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Background: Although the role of tumormicroenvironment in lung adenocarcinoma
(LUAD) has been explored in a number of studies, the value of TME-related signatures
in immunotherapy has not been comprehensively characterized.

Materials and Methods: Consensus clustering was conducted to characterize TME-
based molecular subtypes using transcription data of LUAD samples. The biological
pathways and immune microenvironment were assessed by CIBERSORT, ESTIMATE,
and gene set enrichment analysis. A TME-related risk model was established through
the algorithms of least absolute shrinkage and selection operator (Lasso) and stepwise
Akaike information criterion (stepAIC).

Results: Four TME-based molecular subtypes including C1, C2, C3, and C4 were
identified, and they showed distinct overall survival, genomic characteristics, DNA
methylation pattern, immune microenvironment, and biological pathways. C1 had the
worst prognosis and high tumor proliferation rate. C3 and C4 had higher enrichment of
anti-tumor signatures compared to C1 and C2. C4 had evidently low enrichment of
epithelial–mesenchymal transition (EMT) signature and tumor proliferation rate. C3 was
predicted to be more sensitive to immunotherapy compared with other subtypes. C1 is
more sensitive to chemotherapy drugs, including Docetaxel, Vinorelbine and Cisplatin,
while C3 is more sensitive to Paclitaxel. A five-gene risk model was constructed, which
showed a favorable performance in three independent datasets. Low-risk group showed
a longer overall survival, more infiltrated immune cells, and higher response to
immunotherapy than high-risk group.

Conclusion: This study comprehensively characterized the molecular features of
LUAD patients based on TME-related signatures, demonstrating the potential of
TME-based signatures in exploring the mechanisms of LUAD development. The
TME-related risk model was of clinical value to predict LUAD prognosis and guide
immunotherapy.
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Introduction

Lung cancer consists of the largest population of all cancers
worldwide, where lung adenocarcinoma (LUAD), as the most
common histological type, contributes to a proportion of
approximately 40% in all lung cancer cases (Sung et al., 2021). The
common risk factors are smoking, the exposure to environmental
carcinogens, and genetic susceptibility (Gibelin and Couraud, 2016). A
large number of lung cancer patients are diagnosed at a late stage,
leading to a low 5-year survival rate no more than 20%. (Senosain and
Massion, 2020). In the recent years, molecular profiling of lung cancer
promotes the development and improvement of molecular-targeted
therapy and immunotherapy (Network, 2014; Saito et al., 2018). A
diversity of molecular biomarkers of LUAD have been discovered
involving transcriptional alteration, genetic mutations, copy number
variations, and epigenetics features (Devarakonda et al., 2015;
Daugaard et al., 2016; Calvayrac et al., 2017; Hua et al., 2020).

Molecular biomarkers help to predict the prognosis of cancer
patients or even are capable to assist decision-makings in clinical
treatment. Advanced or metastatic LUAD patients can benefit little
from traditional therapy, while the rising immunotherapy or other
targeted therapy maybe can function on these patients. For example,
immune checkpoint blockade is a hot therapeutic strategy, such as
programmed cell death protein 1/programmed cell death ligand 1
(PD-1/PD-L1) inhibitors exhibiting a favorable performance in cancer
immunotherapy (Borghaei et al., 2015; Herbst et al., 2016; Jain et al.,
2018). However, resistance or immune escape to immunotherapy is a
common issue resulting in its inefficiency and poor outcomes. The
feature of tumormicroenvironment (TME) is one of the critical factors
contributing to different response to immunotherapy (Binnewies et al.,
2018). For example, high expression of PD-1/PD-L1 is associated with
high efficiency of anti-PD-1/PD-L1 therapy (Brody et al., 2017).
Cytokines and chemokines released by immune cells, neoplastic or
stromal cells can orchestrate and reconstruct the immune
microenvironment, and thus lead to different anti-tumor responses
(Nisar et al., 2021). Cytokines such as tumor necrosis factor (TNF)-α
(Laha et al., 2021), interleukin (IL) family (Sato et al., 2011; Kitamura
et al., 2017), and transforming growth factor (TGF)-β (Yao et al., 2010)
play an important role in angiogenesis, immune evasion, resistance to
immunotherapy, and epithelial-mesenchymal transition (EMT)
process responsible for tumor progression and metastasis.
Consequently, TME-related features largely determine the anti-
tumor response and the activated response to immunotherapy.

Bagaev et al. collected a total of 29 knowledge-based functional gene
expression signatures related to TME from previous studies, and
grouped them into four classes including anti-tumor
microenvironment (e.g., T cells), pro-tumor microenvironment (e.g.,
macrophages), angiogenesis fibrosis (e.g., angiogenesis), and malignant
cell properties (e.g., EMT signature) (Bagaev et al., 2021). Based on these
TME-related signatures, they identified four microenvironment
subtypes and comprehensively elucidate the relation between TME
and melanoma by using transcriptomic and genomic data. The four
microenvironment subtypes were also conserved in other cancer types,
and were correlated with the response to immunotherapy. The ASLC/
ATS/ERS classification is a significant improvement in the classification

criteria for lung adenocarcinoma, encompassing pathology, molecular
biology, radiology, oncology and clinical practice to provide better
clinical diagnosis (Yoshizawa et al., 2011; Gu et al., 2013). The
current molecular classification still has limitations on the prognosis
evaluation of lung adenocarcinoma patients, such as, the new
classification content is too complex to apply. Inspiring by the above
study, we sought to explore the TME in LUAD through analyzing these
TME-related signatures, and identify effective prognostic genes for
guiding immunotherapy or other therapy in LUAD patients.

