
A novel prognostic scoring model
based on copper homeostasis and
cuproptosis which indicates
changes in tumor
microenvironment and affects
treatment response

Yun-Long Ma1, Ya-Fei Yang1, Han-Chao Wang2,
Chun-Cheng Yang1, Lun-Jie Yan1, Zi-Niu Ding1, Bao-Wen Tian1,
Hui Liu1, Jun-Shuai Xue1, Cheng-Long Han1, Si-Yu Tan1,
Jian-Guo Hong1, Yu-Chuan Yan1, Xin-Cheng Mao1,
Dong-Xu Wang1* and Tao Li1,3*
1Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China, 2Institute for Financial
Studies, Shandong University, Jinan, China, 3Department of hepatobiliary surgery, The Second Hospital of
Shandong University, Jinan, China

Background: Intracellular copper homeostasis requires a complex system. It has
shown considerable prospects for intervening in the tumor microenvironment
(TME) by regulating copper homeostasis and provoking cuproptosis. Their
relationship with hepatocellular carcinoma (HCC) remains elusive.

Methods: In TCGA and ICGC datasets, LASSO and multivariate Cox regression
were applied to obtain the signature on the basis of genes associated with copper
homeostasis and cuproptosis. Bioinformatic tools were utilized to reveal if the
signature was correlated with HCC characteristics. Single-cell RNA sequencing
data analysis identified differences in tumor and T cells’ pathway activity and
intercellular communication of immune-related cells. Real-time qPCR analysis
was conducted to measure the genes’ expression in HCC and adjacent normal
tissue from 21 patients. CCK8 assay, scratch assay, transwell, and colony formation
were conducted to reveal the effect of genes on in vitro cell proliferation, invasion,
migration, and colony formation.

Results: We constructed a five-gene scoring system in relation to copper
homeostasis and cuproptosis. The high-risk score indicated poor clinical
prognosis, enhanced tumor malignancy, and immune-suppressive tumor
microenvironment. The T cell activity was markedly reduced in high-risk
single-cell samples. The high-risk HCC patients had a better expectation of
ICB response and reactivity to anti-PD-1 therapy. A total of 156 drugs were
identified as potential signature-related drugs for HCC treatment, and most
were sensitive to high-risk patients. Novel ligand-receptor pairs such as FASLG,
CCL, CD40, IL2, and IFN-Ⅱ signaling pathways were revealed as cellular
communication bridges, which may cause differences in TME and immune
function. All crucial genes were differentially expressed between HCC and
paired adjacent normal tissue. Model-constructed genes affected the
phosphorylation of mTOR and AKT in both Huh7 and Hep3B cells. Knockdown
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of ZCRB1 impaired the proliferation, invasion, migration, and colony formation in
HCC cell lines.

Conclusion:Weobtained a prognostic scoring system to forecast the TME changes
and assist in choosing therapy strategies for HCC patients. In this study, we
combined copper homeostasis and cuproptosis to show the overall potential
risk of copper-related biological processes in HCC for the first time.

KEYWORDS

copper homeostasis, cuproptosis, hepatocellular carcinoma, prognostic model, tumor
microenvironment, immunocytes, intercellular communication

1 Introduction

As an indispensable human body element, copper participates in
various physiological and metabolic functions, including
coagulation, oxidative metabolism, and hormone production
(Bhattacharjee et al., 2017). There are inherent complex
mechanisms in cells to maintain copper homeostasis. Copper
homeostasis disorders involve a wide range of diseases, including
degenerative neurological diseases (Bisaglia and Bubacco, 2020),
metabolic diseases (Lowe et al., 2017), cardio-cerebrovascular
diseases (Fukai et al., 2018), and tumors (Oliveri, 2022). The
elevated copper level has been found in various solid tumors,
promoting proliferation, invasion, migration, and angiogenesis
(Oliveri, 2022). Excess copper caused by copper homeostasis
disorder such as transporter mutation leads to programmed cell
death, which was recently identified as cuproptosis (Tsvetkov et al.,
2022). Cuproptosis is induced via copper-dependent protein fatty
acylation, accompanied by tricarboxylic acid cycle changes, and
influenced by mitochondrial function (Tsvetkov et al., 2022).
Copper homeostasis is not only related to the drug resistance of
traditional chemotherapeutic drugs but also can affect specific
immune checkpoints and change the anti-tumor immune
response (da Silva et al., 2022; Voli et al., 2020). Given the vital
role of copper in cancer, copper ion carriers and copper complexes
have been developed as anticancer drugs (Chen et al., 2006; Cen
et al., 2004; O’Day et al., 2009; O’Day et al., 2013; Tsang et al., 2020).
Still, the metabolic heterogeneity of different cancers is the main
obstacle to their application. To achieve a more stable and reliable
anticancer effect by affecting the copper homeostasis of tumor cells,
the corresponding receptors of specific types of tumor cells should
be targeted (da Silva et al., 2022). As key players in this novel cell
death form, the genes related to copper homeostasis and cuproptosis
possibly be promising cancer therapy targets. The specific
mechanism of cuproptosis was covered; nevertheless, for further
targeted drug development and clinical application, understanding
different targets of copper homeostasis and cuproptosis in various
tumors is still far from sufficient.

Although there are a variety of measures for diagnosis and
treatment, mortality and prognosis are still poor for HCC because of
a wide range of predisposing factors and unobvious early clinical
manifestations (Hartke et al., 2017). Compared with mature
traditional therapy, non-invasive diagnosis and targeted therapy
are still challenging. Recently, patients’ prognosis and life quality
have been improved by systemic therapies (Llovet et al., 2021). The
disorder of copper homeostasis can cause cuproptosis, which has
great potential in developing new therapies for HCC. Copper

content is closely linked to liver cirrhosis and HCC (Zhang et al.,
1994). Ionizing radiation can increase the radiation resistance
caused by intracellular copper and inhibit ferroptosis and the
degradation of HIF1α (Yang et al., 2022). Copper-binding
enzyme LOXL4 causes the immunosuppressive phenotype of
macrophages and promotes the progression of HCC (Tan et al.,
2021). Given the critical role of copper in HCC, new copper
complexes for specific targets have been developed. A new
copper complex can induce cell senescence by inhibiting
methionine cycle metabolism, which depends on mitochondrial
carrier protein (Jin et al., 2020). Another targeted nanoparticle
containing copper complex effectively reduces the growth of
mice’s HCC (Xu et al., 2020). The evidence above suggests that
genes related to copper homeostasis and cuproptosis have
remarkable research prospects in expanding systemic therapy and
improving patient prognosis in clinical application.

