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Background: Angiogenesis is one of the most prominent markers of cancer
progression and contributes to tumor metastasis and prognosis. Anti-
angiogenic drugs have proven effective in treating metastatic colorectal
cancer. However, there is some uncertainty regarding the potential role of
angiogenesis-related genes in the tumor microenvironment.

Methods: We analyzed 1,214 colorectal cancer samples to identify alterations in
angiogenesis-related genes (ARGs), and then correlated angiogenesis with clinical
features, prognosis, and TME. The ARGs expression profiles in colorectal cancer
were analyzed using three computational methods (CIBERSORT, ssGSEA, and
MCPcounter) and provided a systematic immune landscape. Patients with CRC
were classified into two subtypes based on consensus clustering analysis of
angiogenesis-related genes. The revealed differentially expressed genes
between the two subtypes were used to create and validate ARGscore
prognostic models. In addition, we collected eight colorectal cancer patient
specimens and performed RT-qPCR to validate the signature gene expression.

Results: We assessed the expression patterns of ARGs in colorectal cancer. We
identified twomolecular subtypes and confirmed that the expression of ARGs was
associated with prognosis and TME characteristics. Based on differentially
expressed genes between subtypes, we constructed ARGscore and evaluated
their predictive power for the survival of colorectal cancer patients. We also
developed an accurate nomogram tomake the ARGscoremore clinically useful. In
addition, ARGscore was significantly correlated with microsatellite instability,
cancer stem cells, and chemotherapeutic drug sensitivity. Patients with
ARGscore-low characterized by immune activation and microsatellite instability
high had a better prognosis.

Conclusion: ARGs expression influenced the prognosis, clinicopathological
features, and tumor stromal immune microenvironment in colorectal cancer.
We developed a new risk model, ARGscore, for the treatment and prognosis of
CRC patients and validated its promising predictive power. These findings will
enable us to understand colorectal cancer better, assess prognoses, and develop
more effective treatment options.
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Introduction

Angiogenesis, the production of new capillaries from blood
vessels, is a critical process in several physiological and
pathological processes, including organic growth and
development, wound healing, tumor growth, metastasis, etc.
[(Kuczynski et al., 2019; Jiang et al., 2020)]. The process of
tumor angiogenesis is highly complex and dynamic, involving
steps such as the migration of endothelial cells, degradation of
the vascular endothelial matrix, the proliferation of endothelial
cells, and the formation of new basement membranes [(Folkman,
1971; Weidner et al., 1991)]. Large endothelial gaps, an incomplete
vascular matrix, significant vascular permeability, and structural and
functional defects are all signs of tumor neovascularization (Parmar
and Apte, 2021). The growth and progression of many malignancies,
including colorectal cancer, depend on angiogenesis [(Viallard and
Larrivee, 2017; Chen et al., 2021)].

The morbidity and mortality rates in colorectal cancer (CRC)
are third and second highest in the world, respectively (Sung et al.,
2021). CRC development and progression are strongly influenced by
angiogenesis. Pro-tumor vascular growth factors so far discovered
include vascular endothelial growth factor (VEGF) and its receptor
vascular endothelial growth factor receptor (VEGFR), which
stimulate tumor vascular endothelial cell growth and migration,
increase tumor neovascularization permeability, and play an
essential role in the angiogenesis process (Ferrara, 2004; Jiang
and Liu, 2009; Claesson-Welsh and Welsh, 2013; Apte et al.,
2019). VEGF expression is associated with a worse prognosis in
colorectal cancer. VEGFR also correlated with colorectal Duke-
stage, tumor grade, and lymph node involvement (Rmali et al.,
2007).

The extracellular matrix, fibroblasts, endothelial cells, cytokines,
and chemokines that these cells release, as well as the tumor tissue
that has been surrounded or infiltrated by immune and
inflammatory cells, make up the tumor microenvironment
(TME) (Pottier et al., 2015). TME is frequently thought to be
connected to the growth and spread of tumors. By releasing cell
signaling molecules, malignant cells promote tumor angiogenesis
and immune tolerance by communicating with surrounding cells
[(Runa et al., 2017; Jin and Jin, 2020)]. Mesenchymal cells and
fibroblasts in tumor tissue secrete fibroblast growth factor (FGF),
chemokine (C-X-C Motif) ligand 12 (CXCL12), and matrix
metallopeptidase 2 (MMP2) to enhance tumor cell growth,
invasion, and metastasis [(Hanahan and Coussens, 2012; Wang
et al., 2017)]. Currently, individual ARGs are being studied in most
studies concerning colorectal cancer progression and prognosis, and
anti-angiogenic therapy has been used as an important tool for
oncology treatment [(El-Kenawi and El-Remessy, 2013; Ramjiawan
et al., 2017)]. Therefore, it is important to understand the
characteristics of multiple ARG-mediated TME to gain a deeper
understanding of colorectal carcinogenesis and predict the response
to immunotherapy.

