of samples in the absence or presence of
OXA. The total amount and integrity of RNA were assessed using
the RNA Nano 6000 assay kit of the Bioanalyzer 2,100 system
(Agilent Technologies, CA, United States). The cDNA fragments
with length of 370–420 were selected by purifying the library
fragments with the AMPure XP system (Beckman Coulter,
Beverly, United States). Then, by using PCR amplification, the
PCR product was purified by AMPure XP beads, and the library
was finally obtained. After the library was qualified, the different
libraries were pooled according to the effective concentration and
the target amount of data off the machine, and then being
sequenced using Illumina NovaSeq 6,000.

After being digested with trypsin, the proteins were extracted
and labelled with multiplexed tandem mass tag (TMT) reagents.
The intensity of TMT reporter ions was extracted using mobile
phase A (2% acetonitrile, pH was adjusted to 10.0 by using
ammonium hydroxide) and B (98% acetonitrile). For transition
library construction, shotgun proteomics analyses were performed
using an EASY-nLCTM 1200 UHPLC system (Thermo Fisher)
coupled with a Q ExactiveTM HF-X mass spectrometer (Thermo
Fisher) operating in the data-dependent acquisition (DDA) mode.
The quality of analysis results was improved using the PD
2.4 software further to filter the retrieval results: Peptide
Spectrum Matches (PSMs) with a credibility of more than 99%
was identified PSMs.

Untargeted LC-MS/MS analyses were performed using an
Vanquish UHPLC system (ThermoFisher, Germany) coupled with
an Orbitrap Q ExactiveTM HF mass spectrometer (Thermo Fisher,
Germany) in Novogene Co., Ltd. (Beijing, China) in both positive and
negative modes. The spray voltages of positive and negative ionization
modes were both 3.5 kV. The raw data files generated by UHPLC-MS/
MS were processed using the Compound Discoverer 3.1 (CD3.1,
ThermoFisher) to perform peak alignment, peak picking, and
quantitation for each metabolite.

4.3 Data sources

The transcriptome, proteomic, and metabolome data of three
repeats of GBM cells treated with OXA and three repeats of GBM
cells without treatment were acquired from sequencing analysis. The
transcriptome and proteomic contained 57,169 and 6,020 data,
respectively. In terms of the metabolome data, 481 metabolites
were detected in positive mode, and 196 metabolites were detected
in negative mode.

4.4 Screening of DEGs, DEPs and DEMs

The limma package (version 3.44.3) was applied to
57,169 transcriptome data directly to screen DEGs between case
and control groups with threshold values of |log2fold change
(FC)| > 0.5 and p-value <0.05. In terms of the differential
expression analysis of proteomic data, principal component
analysis (PCA) was first performed to analyze the aggregation and

dispersion of the six samples. Then, orthogonal partial least squares
discriminant analysis (OPLS-DA) was employed to the six samples to
calculate the variable important in projection (VIP) value of each
sample. Considering that the PCA and OPLS-DA results suggested
that normal and case samples could be well separated (Figures 7A, B),
differential analysis was performed on the proteome data by using
limma. The DEPs were screened out with |log2FC| > 0.5, p-value <
0.05, and VIP > 1.

From the perspective of DEMs, PCA and OPLS-DA were initially
used for the 481 metabolites in the positive mode and 196 metabolites
in the negative mode, respectively. The PCA and OPLS-DA results of
the two modes suggest that normal and case samples could be well
separated (Figures 7C, D). Therefore, limma can be directly applied to
metabolome data in positive and negative modes to select DEMs in
each mode at threshold values of |log2FC| > 0.5, p-value < 0.05, and
VIP > 1.

4.5 Functional enrichment analyses of DEGs,
DEPs, and DEMs

ClusterProfiler (version 3.16.0) was employed to conduct GO and
KEGG enrichment analyses on DEGs with screening criteria of p < 0.05.
Simultaneously, the functional enrichment analyses of DEPs were
performed in KEGG and REACTOME databases. Furthermore, the
expression levels of DEMs were extracted and used as input into
MetaboAnalyst (https://www.metaboanalyst.ca/), which includes the
KEGG, HMDB, and STITCH databases, to perform enrichment
analyses. Next, a PPI network was plotted to determine the interaction
relationship among DEPs through STRING website (https://string-db.
org) with the setting of confidence = 0.15, and the results were visualized
using Cytoscape (version 3.7.2).