Materials and Methods

Data collection and data preprocessing

TCGA-LUAD dataset (abbreviated as TCGA dataset in the
following) containing the RNA sequencing (RNA-seq) data and
clinical information of LUAD samples was obtained from The
Cancer Genome Atlas (TCGA) database through Sangerbox
platform (http://vip.sangerbox.com/) (Shen et al., 2022). mRNA
expression was quantified with fragments per kilobase of exon per
million reads mapped (FPKM), which converted into transcripts per
million (TPM). GSE72094 (Schabath et al., 2016) and GSE50081 (Der
et al., 2014) datasets containing microarray data were obtained from
Gene Expression Omnibus (GEO) database. In TCGA dataset, LUAD
samples with survival status and survival time were included. The
average expression value was used when one gene had multiple
ensemble IDs. For microarray data, probes were annotated by the
annotation profile of corresponding chip platform. If a gene had
multiple probes, the averaged value was used. After data
preprocessing, 487 LUAD samples were remained in TCGA
dataset, 442 and 127 LUAD samples were remained in
GSE72094 and GSE50081 datasets respectively.

Identification of TME-based molecular subtypes
A total of 29 TME signatures were obtained from the previous

research (Bagaev et al., 2021), including four groups of signatures,
anti-tumor microenvironment (MHCⅠ, MHCⅡ, coactivation
molecules, cytotoxic cells, T cells, T cells trafficking, B cells,
M1 signature, NK cells, Th1 signature, and anti-tumor cytokines),
pro-tumor microenvironment (Treg, Treg traffic, MDSC, MDSC
traffic, neutrophil signature, granulocyte traffic, macrophages,
Th2 signature, macrophages/DC traffic, and pro-tumor cytokines),
angiogenesis fibrosis (angiogenesis, endothelium, cancer-associated
fibroblasts (CAFs), matrix, matrix remodeling), and malignant
properties (proliferation rate signature and EMT).

The enrichment score of 29 TME signatures was measured by single
sample gene set enrichment analysis (ssGSEA) (Hänzelmann et al.,
2013). ConsensusClusterPlus R package (Wilkerson and Hayes, 2010)
was utilized to construct consensusmatrix based on the ssGSEA score of
TME signatures in TCGA dataset. 1 - Pearson correlation was selected
as distance and KM algorithm was used for repeating 500 times of
bootstraps with each bootstrap having 80% samples of TCGA dataset.
The optimal cluster number (k) was selected according to the
cumulative distribution function (CDF) curves and consensus matrix.
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For the validation of the TME-based subtyping in the external
datasets (GSE72094 and GSE50081), a support vector machine (SVM)
model was used (Huang et al., 2018) (LUAD samples within TCGA
dataset were randomly grouped into training set and testing set with a
ratio of 7: 3).

Functional enrichment analysis

Gene sets of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were obtained from Molecular Signature Database
(MSigDB), and used for GSEA by “fgsea” algorithm (Liberzon
et al., 2015). GSVA R package (Hänzelmann et al., 2013) was
utilized to conduct ssGSEA on hallmark pathways obtained from
MSigDB and 11 oncogenic pathways (EGFR, hypoxia, NFκB, PI3K,
JAK-STAT, MAPK, TGF-β, Trail, VEGF, TNF-α, and P53) obtained
from the previous research (Schubert et al., 2018).

DNA methylation analysis
In order to observe the methylation difference of different

subtypes, we obtained the methylation data set of
HumanMethylation450 from the TCGA database, extracted the
methylation signals of each sample, and completed the missing
values using the KNN method. Limma was used to analyze the
methylation difference of each subtype (P.val< 0.05 and |logFC|
>log2 (1.1)). In addition, we annotated the methylation sites to the
gene promoter region to obtain genes regulated by methylation, The
Biological Pathway to Obtain Methylation Disorder of Each Subtype
by Function Enrichment Analysis.

Prediction of the response to immunotherapy
and chemotherapeutic drugs

The gene signatures of T cell inflamed GEP (Ayers et al., 2017),
Th1/IFN-γ (Danilova et al., 2019), and cytolytic activity (Rooney et al.,
2015) were obtained from previous studies. SsGSEA was conducted on
these gene signatures. The estimated sensitivity of different groups to
chemotherapeutic drugs was evaluated by pRRophetic R package
(Geeleher et al., 2014). TIDE algorithm (Jiang et al., 2018) was
implemented to analyze immunosuppressive cells and T cell status
for estimating immune escape to immunotherapy. Higher TIDE score
represents higher immune escape. The immune infiltration and
stromal infiltration were evaluated by ESTIMTAE analysis
(Yoshihara et al., 2013). CIBERSORT algorithm (Chen et al., 2018)
was performed to analyze the proportion of 22 immune-related cells.
IMvigor210 dataset (Balar et al., 2017) (treated by anti-PD-L1 therapy)
was included to assess the effectiveness of the risk model in predicting
prognosis and response to immunotherapy. Drug sensitivity data was
downloaded from Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/) (Yang et al., 2013).