In this study, ARG expression profiles of colorectal cancer were
analyzed using multiple bioinformatics approaches and provided a
systematic immune landscape. Based on ARG expression, CRC

patients were classified into two subtypes, and differentially
expressed genes (DEGs) were identified between subtypes. In
addition, we developed the ARGscore to predict overall survival
(OS) and immunotherapy response in CRC patients and validated
its accuracy. We also investigated the potential association between
angiogenesis, the tumor immune microenvironment, the prognosis
of CRC patients, and response to immunotherapy.

Materials and methods

Data processing

The workflow is shown in Supplementary Figure S1 for our
study. Gene expression and clinical characteristics of CRC samples
were retrieved from GEO databases (https://www.ncbi.nlm.nih.gov/
geo/) and TCGA (https://portal.gdc.cancer.gov/). Two GEO datasets
(GSE39582 and GSE17536) and the TCGA-COAD/READ cohort
were included for further analysis. Further evaluation of patients
without survival information was not conducted. As part of the data
processing, we adjusted the background and normalized the
quantiles of the data. For the dataset in TCGA, we converted the
downloaded Fragments Per Kilobase Million (FPKM) value to the
Transcripts per million (TPM) value, which was thought to be the
same as the microarrays (Conesa et al., 2016). The batch effect for
non-biotechnology bias was corrected by the “battle” algorithm of
the SVA software, and all datasets were combined. Supplementary
Table S1 summarized specific information for all eligible patients
with CRC. Data on somatic mutations were downloaded from the
TCGA. The UCSC Xena database (https://xena.ucsc.edu/) was used
to download copy number variation (CNV) for the TCGA cohort.

Consensus clustering analysis of
angiogenesis-related genes

We retrieved the 36 angiogenesis-related genes (ARGs) from
MSigDB (Hallmark gene sets). ConsensuClusterPlus was utilized to
perform an unsupervised clustering analysis to identify different
angiogenesis subtypes according to the expression of 36 ARGs.
Principal component analysis (PCA) was performed to show the
distribution difference of angiogenesis subtypes. Functional
annotation and gene set variance analysis (GSVA) to discover the
discrepancy in biological processes among subtypes. GSVA was
performed on the gene set derived from the MSigDB database (C2.
Cp.ke.v7.2), and adjusted p < 0.05 was statistically significant. Based
on Kaplan-Meier curves created from the “survival” and “survival” R
packages, we assessed the differences in OS between the two clusters.

Correlation of distinct subtypes with TME

To estimate the proportion of immune cells infiltrating CRC
samples, we used the CIBERSORT algorithm, in which 22 immune
cell populations were distinguished using cell-specific gene
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signatures (Newman et al., 2015). The single sample gene set
enrichment analysis (ssGSEA) was also used to determine the
level of immune cell infiltration in the TME [(Barbie et al., 2009;
Charoentong et al., 2017)]. Next, we used the microenvironmental
cell population algorithm (MCPcounter) to quantify the proportion
of fibroblasts and endothelial cells (Becht et al., 2016). The
ESTIMATION algorithm is also used to assess the immune and
stromal score of each patient.

Construction of the ARGscore

To determine differentially expressed genes (DEGs) between
different subtypes, we used the limma package of R with a criterion
of |log2FC| ≥ 1, and the adjusted p-value was <0.01. We were using
the Clusterprofiler package to explore further the gene function and
enrichment pathway associated with DEGs. Then, DEGs associated
with survival were identified using univariate Cox regression
analysis. Patients were divided into different gene subtypes for
in-depth analysis based on prognosis-related ARGs. With the
Lasso Cox regression algorithm and the “glmnet” R package,
CRC patients were divided randomly into training and test sets
according to prognostic genes. Using multivariate Cox analysis,
candidate genes were screened to create ARGscore that quantified
each tumor pattern in the training set. The ARGscore was calculated
by multiplying the gene expression values by their risk coefficients.
Kaplan-Meier survival analysis based on the median risk score was
performed on the train set. We divided the test and all sets into
ARGscore-low and ARGscore-high subgroups, and each subgroup
underwent Kaplan-Meier survival analysis and ROC curve
generation.