This study developed a novel prognostic scoring system that
incorporates genes related to copper homeostasis and cuproptosis to
predict the clinical outcome of HCC patients. To demonstrate the
predictive value of the signature, we explored the underlying
mechanisms based on bulk and single-cell RNA sequencing data.
Novel receptor-ligand pairs were proposed to help understand
tumor-immune cell interactions and explain the differences in
TME related to the signature. Finally, potential targeted and
chemotherapeutic drugs were predicted for different scoring
samples. Our predictive model showed great potential in
identifying the risk of copper-related physiological processes and
assisting in the therapy of HCC patients.

2 Materials and methods

2.1 Acquisition of multiomics data

The following bulk RNA-sequencing expression profiles and
corresponding clinical data were downloaded from the TCGA
database (https://portal.gdc.com n = 377). Raw sequencing reads
were aligned using the STAR aligner and expressed as fragments per
million mapped reads (FPKM). Gene expression profiles were
standardized using R (https://www.r-project.org/). Only patients
with complete clinical information related to the analysis were
retained. Training and testing groups were randomly assigned in
a ratio of 1:1 among the patients. To establish an independent
validation cohort, Clinical pathology and RNA-Seq mRNA
expression data were obtained for 232 samples from the ICGC
portal (https://dcc.icgc.org/projects/LIRI-JP). The UCSC Xena
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server was used to retrieve somatic mutations and methylation data
for HCC (https://xenabrowser.net/). The GEO database was used to
download data for single-cell RNA sequencing of primary HCC
tissues (GSE149614, n = 10). “Seurat” and “NormalizeData” R
packages were used for the standardization of the single-cell
RNA-Seq data. “FingVariableGenes” R package was used for the
identification of the top 3,000 highly variable genes. The
determination of cell types was as shown in Supplementary
Figure S1A (Malignant cell markers-GPC3, CD24, MDK, KRT18;
Meyloid cell markers-CD68, AIF1, C1QA, TPSAB1; T cell markers-
CD3D, CD3E, CD2; B cell markers-MZB1, MS4A1, CD79A;
Fibroblast cell markers-COL1A2, COL3A1, ACTA2; Endothelial
cell markers-FLT1, RAMP2, PLVAP).

2.2 Identification of genes related to copper
homeostasis and cuproptosis

25 genes (SLC31A1, SLC31A2, ATOX1, PDHB, COX11,
COX17, PDHA1, NLRP3, NFE2L2, CCS, MTF1, LIPT2, LIPT1,
LIAS, GLS, GCSH, FDX1, DLST, DLD, DLAT, DBT, CDKN2A,
ATP7B, ATP7A, SCO1) directly involved in copper death and
copper homeostasis processes were obtained from previous
studies (Bian et al., 2022; da Silva et al., 2022; Inesi, 2017;
Tsvetkov et al., 2022). An analysis of the differential expression
of these genes was conducted in HCC. To screen related genes,
Pearson correlation analysis was conducted (correlation
coefficient>0.4, p < 0.001). Qualified genes were associated with
cuproptosis or copper homeostasis.

2.3 Development of the signature related to
copper homeostasis and cuproptosis

With R package “glmnet,” genes associated with copper
homeostasis and cuproptosis were screened using univariate cox
regression. Then the least absolute shrinkage and selection operator
(LASSO) Cox regression and multivariate Cox regression models
were used to creating the copper metabolism and cuproptosis gene
signature in the training cohort. Gene expression values and
coefficients of crucial genes were multiplied to determine the
score of each sample. The median value of the score determined
high-risk and low-risk groups. ROC curves analysis and Kaplan-
Meier survival analysis were conducted to evaluate the signature.
Independent prognostic analysis was conducted to determine if the
risk score affected survival in patients with HCC. A stratified clinical
examination was performed according to the patient’s clinical
pathological characteristics (age, gender, grading, staging). The
“ggDCA” R package was used to analyze different diagnostic models.

2.4 Nomogram development and validation

Multivariate Cox regression results were used to develop the
Nomogram model. The final model was chosen using the Akaike
information criterion (AIC) as a backward selection criterion
(Harrell et al., 1996). Nomogram validation was conducted using
a calibration curve generated via regression analysis. The

nomogram was developed following the nomogram guide
(Iasonos et al., 2008).

2.5 Functional enrichment and genetic
alterations analysis

KEGG and GO analyses were performed using the R package
“clusterProfiler” (Yu et al., 2012). The genetic variation between
groups of Risk Scores was analyzed using R package “Maftools.” The
ssGSEA score was calculated with R package “GSVA,” which was
also used for functional enrichment analysis in malignant cells and
T cells of single-cell RNA-Seq data. MATH score was used to
evaluate tumor heterogeneity (Mroz and Rocco, 2013).

2.6 Drug sensitivity prediction

Drug sensitivity in cancer was predicted using the Genomics of
Drug Sensitivity in Cancer database (GDSC: https://www.
cancerxgene.org). “pRRophetic” R package was used to calculate
half maximal inhibitory concentration (IC50) (Geeleher et al., 2014).

2.7 Immune profile analysis and cell
communication

“Immunedeconv” R package was applied to evaluate the
immune score (Sturm et al., 2020). VEGFB, TNFSF4, TNFRSF4,
TNFRSF18, TIGIT, TGFB1, SELP, PDCD1, LAG3, IL1A, IL12A,
IDO1, HMGB1, HAVCR2, EDNRB, CTLA4, CD276, CD274,
CTLA4, BTLA, and ARG1 were chosen as immune checkpoints.
The TIDE procedure was combined with subclass mapping and
immunophenoscore (IPS) to calculate potential ICB responses (Kim
et al., 2008). The IPS of HCC patients included in the analysis came
from the TCIA database (https://www.tcia.at/home).

‘‘Celltalker’’ R package was applied to analyze crosstalk between
malignant cells and immunocytes based on the single-cell RNA-
Seq data.

2.8 Human tissues

Surgically resected HCC and normal adjacent tissue samples
were obtained from twenty-one HCC patients at the Qilu Hospital of
Shandong University (Jinan, China) and stored in liquid nitrogen.
All HCC samples were confirmed through clinicopathological
features. The hospital’s ethical committee approved the study,
and each patient signed a written informed consent form.

2.9 qRT-PCR, Western blot, and
immunohistochemistry

The cells were washed with PBS and lysed in RIPA buffer
(Beyotime, CN) containing phosphatase inhibitors and protease
inhibitors (Beyotime, CN) at the indicated time points. The BCA
Protein Assay kit (Beyotime, CN) was used to determine protein
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lysate concentration. After centrifuging at 12,000×g for 15 min, the
supernatant was mixed with the 5×SDS-PAGE loading buffer
(Beyotime, CN), and boiled at 95°C for 5 min. A standard
Western blot procedure was then followed. 0.2 um PVDF
membrane was obtained from Thermo Fisher Scientific (Thermo
Fisher Scientific, United States). Enhanced chemiluminescence was
obtained from Thermo Fisher Scientific (Thermo Fisher Scientific,
United States). Antibodies against AKT, p-AKT, mTOR, p-mTOR
and GAPDH were obtained from Cell Signaling Technology (Cell
Signaling Technology, CN).