4.6 Transcriptome-proteome, transcriptome-
metabolome, proteome-metabolome
association analyses

The interactions between transcriptome-proteome,
transcriptome-metabolome, and proteome-metabolome was
determined by applying combined KEGG analysis to each
combined group. The DEGs-DEPs, DEGs-DEMs, and DEPs-DEMs
were used as input into KEGG enrichment analysis, and the common
enriched pathways in transcriptome-proteome, transcriptome-
metabolome, and proteome-metabolome groups were tested by
hypergeometric analysis.

Correlation analysis was further examined by calculating the
Pearson correlation coefficient in each group (transcriptome-
proteome, transcriptome-metabolome, and proteome-
metabolome) at threshold values of p-value <0.05 and |cor| >
0.8. Then, the log2FC value of each selected items in each group
was further computed and visualized into nine-quadrant by using
the omicshare platform (http://www.omicshare.com/tools/
Home/Soft/jxx). A total of 57,169 transcriptome and
6,020 proteome data in transcriptome-proteome,
57,169 transcriptome and 677 metabolome data in
transcriptome-metabolome, and 6,020 proteome
and 677 metabolome data in proteome-metabolome were
recorded.
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4.7 Transcriptome-proteome-metabolome
association analysis

The transcriptome-proteome-metabolome interactions were
investigated using all the data in the three groups as input into
the combined KEGG analysis. All common enriched pathways of
DEGs, DEPs, and DEMs were tested by hypergeometric
distribution test. Then, the genes in the common enriched
pathways were extracted, and their survival situations were
further analyzed in TCGA-GBM data set by Kaplan-Meier
(K-M) survival analysis. The genes with significant survival
differences between high- and low-expression groups were
selected. Then, the survival probabilities of these selected genes
between different expression groups were subsequently analyzed in
CGGA database by K-M analysis at a statistical significant
threshold of p < 0.05.

4.8 Colony formation assay

U251 or U87 glioma cells were cultured in six-well plates at a
density of 500 cells/well. Cells were suspended in DMEM
supplemented with 10% FBS for 24 h. Then, the glioma cells were
cultured in complete medium with OXA (0.1 μmol/L) for 1 week to
allow colony formation. Cells were fixed with 4% paraformaldehyde
and stained with 0.1% crystal violet. The number of clones (>50 cells)
was counted under the microscope.

4.9 Cell counting kit 8 (CCK8)

For cell proliferation assay, U251 or U87 glioma cells were planted
into a 96-well plate at a concentration of 5,000 cells/well and treated
with medium OXA (0.1 μmol/L) for 24, 48, 72, and 96 h. Then, 10 µL
of CCK8 (Beyotime) was added to each well, and the cells were
incubated for 1 h at 37°C. The absorbance values were read at
450 nm by using an enzyme-linked instrument.

4.10 Transwell migration and invasion assay

In migration assay, the suspension containing 1×105 glioma
cells with serum-free DMEM media was placed in the upper
chamber of a Transwell insert (Corning, United States), and
500 µL of complete medium was added into the bottom
chambers. In the invasion assay, Matrigel (BD, United States)
was coated on the upper chambers seeded with 2 × 105 cells,
and the lower chamber contained 500 µL of complete medium.
Then, OXA (0.1umol/L) was added into the upper chamber, and
Transwells were incubated for 36 h at 37°C. Then, cells were fixed
with 4% paraformaldehyde and stained with 0.1% crystal violet for
15 min. Migrated/invasive glioma cells were photographed under a
microscope.

4.11 Mouse xenografts

All animal experiments were approved by the Institutional
Animal Care and Use Committee of Guizhou Provincial

People’s Hospital. U251 or U87 glioma cells were re-suspended
in DMEM and were injected subcutaneously into nude mice. OXA
(0.1 g/kg) was injected into mice intraperitoneally daily for 2 weeks
starting 1 week after tumor implantation, while sterile double-
steamed water with the same dose was injected into the control
group. The mice were immolated at predetermined times and
tumor volume and weight were recorded.