RNA extraction in tissue samples and RT-
qPCR

Normal and colorectal tumor tissue was collected from eight
patients with colorectal cancer at the First Hospital of Jilin
University. We stored the samples at −80°C until use. We
extracted total RNA from tissues with TRIzol (GenStar, China),
and its purity and concentration were determined. We reversed
transcribed RNA into cDNA using Uni RT&qPCR kit (transgen,
China) and performed RT-qPCR (real-time quantitative polymerase
chain reaction) on the instrument (ABI QuantStudio 3,
United States). We used GAPDH as an internal reference, and
calculated relative gene expression levels with 2−ΔΔCT, visualizing
data with Graphpad 8.0. A detailed list of primer sequences used for
RT-qPCR is provided in Supplementary Table S2. The experiments
were undertaken with the understanding and written consent of
each subject. The study methodologies conformed to the standards
set by the Declaration of Helsinki. The study methodologies were
approved by the First Hospital of Jilin University ethics committee.

Clinical correlation analysis of ARGscore

The correlation between ARGscore and clinical characteristics
was investigated. Using univariate and multivariate analyses, we

assessed whether the ARGscore is separate from other clinical
factors as a prognostic indicator. We quantified 22 infiltrating
immune cells using CIBERSORT and compared their levels
between subgroups. Moreover, immune checkpoint expression
levels were compared between distinct groups. Additionally, we
examined the correlation between the ARGscore, microsatellite
instability (MSI), and cancer stem cell (CSC). The waterfall
function of the “mafTools” package was used to present
mutations in the TCGA-COAD/READ cohort in order to
differentiate somatic mutations from ARGscore-low and
ARGscore-high subgroups. We calculated the IC50 of the used
chemotherapeutic agents for CRC using the pRophetic package
to explore the differences in efficacy between the two subgroups.

Statistical analysis

Univariate survival analysis with Kaplan-Meier and log-rank
tests. Multifactor survival analysis was conducted using COX
regression models. By calculating the area under the curve using
the pROC software package, we were able to assess the specificity
and sensitivity of ARGscore. The continuous variables were
compared using independent t-tests. Categorical data were tested
with chi-square tests. Statistical significance was defined as a two-
sided p-value < 0.05. All data processing was done in
R4.0.4 software.

Result

Genetic variation of ARGs in colorectal
cancer

We retrieved and investigated 36 ARGs in our study
(Supplementary Table S3). Metascape and GO analysis of
36 ARGs were performed, and Figure 1A and Supplementary
Figure S2A summarized the significantly enhanced biological
processes. For studying the genomic features of ARGs in CRC,
the analysis of the somatic mutation frequency of the 36 ARGs in
CRC indicated that 191(35.3%) of the 541 samples had mutations.
In CRC samples, VACN and COL5A2 had the highest mutation
frequencies (10% and 8%), while LRPAP1, CCND2, and S100A4 did
not exhibit any mutations (Figure 1B). Further investigation
revealed significant relationships between the expression of
SERPINA5, TNFRSF21, PTK2 and VCAN mutations
(Supplementary Figure S2B). Next, we analyzed somatic copy
number alterations in ARGs. We found that CNV alterations
were prevalent in 36 ARGs, and most showed extensive CNV
amplification, while LPL, STC1, SERPINA5, and JAG2 showed
reduced CNV (Figure 1C). The chromosome positions of CNV-
altered ARGs are shown in Figure 1D. We subsequently analyzed
the mRNA expression levels of ARGs in colorectal cancer and
normal tissues to determine whether the aforementioned genetic
variations impact the expression of ARGs in CRC patients. We
discovered that most ARGs were highly expressed in tumor tissues
(Figure 1E). The expression of CNV-deficient ARGs, including
SERPINA5, was lower in tumor tissues than in normal colorectal
tissues, indicating that CNVmight regulate the expression of ARGs.
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CNV-gained ARGs, including PDGFA, were profoundly
downregulated in tumor tissues, whereas CNV-amplified and
deletion ARGs were not significantly differentially expressed.
These also indicated that mRNA expression is not only regulated
by CNV. In addition, PPI analysis on the STRING showed major
ARGs interaction (Figure 1F). As a result of the above analyses,
significant differences were found in gene and expression profiles of
ARGs in colorectal cancer and normal samples, supported their role
in colorectal cancer.