Trizol reagent (Thermo Fisher Scientific, United States) was
used to prepare total RNA from tissues or cells. PrimeScript™ RT
Master Mix (Takara Bio, JP) was used for reverse transcription.
qRT-PCR analysis was performed with the CFX Connect system
(Bio-Rad, United States) and CharmQ SYBR qPCR Master Mix
(Takara, Japan). Supplementary Table S3 lists the primers used in
this study.

In accordance with standard protocols, immunohistochemistry
was performed on HCC and adjacent normal tissue. Antibody
against ZCRB1 was obtained from Thermo Fisher Scientific
(Thermo Fisher Scientific, United States).

2.10 Cell lines and cell culture

Hep3B and Huh-7 cells were obtained from the Shanghai Cell
Collection. DMEM with 10% FBS and 1% Penicillin-Streptomycin
was used to culture the cells at 37°C with 5% CO2.

2.11 Cell transfection and Cell Counting Kit-
8 assay

siCDKN2A, siDLAT, siGEMIN2, siZCRB1, and siKLF9 were
obtained from Ribobio (CN). As directed by the manufacturer,
JetPRIME® transfection kit (BIOFIL, CN) was used for transfection.
After 24 h, total RNA was extracted for qRT-PCR.

Huh7 or Hep3B cells were inoculated into 96-well plates 24 h
after transfection at a density of 1,000 cells per well. Each group
was replicated five times. Cell Counting Kit-8 (Dojindo, JP) was
used for the measurement of cell proliferation. As the culture
progressed, absorbance values were measured after 0, 24, 48,
and 72 h.

2.12 Migration, invasion, and colony
formation assay

The scratch assay was applied to evaluate cell migration and
repair. After reaching 90%–100% confluency in wells of culture
plates, cells were exposed to serum-free medium for 6 h, and each
cultured well was scraped with a pipette tip in the same
specification. Cells were washed with PBS to remove
fragments. Microscope images of the same positions were
acquired in after 0 and 30 h. Based on the percentage of
wound closure area, cell migration was determined.

Transwell migration and invasion assays were conducted to
evaluate the ability of cell migration and invasion. 24-well transwell

chambers (Corning, United States) were used in the assay. For the
invasion assay, matrigel (Corning, United States) was applied to the
upper ventricle surface of the basement membrane of the transwell
chamber. The insert was filled with 30,000 cells suspended in 150 ul
serum-free serum before the assay. In the lower chamber, 700 ul
medium containing 12% fetal serum was added for chemotactic
stimulation. Cells were cultured for 24 h for migration assays and
40 h for invasion assays. Then cotton swabs were used to remove
cells from the surface of the membrane. Cultured cells were fixed
with 100% methanol and stained with 0.1% crystal violet. Random
visual fields of 3 different inserts were captured, and the number of
cells was counted.

After inoculating 3000 cells per well, Huh7 andHep3B cells were
grown for 8 and 10 days respectively in 6 well plates in complete
medium. Cultured cells were fixed with 100% methanol and stained
with 0.1% crystal violet. Each well was counted for the number of
colonies.

2.13 Statistical analysis

R packages and analysis methods were executed with R (version
4.0.3). Quantitative variables were evaluated using independent
samples t-tests. The unpaired Wilcoxon rank sum test was
applied for the gene difference significance. For categorical data,
Chi-square tests were applied. The ROC curve and Kaplan-Meier
model judged efficacy in predicting survival outcomes. The
relationships between prognostic classification, survival outcomes,
and other clinical parameters were revealed with the Cox
proportional model. A p-value less than 0.05 indicates statistical
significance. * means a p-value less than 0.05; ** means a p-value less
than 0.01; *** means a p-value less than 0.001; **** means a p-value
less than 0.0001. For multiple corrections, the Benjamini–Hochberg
method was applied.

3 Results

3.1 Identification of genes related to copper
homeostasis and cuproptosis and
development of prognostic signature

We sorted out 25 genes from previous studies that have been
proven to participate in cuproptosis and the maintenance of
copper homeostasis directly. Most genes (22/25) were differently
expressed in HCC and normal tissues (Figure 1A). Given the
crucial role of copper in cancer, the signature related to
cuproptosis and copper homeostasis could assist in evaluating
tumor microenvironment changes and other pathological
processes in HCC induced by copper. A correlation analysis
was carried out according to the coefficient, and 95 genes were
screened.

Including the original set of genes and their related genes, one
hundred twenty candidate genes were confirmed as genes related to
copper homeostasis and cuproptosis [Supplementary Table S1 (S1)],
which were input into a univariate COX analysis. A LASSO
regression was conducted on the genes with prognostic
significance. Five hub genes were obtained (CDKN2A, DLAT,
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KLF9, GEMIN2, ZCRB1) (Figures 1B, C). There is a strong
correlation between hub genes and genes directly participating in
copper homeostasis and cuproptosis (Figure 1D). The signature was
developed with a multivariate Cox proportional model. Risk
Score = −0.2629*KLF9+0.6633*ZCRB1 +0.3994*DLAT+ 0.2121*
CDKN2A+0.7650*GEMIN2. Gene expression in the cohort was
visualized using a heat map (Figure 1E). HCC and normal tissues
expressed all five genes differently (Figure 1F). Kaplan-Meier
survival analysis was used to verify their relationship with HCC
prognosis (Figure 1G). Five hub genes were significantly different in

expression between HCC and normal tissues, and their expression
was correlated with prognosis.

3.2 Clinical prognostic validation of the
signature

The overall survival (OS) of high-risk patients was briefer in all
cohorts (Figure 2A). In the TCGA cohort, 1-year, 3-year, and 5-year
AUC values were 0.746, 0.703, and 0.718. Compared with clinical