Construction and validation of a TME-based
risk model

Firstly, differential analysis was performed between different
subtypes through limma R package (Ritchie et al., 2015), and
differentially expressed genes (DEGs) were screened under

criterions of |log2 (fold change, FC)| > 1 and false discovery rate
(FDR) < .05. Functional analysis of DEGs including the enrichment
analysis of Gene Ontology (GO) terms and KEGG pathways was
carried out by ClusterProfiler R package (Yu et al., 2012). The DEGs
significantly associated with prognosis (p < 0.05) was screened by
univariate Cox regression analysis. Least absolute shrinkage and
selection operator (Lasso) regression analysis (Friedman et al.,
2010) and stepwise Akaike information criterion (stepAIC) (Zhang,
2016) were conducted to compress the number of prognostic genes.
The formula of risk model was defined as: risk score = Σ(βi*expi),
where i represents genes, β represents Lasso coefficients, and exp
represents gene expression levels.

TCGA dataset was set as the training set. GSE72094 and
GSE50081 datasets were set as the validation set. Each sample
obtained a risk score and the risk score was transferred to z-score.
The samples were stratified into high-risk (z-score > 0) and low-risk
(z-score <0) groups. The effectiveness and efficiency of the risk model
was validated by Kaplan-Meier survival analysis and receiver
operation characteristic (ROC) curve analysis.

Statistical analysis

Statistical analysis in this study was conducted in R software
(v4.2.0). Wilcoxon test was employed to detect the difference
between two groups. The difference among multiple groups was
examined by Kruskal–Wallis test. Log-rank test was conducted in
survival analysis. We determined p < 0.05 as statistically significant.

Results

TME signatures were associated with LUAD
prognosis

We compared the enrichment of 29 TME signatures in normal
and LUAD samples using ssGSEA. 18 TME signatures were
significantly different in normal and tumor samples (Figure 1A).
Stromal-related signatures such as CAFs (p < 0.01), matrix (p <
0.01), and matrix remodeling (p < 0.0001) were more enriched in
tumor samples compared to the normal. In addition, pro-tumor
signatures such as regulatory T cells (Tregs) and malignant cell
properties such as tumor proliferation rate were more accumulated
in tumor samples (p < 0.0001). Correlation analysis on these 29 TME
signatures revealed evidently positive correlations among them,
suggesting close interactions among these signatures (Figure 1B).
We assessed the relation between the signatures and clinical
characteristics, and found that MHC Ⅱ and Th2 signature were
positively correlated with age (Figures 1C,D). Anti-tumor
signatures such as T cells, B cells, coactivation molecules, and
MHC Ⅱ were negatively correlated with gender, T stage, N stage,
M stage, and Stage. Notably, tumor proliferation rate was significantly
upregulated in N1-N3 stages and Stage Ⅲ+Ⅳ (Figure 1D). In the
relation of 29 TME signatures to LUAD overall survival, we found that
some of them were risk factors such as tumor proliferation rate, matrix
remodeling, and EMT signature and some were protective factors such
as B cells, Th2 signature, T cells, and MHC Ⅱ (p < 0.05, Figure 1E),
indicating a close relation between TME signatures and LUAD
prognosis.
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Identification of TME-based molecular subtypes
Given that TME signatures were significantly related to LUAD

prognosis, we attempted to identify molecular subtypes based on their
enrichment scores. By using consensus clustering, we determined four

molecular subtypes (C1, C2, C3, and C4) according to CDF and
consensus matrix (Supplementary Figure S1). Four subtypes had
distinct enrichment patterns of 29 TME signature as shown in the
heatmap (Figure 2A). C3 and C4 subtypes had higher enrichment of

FIGURE 1
The relation between TME signatures and LUAD analyzed in TCGA dataset (A) The ssGSEA score of TME signatures in tumor and normal samples (B)
Correlation analysis among TME signatures (C) Correlation between TME signatures and clinical characteristics (D) Fold change of the enrichment of TME
signatures in different stages, ages, and genders (E) Hazard ratio of 29 TME signatures. ns, not significant. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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anti-tumor signatures compared to C1 and C2. C4 subtype had
evidently lower enrichment of EMT signature and tumor
proliferation rate compared to C1, C2 and C3 subtypes. Principle

component analysis (PCA) displayed the different distribution of four
subtypes based on the TME signatures (Figure 2B). Significant
differences were shown among four subtypes on the enrichment of

FIGURE 2
The immune and pathway difference of four TME-basedmolecular subtypes in TCGA dataset (A) The heatmap showed the enrichment of TME signatures
in four subtypes (B) 3D PCA plot of four subtypes based on TME signatures (C) The ssGSEA score of TME signatures in four subtypes (D) The heatmap showed
the enrichment of oncogenic pathways in four subtypes (E) The ssGSEA score of oncogenic pathways in four subtypes (F) Kaplan-Meier survival plot of four
subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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all TME signatures (Figure 2C). In addition, we analyzed the
oncogenic activity of four subtypes, and the result showed different
activation of these oncogenic pathways (Figures 2D,E). PI3K and
hypoxia were activated in C1, EGFR and TGF-β were activated in C2,

JAK-STAT and NFκB were activated in C3, and P53 signaling was
activated in C4. Moreover, survival analysis revealed that C1 subtype
had the worst prognosis while C4 had the longest overall survival (p <
0.0001, Figure 2F). Different activation of these pathways may indicate