Identification of ARGs-mediated colorectal
cancer subtype

For further analysis, 1,214 patients from colorectal cancer datasets
were collected (TCGA-COAD/READ, GSE39582, and GSE17536).
Based on univariate COX regression analysis and Kaplan-Meier
analysis, 36 ARGs were evaluated for their prognostic value in
CRC patients (Supplementary Figure S2C; Supplementary Table
S4). LRPAP1 and APOH could be considered protective factors,

FIGURE 1
Genetic landscape of ARGs in colorectal cancer. (A)Metascape enrichment network visualization reveals biological functions and pathways of ARGs.
Cluster annotations were shown in the color code. (B) Mutation frequency of ARGs in TCGA COAD/READ cohort. Of the 541 CRC patients, 191 had
angiogenesis-related gene alterations with a frequency of 35.3%, consisting mainly of missense mutations, multi-hit, and nonsense mutations. The
numbers on the right indicate the frequency ofmutations in each gene. Each column represents an individual patient. (C) Frequency of CNV gain and
loss in ARGs. The column represented the alteration frequency. The gain frequency, red dot; The loss frequency, green dot. (D) The location of CNV
alteration of ARG on chromosomes. (E) Expression of 36 ARGs in normal and CRC tissues. The asterisks represented the statistical p-value (*p < 0.05;
**p < 0.01; ***p < 0.001). (F) The major PPI network in ARGs is from the STRING database.
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while VEGFA and FGFR1 could be considered risk factors. Figure 2A
and Supplementary Table S5 illustrated a complete network of the
ARG interaction, the connection of regulators, and their prognostic
value in CRC patients. Subsequently, CRC patients were unsupervised

clustered, and two subtypes were identified (Figure 2B;
Supplementary Figure S3): subtype A (n = 674) and subtype B
(n = 540). Based on PCA analysis, these two subtypes of ARGs
exhibited significantly different transcriptional profiles (Figure 2C).

FIGURE 2
Identification of angiogenesis subtypes and relevant biological pathways. (A) The Interaction network between ARGs in CRC. The circles represented
the different ARGs and the circle size represented the effect of each gene on prognosis, with values ranging from p < 0.0001, p < 0.001, p < 0.01, p < 0.05,
and p < 1, respectively, by the Log-rank test. purple in the circle, prognostic risk factors; green in the circle, prognostic protective factors. The lines
connecting genes indicated their interactions, and the thickness indicated the strength of the association between regulators. Pink color indicated
positive association, green color indicated negative association. (B) Heatmap of consensus matrix defining two clusters. (C) The PCA analysis revealed
significant differences between subtypes. (D) Kaplan-Meier curves of OS for CRC patients in the cohort (Log-rank test, p < 0.001). (E) Differences in
clinicopathological characteristics and expression levels of ARGs in two subtypes. (F) Differences in biological pathways among subtypes as determined
by the GSVA.

Frontiers in Pharmacology frontiersin.org05

Zhang et al. 10.3389/fphar.2023.1103547

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1103547


Kaplan-Meier curves illustrated that subtype A exhibited a significant
survival advantage (Figure 2D). Furthermore, we compared the gene
expression and clinicopathological characteristics of the two subtypes

(Figure 2E). The subtype A was associated with left-side (p < 0.01),
lower stage (p < 0.001), and without BRAF mutation (p < 0.01)
compared with subtype B.

FIGURE 3
Differential TME characteristics (A) The proportion of immune cell infiltration in the two angiogenesis clusters was calculated using the CIBERSORT
algorithm. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black
dots showed outliers. The asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001). (B) Relationship between TME score and
subtypes (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Heatmap was constructed using ssGSEA to visualize and compare the relative abundance,
mesenchymal score, immune score, and tumor purity of 23 immune infiltrating cell subpopulations under different clusters. (D)Differences in endothelial
cells and fibroblasts in different clusters were evaluated using the MCPcounter algorithm. The thick line represented the median value. The bottom and
top of the boxes represented interquartile range of values. The whiskers encompassed 1.5 times the interquartile range. The differences between every
two groups were compared through the Kruskal-Wallis test (*p < 0.05; **p < 0.01; ***p < 0.001). (E) Differences in 20 signatures (immune-related
signature, DNA repair-related signature, and stroma-related signature) between different clusters. The asterisks represented the statistical p-value (*p <
0.05; **p < 0.01; ***p < 0.001). (F) Alluvial diagram showed the association of molecular subtypes in different clusters.
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Characterization of TME in distinct subtypes