FIGURE 1
Identifying genes related to copper homeostasis and cuproptosis and development of the signature. (A) Expression of 25 genes in HCC and normal
tissues. Unpaired Wilcoxon Rank Sum and Signed Rank Test was applied for difference significance analysis. (B) Ten-fold cross-validation of the LASSO
Cox regression model’s tuning parameter (λ) selection. Based on the minimum criteria and the 1-SE criteria, vertical lines were drawn at the optimal
values. (C) LASSO coefficient profiles of the prognostic genes. (D) The correlation between the five genes in the signature and the genes directly
participating in copper homeostasis and cuproptosis. (E) The expression of the five hub genes in the TCGA cohort. (F) Differential expression of the hub
genes between HCC and normal tissues. (G) Kaplan−Meier plots of CDKN2A, KLF9, DLAT, GEMIN2, and ZCRB1.
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FIGURE 2
Clinical validation of the prognostic signature. (A) The Kaplan-Meier overall survival (OS) curves of the risk score in the training, testing, TCGA, and
ICGC cohorts. (B) Receiver operating characteristic (ROC) curve based on the risk score and other clinicopathological features for predicting OS in HCC
patients. (C) Kaplan-Meier Progression–free Survival (PFS) curve. (D) Univariate (left) and multivariate (right) Cox regression analyses. (E) Kaplan-Meier
survival subgroup analysis stratified by clinical characteristics. Grouping criteria: age>60/≤60, gender, histological grade, TNM stage. (F) OS
nomogram (G) Nomogram calibration for the OS nomogram.
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features, the risk score has higher prediction accuracy (Figure 2B). In
addition, the Progression Free Survival (PFS) of high-risk patients in
the TCGA cohort was also shorter (Figure 2C). Clinical
characteristics and risk scores of HCC patients were analyzed by
univariate and multivariate Cox regression, demonstrating that
prognosis was independently predicted by the risk score
(Figure 2D). The correlation between the risk score and
pathological characteristics was examined. T stage, TNM stage,
and histological grade were significantly correlated with risk
score (Table 1). In stratified clinical analysis, there were
significant differences in OS between high-risk and low-risk
patients in all subgroups (Figure 2E). As an independent external
validation set, the ICGC dataset was processed using the same

methodology as the TCGA dataset. AUC, pathological
characteristics analysis, and Kaplan-Meier analysis of the ICGC
dataset once again demonstrated the prognostic value of the
signature (Figures 2A, B) (Table 1). According to the above
results, the signature was associated with HCC progression.

As a means of facilitating the clinical application of prognostic
signatures, a nomogram was constructed through the combination of
traditional clinical information (age, tumor stage, tumor grade) and risk
scores (Figure 2F). Based on the second-generation sequencing result of
the patients, the overall survival can be estimated by combining
pathological characteristics with the risk scores. The nomogram
performed well at predicting according to the calibration curve
(Figure 2G).

TABLE 1 The correlation between risk score and clinicopathological features of HCC patients in the TCGA and ICGC cohort.

TCGA-LIHC cohort (n = 377) LIRI-JP cohort (n = 232)

High risk Low risk p-Value High risk Low risk p-Value

Age 0.08 0.425

≤60 86 91 22 28

>60 89 102 94 88

Gender 0.923 0.371

Female 58 62 34 27

Male 117 131 82 89

Child_pugh 0.788 NA

A 87 129 NA NA

B/C 10 12 NA NA

AFP 0.512 NA

≤300 60 58 NA NA

>300 45 54 NA NA

Fibrosis/Cirrhosis 0.108 NA

No 25 94 NA NA

Yes 24 50 NA NA

T_stage 0.020* NA

T1 72 109 NA NA

T2 51 42 NA NA

T3 44 34 NA NA

T4 8 5 NA NA

N_stage 0.361 NA

N0 121 129 NA NA

N1 3 1 NA NA

M_stage 0.625 NA

M0 126 139 NA NA

M1 1 3 NA NA

TNM_stage 0.010* <0.001*
I 67 104 13 23

II 43 42 42 64

III 49 34 45 26

IV 1 4 16 3

Histological_grade <0.001* NA

G1 16 39 NA NA

G2 75 102 NA NA

G3 73 46 NA NA

G4 9 3 NA NA

AFP, alpha-fetoprotein; TNM, cancer staging system.

Frontiers in Pharmacology frontiersin.org07

Ma et al. 10.3389/fphar.2023.1101749

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1101749


3.3 Distribution of model-constructing
genes and risk score in UMAP

The risk score of ten single-cell sequencing samples was calculated
according to the Cox proportional model above for further analysis
[Supplementary Table S1 (S2)]. We divided the single-cell sequencing
samples into high- and low-risk scoring groups, and there was a
significant statistical difference between the two groups (Figure 3A).
Given the excellent predictability of the risk score for clinical prognosis,
we explored the distribution of genes participating in the risk model and
the risk score distribution in the uniform manifold approximation and
projection (UMAP) based on the single-cell RNA sequencing data. The
cells with high-risk scores were mainly malignant (Figures 3B, C). All the
genes involved in the model construction were expressed to a certain
extent in malignant cells (Figure 3D). Different from other genes,
increased expression of KLF9 is associated with a lower risk score and
better prognosis for patients, while it’smainly expressed in fibroblasts and
endothelial cells (Figure 3D).

3.4 Functional enrichment analysis revealed
risk score correlated with HCC malignant
degree

To reveal the potential mechanism causing the clinical characteristic
in HCC patients with different risk scores, a cut-off of a p-value of

0.05 and a |FC| > 2 was used for screening differentially expressed genes
(DEGs) between high- or low-risk groups [Supplementary Table S1
(S3)]. An analysis of GO andKEGGwas then conducted. Results showed
cell proliferation-related biological processes enriched mostly (Figures
4A, B). Then we collected a set of genes in tumor-related pathways and
calculated the enrichment scores for every patient using the ssGSEA
method. The high-risk group showed significant upregulation of
proliferation and cell cycle pathways, including G2M checkpoint,
DNA replication, DNA repair, MYC targets, and PI3K/AKT/mTOR
pathway, which was in agreement with the results of the KEGG and GO
(Figure 4C). We also found the upregulation of cell response to hypoxia,
which can lead to an increase in tumor invasiveness. The OCLR
algorithm was subsequently applied to calculate mRNAsi (Malta
et al., 2018). A higher mRNAsi score was found in the high-risk
group, reflecting the loss of cell differentiation phenotype and
acquisition of stem cell-like characteristics (Figure 4D). Based on
single-cell sequencing data, we performed GSVA to analyze the
pathway enrichment in HCC malignant cells of high- and low-risk
samples (Figure 4E). A series of cancer-promoting pathways in the high-
risk samples were upregulated, such as oxidative phosphorylation, MYC
targets, and DNA repair. In contrast, low-risk samples showed increased
activity of more cancer-inhibiting pathways, such as the
P53 pathway, apoptosis process, and IL2-STAT5 signal pathway. The
analysis results of bulk RNA-Seq and single-cell RNA-Seq revealed that a
higher risk score predicted stronger proliferative ability and malignancy
in HCC.

FIGURE 3
Distribution of model genes and risk score in UMAP based on single-cell sequencing data (GSE149614). (A) Comparison of risk scores of different
samples. (B) UMAP of 23,590 cells from primary HCC tumors of ten HCC patients. (C) Distribution of risk score in UMAP. (D) Distribution of model
construction genes in UMAP.