FIGURE 3
Gene mutations and genomic features of four subtypes in TCGA dataset (A) The score of TMB, aneuploidy, homologous recombination deficiency,
intratumor heterogeneity, loss of heterozygosity, tumor purity, and ploidy in four subtypes (B) The distribution of previously reported immune subtypes (C1,
C2, C3, C4, and C6) in TME-based subtypes (C) The top 20 mostly mutated genes in LUAD (D) Cross Venn Diagram of Different Methylation Sites of Each
Subtype (E) Biological pathway of significant enrichment of methylation sites in different subtypes (top5).
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different TME-based molecular mechanisms of tumor progression.
Furthermore, we evaluated the distribution of different clinical
characteristics in four subtypes. The result exhibited an evident
trend that the samples with advanced stages were more distributed
in C1 (Supplementary Figure S2). Female patients and the patients
with age >60 had a higher proportion in C4 compared with that in C1-
C3 (Supplementary Figure S2). Not surprisingly, C1 had the largest
number of the samples with dead status than other subtypes
(Supplementary Figure S1).

Genomic landscape and DNA methylation of four
TME-based subtypes

Genomic instability has been demonstrated to be associated with
tumor development.We obtained a series of genomic characteristics of
TCGA-LUAD data from a pan-cancer research (pan-cancer)
(Thorsson et al., 2018). C1 subtype had relatively high scores of
tumor mutation burden (TMB), aneuploidy, homologous
recombination deficiency, loss of heterozygosity, purity, and ploidy,
while C3 showed relatively high score of intratumor heterozygosity
(Figure 3A). In the previous pan-cancer research, they identified six
immune subtypes of LUAD (C1, C2, C3, C4, and C6 immune
subtypes). We analyzed the distribution of previous immune
subtypes in our TME-based subtypes (Figure 3B). C1 immune
subtype (also known as wound healing) mostly distributed in
C1 and C2 TME-based subtypes. C2 immune subtype (also known
as IFN-γ dominant) mostly accumulated in C1 and C3 TME-based
subtypes. C4 TME-based subtype had the highest proportion of
C3 immune subtype (also known as inflammatory). The different
distribution of previous immune subtypes in our TME-based subtypes
also supported the distinct TME characteristics of four subtypes. In
addition, we evaluated the gene mutations in four subtypes, and
observed that TP53, LRP1B, and SPTA1 contributed high somatic
mutation frequencies (Figure 3C). In addition, we analyzed the
different DNA methylation sites of each subtype in the genome.
Among them, C1 has the most differential methylation sites,
C2 has only a small amount of DNA methylation differences, and
the different methylation sites of each subtype overlap less
(Figure 3D). Further functional analysis showed that the
methylation site of C1 imbalance was mainly related to LUNG
CANCERALVEOLAR CELL CARCINOMA, INCLUDED, the
methylation site of C2 imbalance was mainly related to Type II
interaction signaling (IFNG), the methylation site of C3 imbalance
was mainly related to ER Phagosome pathway, and the methylation
site of C4 imbalance was mainly related to detection of chemical
stimulus involved in sensor performance of smart (Figure 3E), These
results indicate that different molecular subtypes may have different
apparent disorder patterns.

Four TME-based subtypes had differently activated
pathways

To further understand the different molecular mechanism of
tumor development in four subtypes, we analyzed the biological
pathways using GSEA. Different pathways were enriched in four
subtypes. In C1 subtype, cell cycle and DNA repair-related
pathways were relatively activated such as mismatch repair, base
excision repair, homologous recombination, and DNA replication
(Figure 4A). In C2 subtype, EMT-related pathways were
significantly enriched such as ECM receptor interaction, tight
junction, TGF-β signaling pathway, and focal adhesion (Figure 4B).

In C3 subtype, cell cycle and immune-related pathways were activated
such as DNA replication, cell cycle, cytokine-cytokine receptor
interaction, antigen processing and presentation, chemokine
signaling pathway, and Toll-like receptor signaling pathway
(Figure 4C). In C4 subtype, immune-related pathways were also
evidently activated such as chemokine signaling pathway, antigen
processing and presentation, cytokine-cytokine receptor interaction,
and complement and coagulation cascades (Figure 4D).

Additionally, similar results were carried out in hallmark
pathways (Figure 4E). Cell cycle-related pathways were much
enriched in C1 subtype. C2 subtype showed activated EMT,
angiogenesis, hypoxia, Notch signaling, and TGF-β signaling.
Immune-related pathways were significantly enriched in both
C3 and C4 subtypes. Besides, C4 subtype also had relatively high
enrichment of metabolic pathways such as heme metabolism,
fatty acid metabolism, adipogenesis, xenobiotic metabolism, and
bile acid metabolism. The above results implied that these
differently enriched pathways may result in different TME
characteristics in four subtypes.