By analyzing the GSVA enrichment, we were able to better
understand the biological characteristics behind different subtypes.
Figure 2F and Supplementary Table S6 showed that subtype B was
enriched in cancer and stroma-related pathways, such as the cell
adhesion molecule CAMs, ECM receptor interaction, and focal
adhesion pathways. Considering the strong relationship between
the angiogenesis subtype and the immune activity, we investigated

the immune cell infiltration in both clusters using the CIBERSORT
method (Supplementary Table S7). Figure 3A showed that activated
CD4 memory T cells, CD8+ T cells activated NK cells, and activated
dendritic cells tended to be higher in cluster A compared to cluster B,
whereas neutrophils and various types of macrophage cells tended to
be higher in subtype B. The ESTIMATE package was also used to
evaluate the TME score of both subtypes (immune score, stromal
score, and estimate score). There was a greater immune and stromal
score for subtype B than for subtype A (Figure 3B). In addition, we

FIGURE 4
Based on DEGs to identify gene subtypes. (A, B) Enrichment analysis of DEGs between two subtypes using GO and KEGG. The color depth of the
barplots represented the number of genes enriched. (C) K-M curves for OS of the two gene subtypes (Log-rank test, p = 0.001). (D) Relationship between
the two gene subtypes and clinicopathological features. (E) Expression differences of 36 ARGs between the two gene subtypes. The asterisks represented
the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001).
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developed a heatmap using ssGSEA to visualize and compare
23 immune infiltrating cell subpopulations in different subtypes
(Figure 3C; Supplementary Table S8). Interestingly, subtype B had a
high concentration of immune cells, including antitumor
lymphocyte subsets such as activated CD8+/CD4+ T cells and
NK T cells. Evidence suggested that tumors with immune-
excluded phenotypes retain many immune cells in the stroma
surrounding their nests rather than penetrating their parenchyma
(Chen and Mellman, 2017). As a result, we hypothesized that an
effective anti-tumor immune response is inhibited by the abundant
stromal component in subtype B. Subsequently, the MCPcounter
algorithm confirmed that fibroblasts and endothelial cells were
heavily infiltrated in subtype B (Figure 3D; Supplementary Table
S9). Subsequent analysis revealed that the stroma pathway was
significantly activated in subtype B (Figure 3E), exhibited
processes associated with EMT, Pan-F-TBRS (pan-fibroblast
TGF-β response signature), and WNT-targeting pathways
(Mariathasan et al., 2018). Researchers from Marisa et al.
identified four major molecular subtypes in CC patients (CIN,
dMMR, CSC, and KRASm). They found that dMMR tumors had
immunological upregulation and cell growth, while CSC was
associated with the downregulation of cell cycle pathways and
poor prognosis (Marisa et al., 2013). Consistent with previous
findings, dMMR and CSC subtypes were mainly concentrated in
patients with subtype B Figure 3F. Our findings confirmed that the
two subtypes have distinct immune infiltration characteristics.

Identification of different subtypes of DEGs

To better understand the potential genetic alterations and
expression perturbations in the phenotypic subtype, we used the
LIMMA package to identify 254 DEGs between subtypes and
performed a functional enrichment analysis (Figures 4A, B;
Supplementary Table S10). DEGs enrichment results at GO
showed biological processes associated with the extracellular
matrix, and KEGG analysis showed pathways related to cancer
and stroma. We identified 123 prognostic genes using univariate
cox regression analysis based on 254 DEGs (p < 0.01)
(Supplementary Table S11). To investigate the angiogenesis-
associated transcriptional expression changes in both subtypes,
we then performed an unsupervised consensus clustering
analysis, yielded two distinct gene subtypes (Supplementary
Figure S4). Log-rank test comparing OS in patients with A
and B gene subtypes (Figure 4C) showed an advantage for
patients with the gene subtype A (p = 0.001). Heatmap
illustrated the correlation between gene subtypes and clinical
characteristics of CRC patients (Figure 4D). Comparing the
expression levels of the 36 ARGs in gene subtypes was shown
in Figure 4E. Different gene subtypes showed significant
differences in ARG expression, which was consistent with
angiogenesis subtypes.