Frontiers in Pharmacology frontiersin.org08

Ma et al. 10.3389/fphar.2023.1101749

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1101749


3.5 Genomic changes of cuproptosis and
copper homeostasis related signature

An investigation of the relationship between somatic mutations and
the signature was conducted in high-risk and low-risk patients. The
fifteen genes with the highest mutation rate were identified (Figure 5A).
In spite of the fact that there was no significant difference in tumor
mutation burden between groups with high- and low-risk scores
(Supplementary Figure S1C), there were differences in tumor
heterogeneity (Figure 5B) and mutation rates of several high-
frequency mutant genes. High-risk individuals exhibited higher

mutation rates of TP53 (p = 0), LRP1B (p = 0.008), and OBSCN
(p = 0.008), all of which were identified as crucial tumor suppressors.

In addition, the methylation of genes was compared between the
high and low-risk groups [Supplementary Table S1 (S3)]. β value
was used to measure the methylation level of genes. The top 10 genes
with the most significant positive or negative β value differences
were displayed respectively (Figure 5C). A higher level of
methylation was found in the high-risk group for the following
genes: SH3BP4, ADI1, AEN, ELK4, C9orf5, BAIAP2, HFE2,
RAD54L2, and SLC23A2. Methylation levels of the following
genes were more significant in the low-risk group: UCK2, DHX9,

FIGURE 4
Functional enrichment analysis of high- and low-risk groups. GO analysis (A) and KEGG analysis (B) of DEGs between the high-risk and low-risk
groups. (C)Heatmap of ssGSEA scores in proliferation-related pathways. (D) Correlation between mRNAsi score and risk score of the signature. (E)GSVA
for malignant cells from single-cell RNA-Seq.
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FLVCR1, LQK1, CDKN2BAS, PACS1, CASP2, SPP1, SLCA5,
HIF1a. The complete data was shown in [Supplementary Table
S1 (S2)]. Finally, we compared copy number variations (CNV) in
two groups, but no significant difference was found in the results
(Supplementary Figure S1D).

3.6 Immune landscape analysis revealed
immunosuppressive tendency of high-risk
score sample

The TCGA cohort’s immune-related processes’ scores were
calculated using ssGSEA (Figure 6A). The results showed decreased
response to IFN-1 and IFN-2, decreased CCR activity, decreased cytolytic
activity, and increased expression of MHC-1 in high-risk HCC patients.
Using the quantiseq algorithm, the immune score of tumor tissue was
quantified to further reveal the effect of different risk scores on the
immune-related TME (Figure 6B). The high-risk group showed
significant increases in B cells, M2 macrophages, monocytes, and
T cells, but a decrease in NK cells. The immune infiltration in the
external validation cohort (ICGC) was analyzed using the same method.
The high-risk group showed significant increases in B cell and
M2 macrophage, but a decrease in NK cells (Figure 6C), which was
roughly in line with the TCGA cohort. Also, immune checkpoint
molecules were examined that inhibit immune cells and allow tumors
to escape immune recognition. A significant increase in the expression of
most chosen immune checkpoint molecules (17/20) was observed in
high-risk individuals (Figure 6D). The ICGC cohort also revealed
significant differences in immune checkpoint expression in different

risk groups (12/20) (Figure 6E), which confirms the TCGA cohort’s
results. Analysis of the relationship between cancer immune cycle and risk
score was carried out using TIP (http://biocc.hrbmu.edu.cn/TIP)
(Figure 6F) (Xu et al., 2018). Risk scores and step 1 (antigen release
from cancer cells) of the immune process were positively correlated, but
step 5 (immune cell infiltration into tumors) was negatively correlated.

In the analysis of the sc-RNA data, We compared the contents of
tumor cells and different types of immune cells in different groups. It was
found that samples at high risk contained a higher proportion of
malignant cells and a lower proportion of immune cells and other
cells. (Figure 6G). T cells in TME are essential participants in tumor-
related immune processes but are usually inhibited by various signals.
T cells fromhigh-risk and low-risk groupswere compared usingGSVA to
investigate whether risk score impacts T cell function in TME
(Figure 6H). The low-risk group showed significantly higher activity
in T cell activation pathways than the high-risk group, such as
cytotoxicity, chemicals, T cell functions, negative regulation of T cell
apoptosis, IMmotion150 teff, cytokines, IMmotion 150 myoid
inflammation, leucocyte function.

3.7 Ligand–receptors pairs analysis between
immunocytes and HCC cells

The analysis above revealed that the infiltration rate of immune cells
was different between high- and low-risk scores. As a result, we
conducted a communication analysis between malignant cells and
other immune-related cells based on the single-cell sequencing data
to find the pathways and corresponding targets (Figure 7A). In the high-

FIGURE 5
Features of mutation andmethylation of high- and low-risk groups in the TCGA-cohort. (A)Diagrams of the 15 most substantially changed genes in
the high-risk and low-risk subgroups. (B) The MATH scores of HCC patients from high-risk and low-risk subgroups. (C) The top 10 genes with the most
significant positive or negative β value difference in high- and low-risk groups.
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risk samples, fibroblasts dominated signal input and output. In
comparison, the signal input of the low-risk samples was dominated
by endothelial cells. In the communication between tumor cells and
other cells, Signal intensity and communication process were
significantly different between high- and low-risk groups for the
following pathways: FASLG (FASL-FAS) signal pathway (Figure 7B),
CCL (CCL5-CCR5) signal pathway (Figure 7C), CD40 (CD40L-
(ITFA5, IGTB1)) signal pathway (Figure 7D), IL2 (IL7R-IL7RG)

signal pathway (Figure 7E), and IFN-II (IFNG-(IFNGR1-2)) signal
pathway (Figure 7F). The high-risk group has different degrees of signal
intensity reduction in these pathways, the activation of which could
assist in the anti-tumor process. The total information flow between
high-risk and low-risk groups also differed significantly across other
signaling pathways (Figure 8A). To a certain extent, this explains the
decrease in immune cell infiltration and the tendency of
immunosuppression in the HCC TME of high-risk samples.

FIGURE 6
The immune landscape of high- and low-risk groups. (A) Heatmap of ssGSEA scores in the activity of immune-related processes in TCGA cohort.
The quantiseqmethod calculates the proportion of 10 types of immune cells in low- and high-risk score groups of the TCGA cohort (B) and ICGC cohort
(C). The expression of immune checkpoints in the high-risk and low-risk groups of the TCGA cohort (D) and ICGC cohort (E). (F) Correlation between
cancer-immunity cycle scores and risk scores in the model in the TCGA cohort. (G) The proportion of malignant cells and immune-related cells in
high-risk and low-risk samples of single-cell sequencing data. Detailed data was shown in supplementary Table S1 (S4). (H) GSVA analysis of T cell
function in the single-cell cohort.
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3.8 Responses prediction of
chemotherapeutic and immune therapy

Non-operative treatment of HCC faces the challenge of drug
resistance, and copper has been proven to alter tumor cell drug
resistance. To evaluate risk characteristics’ role in clinical
treatment, we compared high- and low-risk patients’
sensitivity to chemotherapeutics and target therapy. In total,
156 differential drugs and molecular compounds were screened
out, with 127 drugs being more sensitive to the high-risk group
and 29 drugs being more sensitive to the low-risk group
[Supplementary Table S1 (S5)]. The IC50 value estimated for

low-risk cancer patients is higher than that found in low-risk
cancer patients for the following clinically common targeted
therapy drugs: Tipifarnib, Tivozanib, Masitinib, Dasatinib,
Sunitinib, and chemotherapy drugs: Gemcitabine,
Vinorelbine, Rapamycin, Paclitaxel, Pyrimethamine
(Figure 8B).