Different response of four TME-based
subtypes to immunotherapy and
chemotherapeutic drugs

TME characteristics can decide the outcomes of clinical treatment
to some extent especially immunotherapy. We selected three immune-
related signatures including T cell inflamed gene expression profiles
(GEP), Th1/IFN-γ, and cytolytic activity from previous studies to
evaluate the predicted response to immunotherapy. T cell inflamed
GEP has been illustrated to reflect the response to immune checkpoint
inhibitors (ICIs) (Ott et al., 2019). IFN-γ is an important cytokine in
modulating immune response and anti-tumor activity (Danilova et al.,
2019). Cytolytic activity reflects the cytotoxicity of activated T cells
(Rooney et al., 2015). The above three signatures manifested
differences in four subtypes, with that C3 subtype had the highest
ssGSEA score of T cell inflamed GEP, IFN-γ, and cytolytic activity
(Figures 5A–C). Immune checkpoints are also important in the
response to ICIs. High expression of PD-1/PD-L1 indicates high
response to ICIs. Analysis on immune checkpoints clarified that
C3 subtype had the highest expression levels of PDCD1 (PD-1),
CD274 (PD-L1), CTLA4, LAG3, PDCD1LG2, BTLA, HAVCR2,
and TIGIT (p < 0.0001, Figure 5D), meaning that C3 subtype was
predicted to have the highest sensitivity to immune checkpoint
blockade treatment. Furthermore, we examined the estimated
IC50 of four chemotherapeutic drugs including Docetaxel,
Vinorelbine, Paclitaxel, and Cisplatin. C1 subtype had the lowest
estimated IC50 of Docetaxel, Vinorelbine, and Cisplatin, and
C3 subtype had the lowest IC50 of Paclitaxel (p < 0.01, Figure 5E).
The results suggested that C1 may benefit much from the treatment of
Docetaxel, Vinorelbine, and Cisplatin, and C3 may benefit much from
Paclitaxel.

Validation the robustness of TME-based
subtypes in two external datasets

LUAD samples in the TCGA dataset were randomly grouped into
training cohort (n = 343) and test cohort (n = 144). TME score was
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inputted to SVM model for determining TME-based subtypes in the
training cohort. The accuracy of the SVMmodel in the test cohort was
1. We then used the SVM model to examine the TME-based subtypes
in the external datasets (GSE72094 and GSE50081). The external
datasets showed the similar results on the TME score of four subtypes
compared to the result in the TCGA dataset (Figures 6A–D).
C1 subtype showed the worst prognosis and C4 subtype had the
best prognosis in both two external datasets (Figures 6A,C). The
enrichment patterns of 29 TME signatures in GSE72094 and
GSE50081 datasets were similar to that in TCGA dataset (Figures
6B,D; Figure 2A). Tumor proliferation rate was highly enriched in
C1 subtype. Anti-tumor and pro-tumor signatures were both more
enriched in C3 compared with other subtypes. The ssGSEA scores of
most TME signatures were different among four subtypes in two
external datasets (Figures 6E,F). The validation of TME-based
subtypes in the external datasets supported the reliability and
robustness of the subtyping, and suggested the important role of
these TME signatures in LUAD.

Development of a TME-based prognostic model
As four TME-based subtypes showed different TME scores,

prognosis and activated pathways, we then identified the DEGs
among four subtypes. A total of 353 DEGs (135 upregulated and
218 downregulated) were screened in C1 vs other, 91 DEGs
(9 upregulated and 82 downregulated) were screened in C2 vs
other, 171 DEGs (161 upregulated and 10 downregulated) were
screened in C3 vs other, and 396 DEGs (223 upregulated and
173 downregulated) were screened in C4 vs other. Functional
analysis on all upregulated DEGs unveiled different biological
function of upregulated DEGs in different subtypes. Cell cycle-
related pathways and processes were enriched in C1; stromal-
related processes were enriched in C2; immune-related pathways
and processes were enriched in C3 (Supplementary Figure S3).

We screened a total of 648 DEGs among four subtypes in TCGA
dataset after removing the duplicate DEGs. Univariate Cox regression
analysis detected a total of 164 risk genes and 254 protective genes
within 648 DEGs (p < 0.05, Supplementary Table S1). Next, we applied

FIGURE 4
Analysis of KEGG and hallmark pathways in TCGA dataset (A–D)GSEA revealed the top 10 enriched KEGG pathways of C1 (A), C2 (B), C3 (C), and C4 (D, E)
The heatmap showed the enrichment of hallmark pathways. Comparison of the enrichment score among four subtypes was performed and the significance
was shown in the right. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Pharmacology frontiersin.org08

Jie et al. 10.3389/fphar.2023.1099927

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1099927


Lasso regression and stepAIC to dig out key prognostic genes from the
above risk and protective genes. Lasso analysis compressed the
coefficients to zero and remained nine prognostic genes when the
lambda value = 0.0689 (Figures 7A,B). Subsequently, stepAIC was
performed on the nine prognostic genes and further compress the
number of genes. Consequently, five prognostic genes were remained,
including PTTG1, MS4A1, ZNF750, RHOV, and KRT6A. The 5-gene
prognostic model was determined as: Risk Score =
0.206*PTTG1—0.155*MS4A1—0.12*ZNF750 + 0.136*RHOV +
0.05*KRT6A.

Examination the performance of the 5-gene
prognostic model

Each LUAD sample obtained a risk score, and was stratified into
high-risk and low-risk groups referring z-score = 0 as a cut-off
(Figure 7D). Two risk groups exhibited different enrichment
pattern of survival status, with a higher density of dead samples in

high-risk groups. Five prognostic genes showed distinct expression
patterns in two risk groups, where ZNF570 andMS4A1 were relatively
upregulated in low-risk group, while RHOV, PTTG1, and KRT6A
were upregulated in high-risk group. There were 242 and 245 LUAD
samples in high- and low-risk groups respectively, and two groups
exhibited distinct prognosis (p < 0.0001, Figure 7E). ROC curve
analysis revealed that the risk model had favorable AUC in
predicting survival at 1, 3, and 5 years with the scores of 0.75, 0.72,
and 0.67 respectively (Figure 7F). Furthermore, we validated the 5-
gene risk model in two independent datasets (GSE72094 and
GSE50081). The validation results were consistent with the TCGA
dataset (Figures 7G–J), which demonstrated the effectiveness and
reliability of the risk model.