Construction of ARGscore and validation

Considering the complexity and individual heterogeneity of
angiogenesis, the ARGscore was developed to quantify the

pattern of angiogenesis in CRC patients. The distribution of
patients across two angiogenesis subtypes, two gene subtypes,
and two ARGscore subgroups was shown in Figure 5A. We
randomly assigned patients in a 1:1 ratio to train (n = 607) and
test (n = 607) sets. Lasso and Multivariate Cox analysis were
performed for prognostic genes to select the most accurate
prognostic indicators further (Supplementary Figure S5).
According to the minimum partial likelihood deviation,
11 relevant genes remained. Based on Akaike information
criterion (AIC) values, we then eventually acquired five genes
(VSIG4, CXCL10, CXCL13, MEIS2, ZNF532). The ARGscore
calculated by the formula = (0.2754) *expression level of
ZNF532+(0.1833) * expression level of VSIG4+(0.1599) *
expression level of MEIS2+(−0.1619) * expression level of
CXCL10+(−0.1215) * expression level of CXCL13. We found
significant differences between angiogenesis and gene subtypes,
with patients of subtype B having higher ARGscore, suggested
that ARGscore-high might be associated with stromal activation
characteristics (Figures 5B, C). To categorize patients, the median
ARG score was used. The distribution plot of risk of ARGscore
revealed that the survival time decreased and mortality increased
with increasing ARGscore (Figure 5D). PCA and t-SNE showed
significant dimensionality between the distinct subgroups (Figures
5E, F). The heatmap of model prognostic gene expression in various
subgroups was also shown in Figure 5G. To determine the
prognostic power of ARGscore in predicting survival outcomes,
Kaplan-Meier survival curves showed a significantly longer OS for
patients with ARGscore-low (p < 0.001; Figure 5H). The AUC values
of 0.729, 0.690, and 0.672 were also used to determine ARGscore
survival rates at 1, 3, and 5 years (Figure 5I). Next, we aimed to
evaluate the predictive performance of the ARGscore for the test and
all sets (Supplementary Figures S6, S7). According to the formula
used for the training cohort, patients were also assigned to distinct
subgroups. Similarly, survival analysis showed that ARGscore-low
patients had a higher OS than ARGscore-high patients. It was found
that ARGscore still had a good AUC value for predicting 1-, 3-, and
5-year survival probabilities, which suggested that ARGscore is a
good maker for assessing CRC prognosis.

Prognostic model validation of five ARGs
expression levels

RT-qPCR was used to measure the expression levels of five
prognostic genes in eight CRC tissues and normal adjacent
tissues. As shown in Figure 6A, the expression levels of
VSIG4, ZNF532, MEIS2, and CXCL13 were downregulated,
while CXCL10 was elevated between colorectal cancer and
normal tissues.

Exploration of the clinical relevance of
ARGscore

To investigate the association between ARGscore and clinical
characteristics, we examined the correlation between ARGscore and
age, gender, stage, tumor location, BRAF mutation, and KRAS
mutation (Supplementary Figure S8). To assess whether
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ARGscore could independently predict the value of OS in CRC
patients. Multivariate and univariate analyses were performed to
determine the prognostic independence of the clinical factors. As
shown in Supplementary Figure S9, the training set showed
differences in age, stage, and ARGscore, and we observed
consistent results in the test set and the all set. In addition, we
divided patients into subgroups based on clinical characteristics to
evaluate the predictive power of ARGscore, and survival was
generally worse in ARGscore-high patients compared with
ARGscore-low patients (Supplementary Figure S10). The
stratified analysis showed that ARGscore retained its predictive
ability in different subgroups as well.

Differences in TME across risk subgroups

CIBERSORT was used to assess the association between
ARGscore and immune cell infiltration. On the scatter plot,
ARGscore correlated positively with M0 and M2 macrophages,
neutrophils, activated mast cells, and Tregs. Negative correlations
were found with M1 macrophages, activated CD4 memory T cells,
naive B cells, CD8 T cells, follicular helper T cells, activated NK
cells, and plasma cells (Figure 6B). ARGscore-high was linked to a
higher stromal score, while ARGscore-low was correlated with a
higher immune score (Figure 6C). The abundance of immune
cells was also evaluated in relation to five genes in the model.

FIGURE 5
Construction of ARGscore in the train set. (A) Alluvial diagram of the subgroup distribution of different ARGscore and survival outcomes. (B)
Differences in ARGscore between angiogenesis subtypes. (C) Differences in ARGscore between gene subtypes. (D) Ranked dot and scatter plots
displayed the distribution of ARGscore and the survival status of patients. (E, F) The PCA and t-SNE analysis demonstrated that the patients in the different
risk groups were distributed in two directions. (G) Expression heatmap of five prognostic genes of themodel in high- and low- ARGscore groups. (H)
K-M analysis of OS between the two subgroups (Log-rank, p < 0.001) (I) ROC curves for predicting survival and sensitivity at 1, 3, and 5 years based on
ARGscore.
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These five genes were significantly associated with immune cells
(Figure 6D). Furthermore, we researched the relationship
between the ARGscore and immune checkpoints. PD-L1, PD-1,

and CTLA-4 were among 26 immune checkpoints that were
differentially expressed between the two subgroups, as shown
in Figure 6E.