Based on TIDE algorithm, immune checkpoint inhibitor
responses in different patient groups were predicted. The
TIDE score was higher in low-risk patients than in high-risk
patients, which means the efficacy of immune checkpoint
blocking therapy (ICB) was worse, and the survival time was
shorter after ICB treatment (Figure 8C). Based on the IPS of HCC

FIGURE 7
Differences of Ligand-Receptors in cell communication between high- and low-risk samples of single-cell RNA-Seq. (A) Dot graphs show how
intensively each cell type communicates in high-risk and low-risk samples. (B) FASLG signaling network of high- and low-risk samples. (C) CCL signaling
network of high- and low-risk samples. (D) CD40 signaling network of high- and low-risk samples. (E) IL2 signaling network of high- and low-risk
samples. (F) IFN-II signaling network of high- and low-risk samples.
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patients, the response to immunotherapy targeted specifically at
CTLA-4 and PD-1 in high-risk and low-risk HCC patients was
examined using a subclass mapping approach. The high-risk
patients responded well to anti-PD-1 therapy, while the low-
risk patients had no reaction to either anti-PD-1 or anti-CTLA4
therapy. (Figure 8D). We found that the treatment options
mentioned above were more likely to benefit high-risk
patients, regardless of whether they were traditional
chemotherapy or targeted therapy.

3.9 Verification of biological function and
expression level of model-constructed
genes

Twenty-one HCC patients were tested using qRT-PCR on
paired tumors and normal adjacent tissues. CDKN2A, GEMIN2,

DLAT, and ZCRB1 were expressed at higher levels in tumors
than in normal tissues, while the expression of KLF9 in tumor
tissue was lower (Figure 9A). For the subsequent study, we
selected Hep3B and Huh7 cell lines transfected with sh-RNAs
for knockdown experiments of five model-constructed genes.
The plasmid transfection efficiency of all five genes for both cell
lines was greater than 50% (Figure 9B). The proliferation and
viability of cells were assessed by the CCK-8 assay.
Knockdown of CDKN2A, GEMIN2, and ZCRB1 prominently
impaired cell growth of both Huh7 and Hep3B, while the
knockdown of KLF9 improved the cell growth of both cell
lines (Figure 9C).

According to previous findings (Figure 4C), different risk groups
differed significantly in proliferative capacity and activity of the
PI3K/AKT/mTOR signal pathway, which is widely implicated in
mitochondrial metabolism and tumor drug resistance. There is
evidence that phosphorylation of AKT and mTOR affects

FIGURE 8
Pathways with different overall information between high- and low-risk single-cell sequencing samples. Predicting treatment response. (A)
Signaling pathways with significant differences in the overall intercellular information between single-cell RNA-Seq samples at high- and low-risk. (B) The
IC50s of chemotherapeutic agents and targeted drugs related to the 5-gene signature. (C) The prediction results show the distribution of immune
response scores in the high- or low-risk groups of the TCGA cohort. (D) Differences in sensitivity of subgroups based on risk score to
immunotherapy. Submap classing analysis manifested that the high-risk score group could be more sensitive to the programmed cell death protein 1
(PD-1) inhibitor (Bonferroni-corrected p = 0.008).
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copper-induced disease progression in a variety of diseases,
including cancer. The results showed that the knockdown of
CDKN2A, GEMIN2, DLAT, and ZCRB1 prominently impaired

the phosphorylation of both AKT and mTOR in Huh7 and
Hep3B, while the knockdown of KLF9 improved the
phosphorylation (Figure 9D).

FIGURE 9
Model-constructed genes expression in HCC tissues and effects on HCC cell biological signature. (A) qRT-PCR analysis of model-constructed gene
expression in paired tumors and adjacent normal tissues from 21 HCC patients. (B) The efficiency of transfection was determined by qRT-PCR. (C)CCK-8
was used to determine growth curves for transfected Huh7 and Hep3B cellsB cells. (D) AKT, p-AKT, mTOR, and p-mTOR expression in different groups
were detected with western blot.
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3.10 In Vitro effects of ZCRB1 on biological
behavior of liver cancer cells

Considering the knockout of ZCRB1 had the strongest tumor-
inhibiting effect in the proliferation experiment, specifically, we
selected ZCRB1 as the target to determine its effect on
proliferation, invasion, migration, and colony formation. In the
scratch assay experiment, scratches in the knock-down group
healed slower than in the control group (Figure 10A). In
addition, transwell invasion and migration experiments
confirmed that ZCRB1 downregulation significantly reduced
tumor cell invasion and migration (Figures 10B, C). ZCRB1 also
inhibited the growth of Huh7 and Hep3B colonies after knockdown,
suggesting that ZCRB1 boosts colony formation (Figure 10D).

Besides, we performed immunohistochemical analyses of human
HCC tissues and adjacent normal tissue using ZCRB1 antibody. The
expression of ZCRB1 in HCC tissue was significantly stronger than
in adjacent normal tissue. The expression of ZCRB1 in HCC tissue
was significantly stronger than in adjacent normal tissue Figure 10E.
Through the Human Protein Atlas (HPA) database, we also supplied
the immunohistochemical images of the remaining model-
constructed molecules in the HPA database, which indicated that
there was a higher expression of GEMIN2, CDKN2A, and DLAT in
HCC than in normal tissues (Supplementary Figure S1E), but the
immunohistochemical data of KLF9 were not obtained. As a result,
in vitro experiments suggest that ZCRB1 expression is closely related
to malignant behavior in tumor cells, and it could become a new
therapeutic target for copper homeostasis and cuproptosis.