The relation of risk score to different clinical characteristics was
assessed and a trend showed that the risk score was higher in the
advanced stages compared with early stages (Supplementary Figure
S4). A significant difference was also observed in different ages and

FIGURE 5
Prediction of the response to immunotherapy and chemotherapeutic drugs in TCGA dataset (A–C) The ssGSEA score of T cell inflamed GEP, Th1/IFN-γ,
and cytolytic activity in four subtypes (D) The expression of immune checkpoint genes in four subtypes (E) The estimated IC50 of four chemotherapeutic
drugs in four subtypes. ****p < 0.0001.
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genders. Moreover, we compared the risk score in four TME-based
subtypes, and the results showed that the prognosis of subtypes was
consistent with their risk levels. C1 with the worst prognosis showed
the highest risk score, which was consistent with the previous results

(Supplementary Figure S4; Supplementary Figure S2). In different
clinical characteristics, the risk model also showed a favorable
performance in dividing samples into high-risk and low-risk
groups (Supplementary Figure S4).

FIGURE 6
Validation of TME-basedmolecular subtypes in two external datasets (A) Survival plot of four subtypes in GSE72094 dataset (B) The heatmap showed the
enrichment of TME signatures in GSE72094 dataset (C) Survival plot of four subtypes in GSE50081 dataset (D) The heatmap showed the enrichment of TME
signatures in GSE50081 dataset (E–F) The ssGSEA score of 29 TME signatures in four subtypes in GSE72094 and GSE50081 datasets. ns, not significant. *p <
.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Biological pathways and immune characteristics of
two risk groups

Next, we compared the difference of two risk groups in biological
pathways and immune characteristics. GSEA on KEGG pathways

revealed that high-risk group had relatively activated pathways of
purine metabolism, pyrimidine metabolism, citrate cycle TCA cycle,
oxidative phosphorylation, and DNA replication (Figure 8A).
Consider that immunity is related to the tumor, thus we determine

FIGURE 7
Construction and validation of a TME-based risk model (A–B) Lasso regression analysis of prognostic genes. The coefficients changed with increasing
lambda value (A). Partial likelihood deviance under different lambda values (B). When lambda = 0.0689 (red dotted line in A and red dot in B), the model
reached the optimal (C) The forest plot of the final five prognostic genes in the risk model (D) The risk score, survival status and expression of five prognostic
genes of tumor samples in TCGA dataset (E–I) Survival plot of high-risk and low-risk groups in TCGA (E), GSE72094 (G), GSE50081 (I) datasets (F–J) ROC
curve of the risk model in predicting survival in TCGA (F), GSE72094 (H), GSE50081 (J) datasets.
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FIGURE 8
The difference of two risk groups on biological pathways and immune characteristics analyzed in TCGA dataset (A) GSEA result showed the significantly
enriched KEGG pathways in high-risk group (B) The immune score, stromal score and ESTIMATE score calculated by ESTIMATE analysis (C) The estimated
proportion of 22 immune-related cells analyzed by CIBERSORT (D) Correlation analysis among immune cells and risk score. Red and blue lines indicate the
positive and negative correlations respectively. The thicker line indicates the stronger correlation (E) Correlation analysis among oncogenic pathways
and risk score. Red and blue indicate positive and negative correlations respectively. The darker color indicates the stronger correlation. (F) the correlation
analysis between risk score and 29 TME pathways.
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immune characteristics. In terms of tumor microenvironment, two
risk groups had distinguished infiltration levels that low-risk group
had higher infiltration of both immune cells and stromal cells than
high-risk group (Figure 8B). Of 22 immune cells, 11 immune cells
were differentially distributed in two risk groups (Figure 8C). Low-risk
group had higher infiltration of resting dendritic cells, memory B cells,
resting memory CD4 T cells, and resting mast cells than high-risk
group, while M0 macrophages and M1 macrophages were lower
enriched in low-risk group. Supportively, risk score was
significantly correlated with resting memory CD4 T cells and
M0 macrophages (Figure 8D). In the relation of risk score with
oncogenic pathways, EGFR, hypoxia, PI3K, and VEGF pathways
were positively correlated with risk score (R = 0.42, 0.42, 0.36, and
0.28, respectively) (Figure 8E), suggesting that these pathways may be
highly involved in the TME modulation and tumor progression.

Moreover, risk score was strongly associated to 29 TME pathways
(Figure 8F).