FIGURE 6
Comparison of TME and immune checkpoints between two subgroups. (A) Expression levels of five angiogenesis-related genes of prognostic
signature in colorectal cancer tissues and corresponding normal tissues by RT-qPCR. The asterisks represented the statistical p-value (*p < 0.05; ***p <
0.0001). (B) Correlation between immune cell type and ARGscore. The asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001).
(C) Correlation between ARGscore and immune and stromal score. The asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p <
0.001). (D) Correlation between the abundance of immune cells and five genes in the prognostic model. (E) Differences in expression of immune
checkpoints in high and low-risk groups. The asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001).
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Association of ARGscore with CSC index,
MSI, mutation, and drug sensitivity

There is growing evidence that patients with MSI-H are more
susceptible to immunotherapy and could benefit from
immunotherapy. In the correlation analysis, ARGscore-low was
associated with MSI-H, whereas ARGscore-high was associated
with MSS (Figures 7A, B). In addition, ARGscore and CSC index
values were combined to examine the correlation. The linear
correlation between ARGscore and CSC index was displayed in
Figure 7C. ARGscore was negatively correlated with the CSC index
(R = −0.47, p < 2.2e-16), which indicated that cells with lower
ARGscore had more pronounced stem cell characteristics and a

lesser degree of differentiation. In the TCGA-COAD/READ cohort,
we analyzed the differences in somatic mutation distribution
between the two ARGscore subgroups. The two groups’ mutated
genes with more than 25% mutation frequency were APC, TP53,
TTN, KRAS, SYNE1, MUC16, and PIK3CA (Figures 7D, E). The
ARGscore-high subgroup had a higher mutation frequency than the
ARGscore-low subgroup. In contrast, mutation levels of TTN and
PIK3CA were the exact opposite. Colorectal cancer
chemotherapeutic agents were selected to assess sensitivity to
chemotherapy in the distinct subgroups. Notably, patients with
ARGscore-low have lower IC50 values for paclitaxel, bosutinib,
gefitinib, gemcitabine, and camptothecin. In contrast, the IC50

values for the chemotherapeutic agents dasatinib, AZD7762,

FIGURE 7
Comprehensive analysis of ARGscore in colorectal cancer. (A, B) Relationship between ARGscore and MSI. (C) Correlation between ARGscore and
CSC index. (D, E) The waterfall plot of somatic mutation frequency was established on high and low ARGscore. The upper barplot showed TMB. The
number on the right indicated the mutation frequency in each gene. The right barplot showed the proportion of each variant type. (F) Drug sensitivity
analysis of ARGscore and chemotherapeutic drugs.
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nilotinib, shikonin, and imatinib were significantly lower in patients
with ARGscore-high. In conclusion, the results indicated that ARGs
affected drug sensitivity (Figure 7F).

Development and evaluation of a
nomogram for predicting survival

Considering the high correlation between ARGscore and patient
prognosis, to quantify the individual risk assessment of CRC
patients, we incorporated clinical parameters to build the
Nomogram. This Nomogram included ARGscore and patient
gender, age and stage, and was used to estimate overall patient
survival at 1, 3 and 5 years (Figure 8A). The calibration curve
showed the high accuracy between the actual observed and
predicted parameters (Figure 8B). In addition, this prognostic

model including different clinical factors showed a better
advantage in predicting survival (Figures 8C–E). The nomogram
was also compared to other clinical variables for predictive accuracy.
Figures 8F–H showed that the AUC values for Nomogram at 1,
3 and 5 years were 0.786, 0.755 and 0.744, respectively, indicated a
better predictive ability for survival.