FIGURE 10
(A) Scratch experiments were used to determine migration and wound healing. (B) Transwell migration assays. (C) Transwell invasion assays. (D)
Clonogenic assays. (E) Phenotypic experiments on ZCRB1 in vitro and immunohistochemistry results in clinical samples.
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4 Discussion

Compared with other trace elements in the human body, copper has
unique redox activity, making it an essential catalytic cofactor (Kim et al.,
2008). Copper homeostasis disorder can lead to intracellular copper
overload, leading to cellular protein toxic stress, which is the reason for
acute cell death in cuproptosis (Tsvetkov et al., 2022). During cell
proliferation, copper participates in the signal cascade (Tsang et al.,
2020), promotes proliferation and diffusion, and participates in tumor
microenvironment changes (Soncin et al., 1997). The critical role of
copper uptake, distribution, and effluent ligand/pump expression in
cancer has been confirmed (Itoh et al., 2008; Blockhuys et al., 2017;
Blockhuys et al., 2020). Because of copper’s role in cancer development
and the crucial position of the liver in the process of copper storage and
metabolism, we searched for the related genes of copper homeostasis and
cuproptosis through correlation analysis and then constructed a copper
homeostasis and cuproptosis associated gene signature by Lasso
regression and multivariate COX analysis. HCC patients’ prognoses
could be well predicted with the model, and clinical characteristics
were combined with risk scores to construct a nomogram model for
facilitating clinical research and application. Several studies have
examined the relationship between cuproptosis and patient prognosis
in HCC (Ding et al., 2022; Peng et al., 2022; Xie et al., 2022; Zhang et al.,
2022). For example, Peng et al. developed a prognostic model based on
cuproptosis-related genes (Peng et al., 2022). Xie et al. built a cuproptosis-
related immune checkpoint gene signature to identify the prognosis of
HCC patients (Xie et al., 2022). Ding et al. also built a cuproptosis-related
prognosis model and discussed it in different cuproptosis subtypes (Ding
et al., 2022). Before the concept of cuproptosis was proposed, copper and
copper homeostasis had been revealed to be related to many diseases,
including cancers. Cuproptosis is mainly involved in participants of the
TCA cycle within mitochondrial metabolism while maintaining
intracellular copper homeostasis requires an intracellular multi-
structure system. No research has been conducted based on copper
homeostasis in hepatocellular carcinoma or other diseases. In fact, the
integrity role of copper homeostasis and cuproptosis in disease has been
recognized. A recent study published on signal transport and target
therapy comprehensively elaborated on broad application prospects of
copper homeostasis and cuproptosis and proposed that reliable
biomarkers are scarce as of now (Chen et al., 2022). Besides, the
clinical utility of specific models is crucial. Decision Curve Analysis
(DCA) is a method to evaluate and compare multiple clinical prediction
models in clinical utility, which was proposed by Dr. Andrew Vickers.
This method allows us to compare our study with other cuproptosis-
related models. At the time of 1, 3, and 5 years, our model exhibits better
application value than the models based solely on cuproptosis
(Supplementary Figure S1F). Additionally, our study was the first to
explore in detail the function of tumor cells and T cells as well as the
intercellular communication among different risk groups based on single-
cell sequencing data, which clarifies the impact of copper-related
physiological processes on different components in tumor
microenvironments and provides a new perspective for follow-up
readers’ studies.

Previous studies have shown that copper in the TME can directly
or indirectly activate metalloenzyme function and oxidative stress
(Ma et al., 1999). Without regular intracellular disposal, excessive
oxidative stress will induce tumor cell transformation and
uncontrolled proliferation (Hsu et al., 1994). In the functional

analysis of the TCGA cohort and single-cell RNA-Seq samples,
high-risk patients and malignant cell clustering showed higher
proliferative capacity and viability under hypoxia. The risk score
in malignant cell clustering is significantly higher than in others.
Furthermore, patients with high-risk scores had higher mRNAsi
scores, reflecting an acquired stem cell-like phenotype and loss of
cell differentiation. The high-risk group had an increased mutation
rate for TP53, LRP1B, and OBSCN. A previous study showed that
OBSCN is an effective tumor suppressor in various cancers (Guardia
et al., 2021). It is also known that TP53 mutation frequency is higher
in cancers with increased malignancy. LRP1B is a tumor suppressor,
but LRP1B-mutated cancers have improved outcomes with ICIs, the
underlying mechanism of which has not yet been clarified (Brown
et al., 2021). In addition, many genes with different methylation
levels are associated with proliferation. This explains in one way why
patients with high-risk scores had poorer clinical outcomes,
indicating that the genes related to copper homeostasis and
cuproptosis affect the tumor proliferation and malignancy in
HCC and may even be involved in forming cancer stem cells.

Cuproptosis is mainly involved in participants of the TCA cycle
within mitochondrial metabolism, while mitochondrial metabolism
and glycolysis are highly related to the phosphorylation of AKT
(Stiles, 2009). Early studies have confirmed that tumorigenesis can
be reduced by inhibiting the copper transporter 1-copper axis via AKT
signaling (Chen et al., 2021; Guo et al., 2021). And before cuproptosis
was revealed, some studies had previously attempted to change cancer
cells’ tolerance to specific drugs by blocking the activity of AKT
(Banerjee et al., 2016; Wu et al., 2018). By knocking out the model-
constructed genes, we revealed that the model-constructed genes were
strongly correlated with AKT and mTOR phosphorylation levels.
Despite the function of some crucial molecules has been proved,
there are still unsolved mysteries. In a recent study, bioinformatics
and experimental verification were combined to prove the effect of
DLAT on AKT phosphorylation in HCC (Zhou et al., 2022). According
to another study, CDKN2A-mediated AKT phosphorylation influences
cervical cancer malignancy (Luan et al., 2021), but there are no relevant
studies in HCC. KLF9 is downregulated in HCC, which could stabilize
p53 and induce apoptosis (Sun et al., 2014), while it remains unknown
whether it affects the activity of AKT-related pathways in HCC. A
particular interest of ours is ZCRB1, which is an RNA-binding protein.
As a tumor suppressor gene, ZCRB1 phosphorylates JMJD5 to regulate
aerobic glycolysis in GBM through the cyclic RNA HEATR5B (Song
et al., 2022). There are few studies on the role of ZCRB1 in cancer.
According to our results, however, knocking out ZCRB1 significantly
inhibits the malignant phenotype of HCC, as well as inhibiting the
phosphorylation of AKT and mTOR. Considering the heterogeneity of
copper-related metabolic processes in different tissues, ZCRB1 may
combine different circRNAs and complete the phosphorylation of
AKT/mTOR through different signal axes. And this process may be
caused by an imbalance in copper homeostasis or cuproptosis.

Copper participates in human immunity, which promotes
leukocyte differentiation, maturation, and proliferation and
maintains the phagocytosis of neutrophils (Djoko et al., 2015).
The role of copper in antitumor immunity has been
demonstrated in recent studies. In the immune regulation of
cancer, disulfiram as a copper carrier can make cancer cells carry
excess copper and maintain the stability of PD-L1 in HCC (Zhou
et al., 2019). In the immune-activation mouse model of
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neuroblastoma (GBM), copper chelation therapy with TEPA can
reduce the PD-L1 expression of GBM, improve the anti-GBM
immune response mediated via NK cells, and inhibit the immune
checkpoint (Voli et al., 2020). These studies advise that reducing
the concentration of copper in the tumor can stimulate the anti-
cancer immune response and promote new immune cell clones in
tumors. We found that the immune cells infiltrating the tumor
tissues of high-risk patients were significantly reduced. The
proportion of NK cells decreased, while immunosuppressive
cells (Macrophage M2, Tregs) increased significantly. Changes
in pathways related to immune cells and chemokines indicate
that it is believed that copper accumulation in TME reduces the
ability of immune cells to infiltrate and weakens the body’s
immune response to malignant cells as a result.