4.12 Statistical analysis

R software (https://www.r-project.org/) was used in the current
study. All data are expressed as the mean ± SD. The differences
between groups were analyzed by one-way analysis of variance,
followed by Tukey’s post hoc test. The relationship between patient
survival and genes expression was tested with the log-rank test and
plotted with the Kaplan–Meier curves. If not specified above,
p-value less than 0.05 was considered statistically significant.
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SUPPLEMENTARY FIGURE S1
KEGG enrichment analysis in the combined analysis of transcriptome-
proteome data. Six common pathways were identified, including p53 signaling
pathway (A), mitophagy-animal (B), Kaposi sarcoma-associated herpesvirus
infection (C), coronavirus disease (D), Proteoglycans in cancer (E), and chemical
carcinogenesis - reactive oxygen species (F).

SUPPLEMENTARY FIGURE S2
KEGG enrichment analysis in the combined analysis of transcriptome-
metabolome data. Four common pathways were identified, including
pyrimidine metabolism (A), FoxO signaling pathway (B), PI3K-Akt signaling
pathway (C), and chemical carcinogenesis—receptor activation (D).

SUPPLEMENTARY FIGURES S3
KEGGenrichment analysis in the combined analysis of proteome-metabolome data.
Glyoxylate and dicarboxylate metabolism was identified as common pathways.

SUPPLEMENTARY FIGURE S4
KEGG enrichment analysis in the combined analysis of transcriptome-
proteome-metabolome. Eleven common pathways were identified, including
pyrimidine metabolism (A), PI3K-Akt signaling pathway (B), ferroptosis (C),
mitophagy-animal (D), Kaposi sarcoma-associated herpesvirus infection (E),
proteoglycans in cancer (F), FoxO signaling pathway (G), Coronavirus disease
(H), chemical carcinogenesis-reactive oxygen species (I), chemical
carcinogenesis-receptor activation (J), and p53 signaling pathway (K).

SUPPLEMENTARY FIGURES S5
(A) Heat maps show the results of cluster analysis of individual CPGS in the
UPP1 gene, correlatingmethylation levels with available patient characteristics
and gene subregions. Methylation level (1 = complete methylation; 0 =
completely unmethylated) is shown as a continuous variable from blue to red.
The rows correspond to CPGS, and the columns correspond to patients. (B–K)
Kaplan–Meier survival analysis between high- and low-UPP1 methylation
groups of glioblastoma multiforme.

SUPPLEMENTARY TABLE S1A
A total of 806 GO terms were enriched by DEGs between case and control
samples.

SUPPLEMENTARY TABLE S1B
Eleven KEGG pathways were enriched by DEGs between case and control
samples.

SUPPLEMENTARY TABLE S1C
A total of five KEGG pathways were enriched by DEPs between case and control
samples.

SUPPLEMENTARY TABLE S1D
A total of 136 REACTOME pathways were enriched by DEPs between case and
control samples.

SUPPLEMENTARY TABLE S1E
Fourteen pathways were enriched by DEMs between case and control samples.

SUPPLEMENTARY TABLE S2A
Six common pathways were identified between Transcriptome and
Proteome data.

SUPPLEMENTARY TABLE S2B
Four common pathways were identified between transcriptome and
metabolome data.

SUPPLEMENTARY TABLE S2C
Glyoxylate and dicarboxylate metabolism was identified as common pathway
between proteome and metabolome data.

SUPPLEMENTARY TABLE S3A
Eleven common KEGG pathways were significantly enriched by DEGs, DEPs,
and DEMs in transcriptome-proteome-Metabolome combination data.

SUPPLEMENTARY TABLE S3B
The 138 genes extracted from the 11 common KEGG pathways.

SUPPLEMENTARY TABLE S3C
Ten out of 138 genes were significantly associated with GBM survival in TCGA-
GBM cohort.

SUPPLEMENTARY TABLE S3D
Six out of 138 genes were significantly associated with GBM survival in CGGA
cohort.
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