Different response of two risk groups to
immunotherapy and chemotherapeutic drugs

Assessment on immunotherapy-related indicators unveiled that
low-risk group had higher score of T cell inflamed GEP, Th1/IFN-γ,
and cytolytic activity (Figures 9A–C), indicating a higher response of
low-risk group to immunotherapy than high-risk group. Immune
checkpoint analysis showed PD-1, CTLA-4, BTLA, and TIGIT were
higher expressed in low-risk group than that in high-risk group
(Figure 9D), suggesting that low-risk group was more responsive to
immune checkpoint inhibitors. TIDE analysis predicted that high-risk

FIGURE 9
The predicted response to immunotherapy and chemotherapeutic drugs analyzed in TCGA and IMvigor210 datasets (A–C) The score of T cell inflamed
GEP, Th1/IFN-γ signature, and cytolytic activity in two risk groups (D) The expression of immune checkpoint genes in two risk groups (E) TIDE analysis
calculated the enrichment of immunosuppressive cells, T cell exclusion, T cell dysfunction, and TIDE score in two risk groups (F)Correlation of risk score with
immunotherapy-related indicators (G) The risk score in CR/PR and SD/PD groups in IMvigor210 dataset (H) The proportion of CR/PR and SD/PD in two
risk groups in IMvigor210 dataset (I–K) Survival plot of high-risk and low-risk groups in all stages (I), early stage (I+Ⅱ) (J), and late stage (Ⅲ+Ⅳ) (K) in
IMvigor210 dataset (L) The estimated IC50 of four chemotherapeutic drugs in two risk groups (M) Drug sensitivity of potential drugs in the relation to the risk
score. Rs < 0 indicates drug sensitivity and Rs > 0 indicates drug resistance.

Frontiers in Pharmacology frontiersin.org13

Jie et al. 10.3389/fphar.2023.1099927

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1099927


group was more prone to escape from immunotherapy, which may
result from its high enrichment of myeloid-derived suppressor cells
(MDSCs) and high T cell exclusion (Figure 9E). Correlation analysis of
risk score with the above immunotherapy-related indicators showed
that risk score was positively correlated with MDSC (R = .67), T cell
exclusion (R = .44), and TIDE score (R = .21) but was negatively
correlated with BTLA (R = -0.53) and T cell dysfunction (R = -0.39)
(Figure 9F). Moreover, risk score was positively correlated to TMB
(Supplementary Figure S5), and high group had enhanced TMB
(Supplementary Figure S5).

Furthermore, we used an immunotherapy dataset (IMvigor210) to
validate the reliability of the risk model in predicting immune
response. Risk score was significantly higher in SD/PD group
compared with that in CR/PR group (p = 0.024, Figure 9G), and
low-risk group also had a higher proportion of CR/PR (p = 0.2325302,
Figure 9H). The risk model was also effective to distinguish high-risk
patients receiving immunotherapy in IMvigor210 dataset, especially in
the patients with late stages (Figures 9I–K). In addition, we evaluated
the ability of the risk model in predicting the response to
chemotherapeutic drugs in TCGA dataset. High-risk group had
significantly lower estimated IC50 of all four chemotherapeutic
drugs (Figure 9L), implying that high-risk group was more
sensitive to these four drugs than low-risk group. By utilizing the
drug sensitivity data in GDSC database, we identified six drugs
significantly correlating with risk score where four drugs
(entinostat, GDC0810, ABT737, and venetoclax) may serve as
therapeutic drugs for LUAD (Figure 9M).

Discussion

In the present study, we used 29 TME-related signatures as a basis
to identify TME-based molecular subtypes for LUAD. Four TME-
based subtypes were identified and their clinical and molecular
features such as survival time, gene mutations, genomic
characteristics, immune infiltration, and biological pathways were
characterized. Four subtypes showed distinct clinical and molecular
features, as well as different response to immunotherapy and
chemotherapeutic drugs. By comparing the expression profiles
between different subtypes, we identified DEGs and screened five
key prognostic genes to construct a TME-related risk model for
predicting LUAD prognosis.

Among 29 TME-related signatures, tumor proliferation rate, EMT
signature, and matrix remodeling were shown to be positively
correlated with poor prognosis. EMT has been widely known as a
promotive process in inducing tumor cell invasion and metastasis
through weakening cell-cell adhesion (Ye and Weinberg, 2015). The
junctions of mesenchymal cells with extracellular matrix are loose,
which enable tumor cells easily to migrate. Tumor proliferation rate
had the highest HR (1.40) among these signatures, in accordant with
the close relation between tumor proliferate rate and stage. Evidently
positive correlations were observed among 29 TME-related signatures,
suggesting a complicated regulation system of TME. Therefore, we
used these TME-related signatures as a basis to perform molecular
subtyping for LUAD patients.

We identified four TME-based molecular subtypes and each
subtype showed different enrichment patterns of TME-related
signatures. C1 subtype had the highest enrichment of tumor
proliferation rate, which was considered as a pro-tumor phenotype.

C2 subtype had the least infiltration of anti-tumor immune cells or
molecules, and relatively high enrichment of angiogenesis (Voron
et al., 2014), CAFs (Ziani et al., 2018), and pro-tumor cytokines, which
was suggested as an immune-suppressed phenotype. C3 subtype had
the highest enrichment of anti-tumor cells but the immunosuppressive
cells or signatures such as tumor-associated macrophages (Pan et al.,
2020), Treg (Tanaka and Sakaguchi, 2017), and checkpoint molecules
were also highly enriched. C3 subtype was considered as an immune
infiltrated phenotype. C4 subtype had the lowest enrichment of tumor
proliferation rate and EMT signature. Therefore, we suggested
C4 subtype as a tumor-silent phenotype. Survival analysis of four
subtypes showed that C1 had the worst survival and C4 had the longest
survival, which was consistent with their TME-related features.