In the TME, T cells play a significant role in anti-tumor
immunity. Besides being a target for immune checkpoint
therapy, it can also promote tumor immune escape, so
understanding its characteristics is crucial (Oh et al., 2021).
Based on single-cell sequencing data, GSVA was performed on
T cells of samples from different risk groups, and many
pathways related to T cell activity were suppressed, which
suggests T cell activity may be regulated by genes involved in
copper homeostasis and cuproptosis. Furthermore, positive
correlations were found between several immune checkpoints
and risk scores. As shown above, immunosuppression tends to
be more common in high-risk patients, and the score of the
signature reflects that tendency.

Our analysis of single-cell sequencing data revealed that the
difference in cell communication between different cells could be
the mechanism behind TME changes associated with the signature.
An array of signaling pathways and corresponding receptor-ligand
pairs were identified. Fas is found in virtually all cells, while the
FasL gene is predominantly expressed in activated T cells. Inducing
apoptosis and cell death is the primary function of Fas/FasL. T cells
and NK cells trigger tumor cell apoptosis through FasL, a tumor
suppressor gene (Villa-Morales and Fernández-Piqueras, 2012).
CCL5’s role in tumors has been controversial. Some studies suggest
that its production induces immunosuppression (Chang et al.,
2012), while others suggest it promotes tumor immunity (Harlin
et al., 2009; Liu et al., 2015). Tumor necrosis factor (TNF) receptors
include the CD40 receptor. CD40 activates dendritic cells, which
then activate CD8 + T cells Vonderheide, 2020. Monoclonal
CD40 has shown efficacy in tumor therapy (Cancer Discov,
2017). In addition to proliferating effector T cells, IL-2 regulates
the growth of Treg cells. IL-2-based anticancer treatments are
becoming increasingly popular (Mullard, 2021). Anti-CTLA-
4 resistance is affected by the expression of IFNG1 (Cancer
Discov, 2017), whereas anti-PD-1 resistance is affected by the
expression of IFNG2 (Williams et al., 2020). The signal intensity of
the above pathways and their receptor-ligand pairs decreased to
varying degrees in high-risk samples. Taking into account the
change in T cell activity, the above ligand-receptor pairs may be
required for genes related to copper homeostasis and cuproptosis
to participate in communicating intercellularly, which may begin
with the activation of immune-helper cells, such as dendritic cells,
followed by the activation of effector T cells such as CD8+ and NK
cells. Consequently, this will lead to a change in immune-related
TME and ICBs sensitivity.

As a traditional therapy for HCC, chemotherapy can’t wholly
remove tumor cells because of inherent or acquired drug resistance
(Siddik, 2003). Applying copper-based complexes and copper-
chelating agents is sufficient to bypass cisplatin resistance in
different types of cancer (Mo et al., 2018; Rochford et al., 2020;
Vančo et al., 2021). Similar methods were used in clinical trials of
breast and prostate cancers (Henry et al., 2006; Pass et al., 2008;
Chan et al., 2020). In several studies, chemotherapy resistance was
associated with the downregulation of copper transporters and the
upregulation of pumps and chaperones for copper efflux. (Katano
et al., 2002; Safaei and Howell, 2005; Yu et al., 2020). The
relationship between copper metabolism and chemotherapy
resistance is disease-specific. For example, the clinical correlation
between copper transporter 1(CTR1) expression and the efficacy of
platinum chemotherapeutic drugs were contradictory in different
studies (Ishida et al., 2010; Lee et al., 2011; Akerfeldt et al., 2017).
Therefore, applying the risk model requires a prediction of the
chemotherapeutic drug’s sensitivity. In our research, 127 drugs and
compounds were expected to be sensitive to high-risk HCC patients.
Additionally, patients at high risk responded better to
immunotherapy targeting PD-1, which provides a reference for
further research and clinical application. Considering the copper
dependence on cancer progression and the low cytotoxicity of
copper-chelating drugs (Hsu et al., 1994), it has the potential to
use genes related to copper homeostasis and cuproptosis as
immunotherapy targets. Due to the limitation of understanding
the metabolic process of copper and the related mechanisms of
copper homeostasis in different tumor drug resistance, no copper
complexes have been used in anti-tumor therapy. More copper-
related targets and pathways in cells must be found to develop more
stable drug ligands. Our research provides a new application
direction for traditional chemotherapeutic and targeted drugs.

5 Conclusion

A novel scoring model related to copper homeostasis and
cuproptosis was developed in this study. High-risk scores
predicted poor prognosis, high tumor malignancy, and tumor
immunosuppression in HCC patients. Novel receptor-ligand
pairs were proposed as targets for the changes in immune
function and TME based on the intercellular communication
status. Targeted and chemotherapeutic drugs with potential
effects were predicted. Meanwhile, model-constructed genes
were validated in terms of their clinical and functional
significance, but further study is needed to understand the
mechanism in more detail. As a result of our research, we are
able to evaluate the malignant degree, TME changes, and cross-
talk between malignant cells and immunocytes in
patients with HCC, which can provide suggestions for
treatment.
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Glossary

AIC Akaike information criterion

AUC Area under curve

CCL C-C Motif Chemokine Ligand

CD40 CD40 molecule

CDKN2A Cyclin dependent kinase inhibitor 2A

CTLA-4 Cytotoxic T lymphocyte-associated antigen-4

DLAT Dihydrolipoamide S-Acetyltransferase

FASLG Fas ligand

GDSC The genomics of drug sensitivity in cancer database

GEMIN2 Gem nuclear organelle associated protein 2

GO Gene ontology

GSVA Gene set variation analysis

HCC Hepatocellular carcinoma

ICB Immune checkpoint blockade

IFN Interferon

KEGG Kyoto encyclopedia of genes and genomes

KLF9 Kruppel like factor 9

LASSO Least absolute shrinkage and selection operator

LRP1B LDL receptor related protein 1B

MATH Mutant-allele tumor heterogeneity

OBSCN Obscurin, cytoskeletal calmodulin and titin-Interacting
RhoGEF

OCLR One-class logistic regression

OS Overall survival

PD-1 Programmed cell death protein 1

PFS Progression-free survival

ROC curve Receiver operating characteristic curve

ssGSEA Single sample gene set enrichment analysis

TIDE Tumor immune dysfunction and exclusion

TME Tumor microenvironment

TNM T-Tumor, N-regional lymph mode, M-Metastasis

TP53 Tumor protein P53

UMAP Uniform Manifold Approximation and Projection

ZCRB1 Zinc finger CCHC-Type and RNA binding motif
containing 1.
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