Discussion

CRC is difficult to be detected in its early stages, and patients
who present with clinical symptoms and signs are often already in
advanced stages with poor prognoses. Compared with
conventional chemotherapy and targeted therapy,
immunotherapy has changed the outlook of CRC treatment
due to its outstanding effectiveness. Colorectal cancer

FIGURE 8
Development and validation of the nomogram. (A)Nomogram for predicting 1-, 3-, and 5-year OS in the entire cohort of colorectal cancer patients.
(B) The Calibration curve of the nomogram. (C–E) The DCA curves of the nomograms compared for 1-, 3-, and 5-year OS in CRC, respectively. (F–H)
ROC curves comparing 1, 3, and 5 years in patients with colorectal cancer.
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tumorigenesis and progression are significantly influenced by
TME, and tumor metastasis is largely determined by angiogenesis
(Hinshaw and Shevde, 2019). Most studies to date have focused
solely on a single angiogenesis-related gene. Therefore, the
combined effects of multiple ARGs and the immune
microenvironment have not been adequately characterized.
This study revealed transcriptional and genetic changes in
ARGs in colorectal cancer. Two distinct subtypes were
identified based on the expression of 36 ARGs. Subtype B
patients had worse overall survival compared with subtype A
patients. Furthermore, the two subtypes differed significantly in
their TME characteristics. We developed and validated a robust
and valid prognostic predictor, ARGscore. Immune activation
and immune suppression were associated with lower and higher
ARGscore, respectively. The clinicopathological features,
prognosis, mutations, TME, MSI, immune checkpoints, CSC
index, and drug sensitivity of patients with low and high
ARGscore differed significantly. Lastly, a quantitative
nomogram was developed by combining ARGscore with
clinical characteristics to improve its performance and
facilitate its use. By using this prognostic model, colorectal
cancer patients could be stratified for prognosis, which will
contribute to a better understanding of the molecular
mechanisms of cancer.

TME influenced colorectal cancer tumorigenesis and
progression. Immune cells such as tumor-infiltrating T cells
(CD4+/CD8+ T cells), M1 macrophages, and NK cells have
been shown to be associated with immune responses
(Topalian et al., 2016; Hinshaw and Shevde, 2019; Zeng et al.,
2020). A good prognosis is associated with the density of
infiltrating T cells in CRC tissues [(Governa et al., 2017;
Kuwahara et al., 2019)]. Tfh (follicular helper T cell) is
important for an effective antitumor response, and Tfh also
promotes intra-tumor B-cell differentiation, thereby improving
antitumor immunity (Gu-Trantien et al., 2013). In our result,
there was a better prognosis for patients with ARGscore-low and
subtype A, with higher infiltration of activated CD4+, CD8+

T cells, and Tfh, suggesting a potential role of ARG in the
development of colorectal cancer.

Even though immune cells were abundant in the immune-
excluded phenotype, they remained in the stroma around tumor
cells rather than permeating them. In some cases, the stroma is
contained within the tumor envelope, while in others, it
penetrates the tumor itself, making it appear as though the
immune cells are inside the tumor [(Gajewski, 2015; Joyce and
Fearon, 2015)]. Consistent with the above definition, in our
study, subtype B showed a highly enhanced stroma activation
state, including high expression of TGF-β pathways,
angiogenesis, and WNT signaling pathways, which are
considered T cell suppressive. Our immunophenotypic
classification of the different angiogenic patterns is confirmed
by the cell-permeable properties of TME in subtype B. As a result,
it is not surprising that subtype B has an activated immune
function but poor prognoses.

It has been shown that B cells infiltrating metastatic colorectal
cancer were associated with a good prognosis, and B cell
infiltrating patients have a significantly lower recurrence rate
(Berntsson et al., 2016). Therefore, B cells might play a role in

anti-tumor immunity and provide a new target for colorectal
cancer immunotherapy. Our study found that naive B cells were
significantly more prevalent in the subtype A and ARGscore-low
subgroups. This suggested that B Cell infiltration might have
inhibited tumor growth in CRC.

Cancer immunotherapy has emerged as a new therapeutic
option with tumor immunology and molecular biology
development. Immunotherapies include immune checkpoint
inhibitor (ICI), cellular therapies, and therapeutic antibodies.
ICI therapies have shown considerable survival advantages over
conventional therapies [(Rotte, 2019; Marin-Acevedo et al.,
2021)]. There was a positive correlation between MSI status
and better survival in CRC compared to MSS [(Ganesh et al.,
2019)]. We found higher expression levels of PD-1, PD-L1, and
CTLA4 in the ARGscore-low subgroup. Our study observed that
the ARGscore-low subgroup exhibited high infiltration of
multiple immune cells and high expression of PD-1 and MSI-
H states. The results suggested that patients with low ARGscore
might respond better to immune checkpoint blockade.

Limitations of this study remain. All samples used in this study,
derived from the public databases, were retrospective. This may have
introduced a selection bias into the analysis. In addition, additional,
important clinical variables were not available and analyzed in the
dataset species. It is, therefore, necessary to confirm our findings
with large prospective cohort studies as well as in vitro and in vivo
experiments.
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