Genomic instability is an important feature and is considered as a
hallmark in cancers (Negrini et al., 2010). The mutation of oncogenes
promotes DNA damage and genomic arrangements in cancer (Tubbs
and Nussenzweig, 2017). High non-synonymous TMB was
demonstrated to be associated with favorable prognosis in resected
non-small cell lung cancer patients (Devarakonda et al., 2018). In our
results, C1 had the highest score of aneuploidy, homologous
recombination deficiency, loss of heterozygosity and ploidy,
indicating high genomic instability thus contributing to poor
prognosis of C1. Although high TMB was also shown in C1, the
large number of genomic alterations covered the beneficial effect of
TMB. The contribution of TME in genomic instability has been revealed
in recent years, and hypoxia is a main factor causing DNA damage and
genomic instability (Sonugür and Akbulut, 2019). In pathway analysis,
we found that two hypoxia-related pathways, reactive oxygen species
pathway and oxidative phosphorylation, were relatively activated in C1,
which supported the above observation.

Biological pathway analysis revealed that four TME-based
subtypes had different activated pathways that may lead to their
different outcomes. In C1 subtype, cell cycle-related pathways such
as E2F targets, G2M checkpoint, MYC targets, and DNA repair were
strikingly enriched, while immune response-related pathways were
relatively inhibited, which was consistent with high tumor
proliferation rate of C1. The crosstalk among activated cell cycle
pathways, genomic instability and oxidative stress promoted the
tumor progression and thus led to unfavorable outcome in
C1 subtype. Oncogenic pathways such as WNT, TGF-β, Notch,
Hedgehog, angiogenesis, hypoxia, and EMT were more enriched in
C2 subtype compared with other subtypes. Lines of evidence have
verified the role of these oncogenic pathways in the regulation of TME
and response to immunotherapy (Yang et al., 2010; Albini et al., 2018;
Meurette and Mehlen, 2018; Patel et al., 2019; Gampala and Yang,
2021). Immune response pathways such as interferon response, IL2-
STAT5 signaling, complement, IL6-JAK-STAT3 signaling, and
inflammatory response were much enriched in C3 and
C4 subtypes, which were responsible for their favorable prognosis.
In addition to immune response pathways, metabolic pathways such
as fatty acid metabolism, adipogenesis, and bile acid metabolism were
also enriched in C4 subtype. The metabolic alterations have been
demonstrated to shape TME components thereby influencing tumor
progression and immunotherapy efficiency (Lyssiotis and
Kimmelman, 2017; DeBerardinis, 2020).

Cancer patients with different TME may have different response
to immunotherapy. We estimated the potential response of four
subtypes to immunotherapy by using immunotherapy-related
indicators (T cell inflamed GEP, Th1/IFN-γ, and cytolytic activity).
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Four subtypes showed distinct enrichment of these indicators where
C3 subtype was predicted to benefit most from immunotherapy. In
addition, four subtypes also displayed differential expression of key
immune checkpoints such as PD-1, CD274, CTLA-4, and LAG3.
C3 subtype exhibited the highest expression of these checkpoints,
suggesting C3 subtype was sensitive to ICIs. From the above results, we
concluded that the TME-based subtyping was effective to provide a
guidance for LUAD patients receiving immunotherapy.

Furthermore, we established a TME-related risk model containing
five prognostic genes (PTTG1, MS4A1, ZNF750, RHOV, and KRT6A)
for predicting LUAD survival. PTTG1 was found to promote lung
cancer migration and invasion (Li et al., 2013), and knockdown of
PTTG1 could enhance anti-tumor activity in LUAD (Chen et al.,
2021). The expression of MS4A1 was shown to be positively correlated
with the survival of colorectal carcinoma (Mudd et al., 2021), which
was consistent with our result that MS4A1 was highly expressed in
low-risk group. ZNF750 is a tumor suppressor in squamous cell
carcinoma, which can suppress cell migration (Hazawa et al.,
2017). In our study, ZNF750 expression level was downregulated in
high-risk group, which supported its protective role in inhibiting
tumor progression. RHOV was shown to facilitate tumor cell
growth and metastasis in LUAD (Zhang et al., 2021). In our
results, RHOV was evidently elevated in high-risk
group. Overexpression of KRT6A was able to promote LUAD cell
proliferation through EMT process (Yang et al., 2020), which may lead
to poor prognosis in high-risk group. Previous studies have illustrated
that the five prognostic genes are involved in tumor progression and
migration in lung cancer or other cancer types, implying that our
TME-related risk model was reliable to predict LUAD prognosis. ROC
curve analysis showed a high AUC and validated the efficiency of the
risk model. In addition, we evaluated the predictive value of the risk
model in guiding immunotherapy and chemotherapy. Two risk
groups showed differential immune responses to immunotherapy
and differential IC50 to four chemotherapeutic drugs (docetaxel,
vinorelbine, paclitaxel, and cisplatin), which illustrated that the risk
model also had a potential in assisting the decision-makings in
immunotherapy and chemotherapy.

Conclusion

In conclusion, our study revealed the molecular characteristics of
LUAD patients based on TME-related signatures. The distinct
biological pathways and TME features of four TME-based subtypes

laid a foundation for the further exploration of the crosstalk among
TME, genomic instability, and oncogenic pathways in LUAD. The
TME-related risk model was efficient and reliable to predict LUAD
prognosis and assist clinical treatment.
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